
ELSEVIER Parallel Computing 22 (1997) 1965- 1983

PARALLEL
COMPUTING

Practical aspects and experiences

Parallel solution of a traffic flow simulation
problem ’

Anthony Theodore Chronopoulos *,a, Gang Wang b
a Department of Computer Science, Wayne State University, 5143 Cass Avenue. Detroit, MI 48202, USA

b University of Minnesota, Minneapolis, USA

Received 23 May 199.5; revised 3 January 1996,23 September 1997

Abstract

Computational Fluid Dynamics (CID) methods for solving traffic flow continuum models have
been studied and efficiently implemented in traffic simulation codes in the past. This is the first
time that such methods are studied from the point of view of parallel computing. We studied and
implemented an implicit numerical method for solving the high-order flow conservation traffic
model on parallel computers. Implicit methods allow much larger time-step than explicit methods,
for the same accuracy. However, at each time-step a nonlinear system must he solved. We used
the Newton method coupled with a linear iterative method (Orrhomin). We accelerated the
convergence of Orthomin with parallel incomplete LU factorization preconditionings. We ran
simulation tests with real traffic data from an 12-mile freeway section (in Minnesota) on the
nCUBE2 parallel computer. These tests gave the same accuracy as past tests, which were
performed on one-processor computers, and the overall execution time was significantly reduced.

Keywork: Computational fluid dynamics; Traffic flow simulation; Newton method; LU factorization;
Preconditioning; nCUBE2

1. Introduction

Macroscopic continuum traffic flow models based on traffic flow volume, density

and speed have been used in studying the behavior of the freeway traffic in the past; see

* Corresponding author. Email: chronos@cs.wayne.edu
’ This work was in part funded by NSF under grant CCR-9496327. The Sandia National Laboratory, P.O.

Box 5800, Albuquerque, NM 87185 is acknowledged for providing access to its nCUBE2 Parallel Computer
System.

0167-8 191/97/$17.00 0 1997 Elsevier Science B.V. All rights reserved
PII SO167-8191(97)00070-I

1966 A.T. Chrottopoulos, G. Wang/ Parallel Computing 22 (1997) 1965-1983

for example [15-17,27,25,22]. These models involve partial differential equations
(PDEs) defined on appropriate (road) domains with suitable boundary conditions, which
describe various traffic phenomena and road geometries. The improvement of computa-
tional efficiency in the continuum traffic models has been the focal point in the
development of traffic simulation programs. It is understood that the computer execution
time to solve traffic flow problems depends not only on the size of the freeway and the
complexity of roadway geometries, but also on the model equations and numerical
schemes used in their discretization. Explicit and implicit numerical methods have been
used to compute the solution of traffic flow continuum models [17,7]. Implicit methods
allow much larger time-step than explicit methods, for the same accuracy. Many results
exist on study of algorithms for solving linear systems and mapping of algorithms on
parallel computers; see for example [10,9,29,30,31].

In this work we parallelize an implicit numerical method (Backward Euler) to solve
the momentum conservation model on the nCUBE2 parallel computer. Implicit numeri-
cal methods require the solution of (non)linear systems of equations at each time-step.
We use the Newton method coupled with a linear iterative method (Orthomin). We
accelerate the convergence of Orthomin with two different types of parallel incomplete
LU factorization preconditionings. The first preconditioning is based on the vectorizable
incomplete LU method (see [3]). The second preconditioning is based on domain
decomposition methods (see [1,4,5,9,12,19,21,24,26,28]).

We wrote a code (in C) simulating a freeway with multiple entry/exit traffