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Abstract 

Computational Fluid Dynamics (CID) methods for solving traffic flow continuum models have 
been studied and efficiently implemented in traffic simulation codes in the past. This is the first 
time that such methods are studied from the point of view of parallel computing. We studied and 
implemented an implicit numerical method for solving the high-order flow conservation traffic 
model on parallel computers. Implicit methods allow much larger time-step than explicit methods, 
for the same accuracy. However, at each time-step a nonlinear system must he solved. We used 
the Newton method coupled with a linear iterative method (Orrhomin). We accelerated the 
convergence of Orthomin with parallel incomplete LU factorization preconditionings. We ran 
simulation tests with real traffic data from an 12-mile freeway section (in Minnesota) on the 
nCUBE2 parallel computer. These tests gave the same accuracy as past tests, which were 
performed on one-processor computers, and the overall execution time was significantly reduced. 

Keywork: Computational fluid dynamics; Traffic flow simulation; Newton method; LU factorization; 
Preconditioning; nCUBE2 

1. Introduction 

Macroscopic continuum traffic flow models based on traffic flow volume, density 

and speed have been used in studying the behavior of the freeway traffic in the past; see 
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for example [ 15-17,27,25,22]. These models involve partial differential equations 
(PDEs) defined on appropriate (road) domains with suitable boundary conditions, which 
describe various traffic phenomena and road geometries. The improvement of computa- 
tional efficiency in the continuum traffic models has been the focal point in the 
development of traffic simulation programs. It is understood that the computer execution 
time to solve traffic flow problems depends not only on the size of the freeway and the 
complexity of roadway geometries, but also on the model equations and numerical 
schemes used in their discretization. Explicit and implicit numerical methods have been 
used to compute the solution of traffic flow continuum models [17,7]. Implicit methods 
allow much larger time-step than explicit methods, for the same accuracy. Many results 
exist on study of algorithms for solving linear systems and mapping of algorithms on 
parallel computers; see for example [ 10,9,29,30,31]. 

In this work we parallelize an implicit numerical method (Backward Euler) to solve 
the momentum conservation model on the nCUBE2 parallel computer. Implicit numeri- 
cal methods require the solution of (non)linear systems of equations at each time-step. 
We use the Newton method coupled with a linear iterative method (Orthomin). We 
accelerate the convergence of Orthomin with two different types of parallel incomplete 
LU factorization preconditionings. The first preconditioning is based on the vectorizable 
incomplete LU method (see [3]). The second preconditioning is based on domain 
decomposition methods (see [ 1,4,5,9,12,19,21,24,26,28]). 

We wrote a code (in C) simulating a freeway with multiple entry/exit traffic flow on 
the nCUBE2 parallel computer located at the nCUBE2 located at Sandia National 
Laboratory. Tests with real data from the I-494 freeways in Minneapolis were con- 
ducted. On the nCUBE2, the parallel method, on a 16-processor configuration, runs 
about 4 times faster than on the 2-processor configuration. 

The outline of the article is as follows. In Section 2, a traffic flow model is described. 
In Section 3, the parallel implementation of the traffic model is discussed. In Section 4, 
the test results are shown. 

2. A traffic flow model 

In this section, we outline a traflc flow model. Such a model is based on a 
continuum traffic flow model, a discrete model and a freeway model. 

2.1. A continuum model 

Lighthill and Whitham [ 161 first proposed the following simple continuum conserua- 
tion equation model for the traffic flow problem. 

;+z=g(x, t), (‘1 

where k( x, t) and q( x, t) are the traffic density and flow respectively at the space-time 
point (x, t). The generation term g(x, t) represents the number of cars entering or 
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leaving the traffic flow in a freeway with entries/exits. The traffic flow, density and 
speed are related by the equation 

q=ku, (2) 

where the equilibrium speed u=(x, t) = u(k) must be provided by a theoretical or 
empiricalu-k model. The theoretical u-k model, can take the general form 

(3) 

where ur is the free jlow speed and kja, the jam density model parameters. More 
information on this and other forms of the u-k relationships can be found elsewhere 
(see [6] and the references therein). 

Since the simple continuum model does not consider acceleration and inertia effects, 
it does not describe accurately non-equilibrium traffic flow dynamics. High-order 
continuum traffic models that include the momentum equation have also been devel- 
oped. Such a model is the semi-viscous model [27] (SVM). This mathematical model for 
the traffic flow is adopted for our research. Our main goal is to derive efficient methods 
to parallelize the implicit methods applied to SVM. This choice is not a restriction. The 
same parallel implicit methods can be applied to other continuum models (e.g. [ 16,251). 

SVM takes into account acceleration and inertia effects by replacing Eq. (3) with a 
momentum equation. For example the equation in [27] has the following form, 

du 1 

Z-T 
--[z+(x) -u] - vk$, 

where du/dt is the acceleration of an observer moving with the traffic stream and is 
related to the acceleration au/at of the traffic stream as seen by an observer at a fixed 
point of the road, i.e. 

du au au 

z- at --+%. (5) 

The first term on the right-hand side of (4), T-‘[u,(x) - u], represents the relaxation 
term, the tendency of traffic flow to adjust speeds due to changes in free-flow speed 
u,(x) along the roadway, where relaxation time T is assumed to vary with density k 
according to 

T=to(l + ,y..:“&)’ 
where to > 0 and 0 < r < 1 are model parameters. The second term on the right-hand 
side of (4), vkP(8k/dx), represents the anticipation term which is the effect of drivers 
reacting to downstream traffic conditions. In this term I, is the anticipation parameter. 
As implied in this example, if downstream density is higher due to congestion, speed has 
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to be decreased accordingly. Conversely, if downstream density is lower, speed can be 
increased. From Eqs. (4)-(6) one derives a momentum model for the traffic flow 
described by the following system of PDEs, 

au aE 
~+~=Z, 

where U, E, and 2 are the following vectors: 

A typical choice of parameters is: ur = 60, kj, = 180, /3 = - 1, Y = 180, to = 50, 
r = 0.80. These parameters depend on the geometry of the freeway but also on the time 
of the day and even on the weather conditions. 

We note that the momentum conservation model does not require a q - k curve as in 
the case of the simple continuum model. However, speed data are required for the 
boundary conditions. If speed data are not available from the real traffic data measure- 
ments then a q - k curve based on occupancy data [27] is used to generate the speed 
data. 

2.2. A discrete model 

We now apply an implicit numerical method (implicit Euler), which is used in 
computational fluid dynamics [l I] to discretize SVM. For each traffic model the road 
section (the space dimension) is discretized using a uniform mesh. This method provides 
an efficient alternative to the explicit methods (e.g. Lax or Upwind) in integrating the 
model equations [7]. Let At and Ax be the time and space mesh sizes. We use the 
following notation: 

kj = density (vehicles/mile/lane) at space node jAx and at time i At, 
q; = flow (vehicles/hour/lane) at space node jAx and at time i At, 
UJ = speed (mile/hour) at space node jAx and at time i At. 
The implicit Euler method applied to the nonlinear PDEs (1) generates, at each 

time-step, a nonlinear system involving all space nodes. Newton’s method is applied to 
solve numerically this system [l 11. Each Newton step constructs a linear system 
AAUj = rhs, where the Jacobian A is a narrowly banded coeficient matrix, the 
right-hand side vector is rhs and the vector of unknowns is AUj = Uj' ' - Uj. This 
linear system has the following form, 

At 
= -- 

2Ax ( E;+ I -E,-,)+AtZf+At u;, 
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where 

0 

-uu2+ vkP+’ 

and 

0 0 ; 

( 

dZ i 

Z j= f,&. 
’ I 

-qkjam - 2rk) + -+I 
0 pm 0 pm 

- ki;;k-myk . 

I j 

Let m be the number of interior space nodes in a freeway lane (space domain). The 
Jacobian A has dimension n = 2m and it is a block tridiugorzai matrix with each 
submatrix block of size 2 X 2. A has the form tridiug[Cj- ,, Dj, Bj+ ,I, where C, = 
B ,+,=Oandfor ldj<m wehave 

At 

2Ax 

At q -- 
Ax k 

\ ’ 

, 

li 

I At 
0 -- 

cj = 
2Ax 

, 2Zx(- 

At q 
-- u2+v) --- 

AK k 

0 
1 

Dj = 

I ) ! 
’ 

i 

The Jacobian A is also banded with upper/lower bandwidth equal to 3. 
This linear system is solved by preconditioned Orthomin(korth) (see Appendix A), 

which is an iterative method for linear systems. The solution is then advanced to the 
next time-step simultaneously at all space nodes by computing Uj’ ’ = Vj + AU,. At 
each time-step, artificial smoothing is added to reduce oscillatory behavior in the 
numerical solution [I 11. This is achieved by adding to each term V, the following fourth 
order damping term 

We have tested several damping coefficients with o ranging from w = 0 (no damping) 
to w = 1. The choice o = 1 gave the best results. 

In Orthomin(korth), we choose korth = 4, because it gives the fewest number of 
iterations for convergence of Orthomin(korth), in our tests. Each iteration of Orthomin 
consists of vector operations of the following types: linear combinations, dotproducts, 
one matrix times vector product and one preconditioning step 1181. While A is 
computed at each time-step, its LU factorization is stored and used over many 
Newton/time steps. We recompute LU, if the nonlinear residual exceeds the error 
toZerance (8) after a maximum number of iterations (maxiter) of Orthomin(4). 



1970 A.T. Chronopoulos. G. Wang/Parullel Computing 22 (1997) 1965-1983 

Let us define a flq to be a multiplication combined with/without an addition. We 
next give the serial flops count for the various computations of the discrete model. 

1. Compute A: 312 
2. Compute rhs: 10n 
3. Compute the banded LU factorization of A: 9n 
4. Compute and apply artificial smoothing: 4n 
5. Apply the preconditioned Orthomin(4) (per inner iteration cost): 

(a) Compute matrix (A) times vector: 7n 
(b) Compute dotproducts: 7n 
(c) Compute linear combinations: 1On 
(d) Apply preconditioning step (i.e. forward substitution and backward elimina- 

tion using L and U): 7n 

The implicit Euler method is of second order accuracy with respect to At and it is 
unconditionally stable. This method will be called the Euler-Momentum method. This 
method involves more computations per time-step than an explicit method. However, the 
implicit Euler method allows much larger step-sizes, which makes the overall (serial) 
computer execution time faster than an explicit method, see [7]. 

2.3. A freeway model 

We have used two schemes to add/subtract entry/exit (ramp) traffic volumes 
to/from the main-lane traffic volume in SVM. 

(1) Point entr y / exit scheme: Ramp volumes are assumed to merge into (diverge 
from or exit from) the freeway main-lane at a single space node. This treatment is 
necessary to simplify the modeling and reduce computation time at such main-lane 
nodes. 

(2) Weaving entry/exit scheme: This is used when the ramp is directly connected to 
another freeway and it is explained in more detail below. 

The weaving scheme is outlined as follows. In the following discussion, let us 
consider the traffic flow volume in a freeway section shown in Fig. 1 at a fixed discrete 
time. In Fig. 1, volume u, represents the through traffic volume flow from link A to link 
B and volume v2 represents the diverging volume from link A to link F, and 
qA = v, + vz; u3 is the merging volume from link E to link B and volume vq is the 
through volume from link E to link F, and qE = u3 + vq. It is obvious that qF = u2 + v4 

Fig. 1. Weaving flows in a freeway. 
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and qB = u, + u3. Because there are interchanges of v2 and v3, traffic friction at link B 
and link E in this case is greater than the case of a single entrance ramp or exit ramp. 
Thus, this must be taken into account by calibrating (locally) the uf parameter in the 
mathematical model for these space nodes. Also, only merging dynamics at an entrance 
ramp must be employed if v2 = 0. Similarly, only diverging dynamics must be em- 
ployed if qE = 0. 

When the distance between links E and F is less than 600 ft (this is an empirical 
choice), merging and diverging movements must be completed within a short distance. 
However, since both qE and qF require lane changing in the same limited length of 
roadway at the same time, the sum of qE and qF must be included in the generation 
term of the model. If the generation term g > 0, the short weaving section is treated as a 
single on-ramp, if the generation term g < 0, it is treated as a single off-ramp. The 
generation term then becomes 

g = (qE - %)/AX. 

3. Parallel implementation on the nCUBE2 

In this section we outline the basic features of nCUBE2 and discuss the paralleliza- 
tion of Euler-Momentum. 

3.1. The nCUBE2 

The nCUBE2 [23] is an MZMD (Multiple Instruction Multiple Data) hypercube 
parallel computer system. In a hypercube of dimension ndim, there are p = 2ndim 
processors. These processors are labeled by 0, 1,. . . , p - 1. Two processors Pj, and Pi, 
are directly connected iff the binary representations of j, and j, differ in exactly one bit. 
For more details on the hypercube routing functions and mapping (onto a hypercube) of 
basic computations see [ 141. 

The number of processors to be active is chosen by the user, but must be a power of 
2. In Table 1, we show a summary of inter-processor communication times for neighbor 
processors and the basic floating point operation times [ 131. We see that communication 
even between neighbor processors is several times slower than floating point operations. 

In a hypercube with a high communication latency, the algorithm designer must 
structure the algorithm so that large amounts of computation are performed between the 
communication steps. 

Table 1 
Computation and communication times on the nCUBE2 

Operation Time Comm. camp. 

8 byte transfer 111 psec - 

8 byte add 1.23 psec 90 
8 byte multiply 1.28 I*sec 86 
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3.2. Mapping of the problem and parallelization of Orthomin 

Let p be the number of processors available in the system. The parallelization of the 
discrete model is obtained by partitioning the space domain (freeway model) into equal 
segments Seg , , . . . , Seg,,- , and assigning each segment to the processors Pj,, . . . , Pj,- ,. 
The choice of indices j,, . . . , j,- , defines a mapping of the segments to the processors. 

The computations associated with each segment have as their goal to compute the 
density, volume and speed over that segment. The computation in the time dimension is 
not parallelized. This essentially means that the quantities k$ qf, ~1. are computed by 
processor Pj,, if the space node jAx belongs to the segment Seg,,. This segment- 
processor mapping must be such that the communication delays for data exchanges, 
required in the computation, are minimized. Such a mapping of a linear array (of sets) 
onto a hypercube is achieved by the Gray code mapping (for a description see [14]). 

The computation of the Jacobian A and right-hand side vector rhs require data which 
may be located in an adjacent segment. Due to the Gray code mapping the processors 
storing these data are immediate neighbors. Thus, the least amount of communication 
will be required in computing A and rhs. Computation of rhs is performed at each 
time-step but the Jacobian A is computed very infrequently (see [2,8]). The Jacobian 
and the right-hand side vector are computed, in parallel, by the processor which is 
assigned the corresponding space nodes. 

Most of the execution time in the Euler-Momentum method is spent in the solution of 
linear systems. Thus, we now concentrate our discussion on the parallel implementation 
of the Orthomin method to solve the linear system. We have four main computations to 
be parallelized: a linear combination, a dotproduct, a matrix times vector product and 
a preconditioning step. We will only explain how the matrix times vector and the 
preconditioning are parallelized. The parallelization of the dotproducts and linear 
combination is studied in [ 13,201. 

Let n = 2 pq + s be the dimension of the linear system, where 1 < q and s = 2( p - 1). 
The special choice of n is not really a restriction and it is made for discussing the 
parallelization of the domain decomposition preconditioning. We distribute the matrix A 
and rhs data row-wise to the p processors so that each processor gets 2q + 2 rows, 
except for the last (in the Gray code mapping) processor, which gets 2q rows. Fig. 2 
shows an example of the matrix of coefficients and the vector of unknowns for 
maxj = 11 (number of space nodes), or n = 22 (dimension of matrix and right-hand side 
vector), which is assigned to four processors of the nCUBE. 

Let the entries (with subscripts omitted for simplicity of notation) of the matrix 
(shown in Fig. 2) be as follows: 

a=l+At 
k,,, - rk 

tOkjam ’ 
b= -At k(kjamy2rk) +$q]* 

0 ,am 

cc---- 
2Tx[- 

u2 + Y], d= ‘;, At q 

X e= -2x 

,“:,[- 

At 
f=-- u* + v], h=- 

2Ax’ 
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3.3. Parallelization of the preconditioning 

Preconditioners are used to accelerate the convergence of iterative methods. In 
determining a preconditioner (matrix) P,, we look for a matrix that is a close 
approximation to the inverse of A, so that 

P,=A-’ (8) 
or AP, has clustered eigenvalues. The matrix P, must be computed easily. Equivalently 
stated the system P,-’ x = b must be easy to solve. 

The basis for the Incomplete Lower Upper (KU) factorization method is that the 
matrix A is decomposed into upper and lower triangular matrices U and L such that 
A=LlJ+@, where P,-‘= LU and 0 is an error matrix. Also, we assume that if the 
entry Aj,,j, is zero, then both Uj,,j, and Lj,.j = 0. In other words, L and U have the 
same sparsity patterns as A. This is the ILU(O\ p reconditioning method. ILU(0) must be 
implemented properly on a parallel computer, in order to maintain its effectiveness (see 
[3,18]). We consider two different parallel implementations of ILU preconditioning: 

(a) Overlapped Submatrix Regions (USR ILU) by Radicati di Brozolo and Robert in 

[31. 
(b) The Domain Decomposition (DD ILU) [24]. 
In method (a) the matrix is partitioned into a number ( p, equal to the number of PEs) 

of overlapping horizontal submatrix regions (see [3]). We consider overlapped regions 
consisting of 2 matrix rows. The L and U factors are computed independently for each 
region. When the ILU step is applied the (forward elimination)/back-substitution is 
computed independently for each region and then the average of the two results is 

4 

p3 

matrix 

4 

vector 
AM 

Fig. 2. Original structure of the matrix A and the vector AU. 
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. 

. 

Region, 

Fig. 3. Processor assignment for OSR ILU. 

computed for the overlapped regions. More details on (a) are in [3] or [18]. Fig. 3 
illustrates the OSR ILU matrix mapping onto the hypercube. 

Method (b) is based on domain decomposition. The space domain is partitioned into 
p disjoint subdomains. The grid nodes of each subdomains and the corresponding 

fs es bs a 
11 0 0 hi 

k e, 
0 h 
cs 4 
0 -h 
J, 6, 

0 h 

. 

ca d 
0 -h 
JLO%X 

Fig. 4. Partition of the linear system and mapping to processors in DD ILU. 
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unknowns are mapped to each processor via the Gray code mapping. The set of ( p - 1) 

grid nodes, which separate the subdomains define the separutor set. Let us assume (for 
simplicity) that each subdomain consists of q nodes. Then A and rhs have dimension 
n = 2 pq + 2( p - 1). Fig. 4 shows the partitioning of the matrix/(vector of unknowns) 
(according to the domain decomposition) across the ( p = 4) processors of a hypercube, 
with q = 2. After a reordering of the unknowns we move the separator set unknowns to 
the last 2(p - 1) rows of the unknowns’ vector. If p -z q, computing the separator 
unknowns involves much less cost than computing each of the p other sets of (q) 
unknowns. Thus, we assign this task to all the processors in order to reduce the 
communication cost. The parallel LU, based on domain decomposition, is outlined in the 
Appendix B (see [241). 

The parallel implementation introduces flops overhead only in the preconditioning 
step. For OSR ILU it is due to the overlapped submatrix regions computations. Since 
each such region only consists of 2 rows this overhead is of order p. The flops overhead 
for DD ILU is due to the Schur complement computations, which is of order p3. In both 
cases the overhead is negligible, if p +z q. For large p, the computations in the Schur 
complement must be distributed across the processors of the system. Also, it may be 
faster to solve the Schur complement iteratively. 

4. Results 

We have implemented the Euler-Momentum method on the nCUBE2 parallel 
computer located at the Sandia National Laboratory. 

2500 , 
upstream boundary - 

downstream boundary ---~ 

0 
I I I I 

7:oo 7:30 a:00 &30 
Time (a.m.) 

Fig. 5. Boundary conditions input data. 
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Fig. 6. Density (cars/miles) vs. (time: hours, distance: miles). 

As our freeway test-site, we considered Eastbound I-494, which is a multiple 
entry/exit freeway section in the Minneapolis, Minnesota freeway network. The East- 
bound I-494 section extends from the Carlson Pwy to Portland Avenue. We simulated 
the traffic in a 12-mile stretch of the freeway, which has 12 entry and 10 exit ramps, for 
a period of 2 hours. Simulation input data are available from measurements collected by 
the Minnesota Department of Transportation. These data contain 5-minute measurements 
of the traffic volume at the entry/exit ramps, the upstream/downstream boundaries of 
the freeway segment and at a number (nst = 18) of intermediate check-station sites. Fig. 
5 shows the upstream/downstream volume input data for the period of simulation (2 
hours). The rest of the input data are not shown but could be plotted similarly. 

Distance \...--.: ’ 

Fig. 7. Speed (miles/hours) vs. (time: hours, distance : miles). 
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Fig. 8. Volume (cars/hour/lane) vs. (time: hours, distance:miles). 

To test the Euler-Momentum, the time-step selection was made as follows. The 
time-step was increased so that the maximum error did not exceed that of the errors 
reported in past research (see [7,17,27]), for explicit methods. After testing we selected 
E = 1O-6 and muxiter = 40, for Orthomin(4). The time and space mesh sizes were 
At = 10 set and Ax = 200 ft. There are 313 interior space nodes in the discrete model. 
The dimension of A is n = 626 and 720 time-steps are taken for the 2 hour long 
simulation. 

Figs. 6-8 show the computed density, speed and volume plotted versus the space 
domain and the time. We compare volume and speed data computed by the simulations 
with the check-station sites’ data. Let IV be the number of discrete time points at which 
real traffic flow data are collected. We use the following error function to measure the 
effectiveness of the simulation in comparison with actual data: 

The error statistics are summarized in Table 2. The relative errors are about 10% for the 

Table 2 
Errors for traffic volume and weed (l-494) 

Sites 

I 
2 

3 
4 
5 

OSR ILU 

Volume (veh/5 min) 

0.12 
0.11 

0.09 
0.05 
0.1 I 

Speed (miles/hour) 

0.03 
0.07 
0.08 
0.07 
0.13 

DD ILU 

VAume (veh/5 min) 

0.12 
0.13 
0.13 
0.16 
0.17 

Speed (miles/hour) 

0.03 
0.08 

0.08 
0.07 
0.1 I 
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Table 3 
Time (in seconds) in OSR ILU version for I-494 

No. of PEs Matrix/rhs ILU Dotproducts 

2 32.0 111.4 95.5 
4 16.9 66.7 71.2 
8 9.2 36.8 53.9 

16 4.4 23.8 57.0 

Matrix X vet. Lin. Comb. Total Time 

75.0 93.4 483.1 
45.4 54.0 296.2 

26.3 27.7 177.8 
17.2 22.1 133.6 

Table 4 
Time (in seconds) in DD ILU version for I-494 

No. of PEs Matrix/ rhs ILU Dotproduct Matrix X vet. Lin. Comb. Total Time 

2 32.2 202.1 82.2 67.3 148.0 536.3 
4 17.8 95.0 43.5 31.0 59.1 247.5 
8 12.2 68.8 27.8 15.0 24.5 152.2 

16 13.1 102.6 24.8 8.6 11.8 168.6 

volume but they are lower for the speed. This accuracy range of agreement with the 
measured data is acceptable (see [7,17,27]). We consider the relative speedup: 

SD=;, 
P 

where T2 is the execution time on two processors and T, is the execution time on p 
processors. Relative speedup is considered because the preconditioning code was 

4 

4 
$ 2.5 

0 

speedupnag oi processor - 

Fig. 9. Speedup for the OSR ILU method on nCUBE2. 
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Fig. 10. Efficiency for the OSR ILU method on nCUBE2. 

designed to run on more than one processor and thus we could not obtain the timing on 
a single processor. 

Parallel execution times (on nCUBE2), for OSR ILU and DD ILU, are summarized in 
Tables 3 and 4. The speedups and efficiencies on nCUBE2 are summarized in Figs. 

Fig. I 1. Speedup for the DD ILU method on nCUBE2. 
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1 

08 

G 0.6 
5 
‘G 
E 
(u 

0.4 

0.2 

0 
1.5 2 25 3 

log Of no. of processors 

Fig. 12. Efficiency for the DD ILU method on nCUBE2. 

9-12. From Tables 3 and 4, the times for the DD ILU parts (Matrix/rhs/ILU/ 
Dotproducts) are greater than the corresponding OSR ILU parts. This is due, in part, to 
the fact that these parts require more communication in DD ILU than the in OSR ILU. 
Also, due mainly to the communication costs, in setting up the problem, the time on the 
2 processors is so long that it leads to a superlinear speedup for the 4-processor case. 

Since the size of the problem is kept fixed the speedup drops as the problem is solved 
with more processors. Overall, the performance of the parallel implicit methods, studied 
here, is satisfactory and it is expected to improve for simulation of longer freeway 
segments and networks of freeways. At the present time the input data available are for 
single freeway sections. 
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Appendix A. The Orthomin iterative method 

We next describe the Orthomin iterative method to solve Ax = rhs, where A is 
nonsymmetric matrix of dimension n. Orthomin applies to nonsymmetric linear systems 
with the symmetric part of A being positive definite. Let korrh be a positive integer. We 
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describe the orthomin iterative method with preconditioning as follows. In this algo- 
rithm, j; = max(O,i - korrh + l), P, is the right preconditioner, which is obtained by the 
LU decomposition of the matrix A. For more details, see [18]. 

Algorithm 1. Orthomin (korrh) 

1. Choose x0 = 0. 
2. Compute r0 = rhs - Ax,. 
3. po = t-0. 

For i = 0 step 1 Until convergence Do 

4. U; = (r; Api)/( Api Api) 

5. xi+, = xi + ai pi 

6. ri+ I =ri-a;Api 
7. If II ri+, I] < tolerance, then stop 
8. Compute AP,ri+ , 
9. b; = (AP,r,+ ,Apj>/<Ap,Apj), ji <j< i 

10. pi+, = P,.ri+, + Ei.Dj b,‘pj, 
11. Ap;+,=AP,r,+, +$j,b;Apj 

Endfor 

Appendix B. Domain decomposition 

We will outline the parallel algorithms for the complete LiJ factorization of a matrix 
and the solution of a linear system using the domain decomposition method (see 
[28,24]). In our implementation, we obtain the LU factors only once and we use them to 
solve the linear systems of the precondirioning step in the Orthomin iterations, over 
several Newton/time steps. This is a domain decomposition ILU(0) type method (see 
Km. 

Let us consider the partition of the linear system in Fig. 4. Let us assume, for 
simplicity, that n = 2pq + s and let s = 2( p - 1) be the number of unknowns in the 
separator set. Let us denote by A,, . . . , & the first p diagonal submatrix blocks (each of 
size 2q X 2q) and by KS the last diagonal submatrix block (of size s X s, which is 
related to the separator set unknowns). Let us denote by Bi the vertical border submatrix 
blocks (each of size 2q X s) and by the horizontal border submatrix blocks 2, (each of 
size s X 2q). 

The parallel domain decomposition complete LU factorization is the following. 

Algorithm (Block LU Factorization) 

1. on every processor, compute the LU decomposition Ai = L&l,, i = 1,. . . , p. 
2. on every processor, solve the system AiZi = B;, i = 1,. . . , p. 
3. on every processor, form C,Z,, i = 1,. . . , p. 
4. on every processor, broadcast cizi so that every processor has the data ciz,, i = 

1 P. 9.s-y 
5. on all processors, form the Schur Complement A^ = KS - Cf= ,cizi and compute its 

LU decomposition. 
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The parallel domain decomposition forward elimination and back-substitution is the 
following. 

Algorithm (Block LU Linear System Solution) 

I. on every processor, solve the system AT. Zi =bi, i = 1,. . . , P. 

2. on every processor, form C; I&, i = 1,. . . , p. 
3. on every processor, broadcast I?~ Zi so that every processor has the data ciZ,, i = 

1 P. 7.a.t 
4. on all processors, form 6 = b, - Cp,,C, Zi. 
5. on all processors, solve the system AYs = 6. 
6. on every processor, form Ci = bi - ii XL, i = 1,. . . , p. 
7. on every processor, solve the system AiIii = Ti, i = 1,. . . , p. 
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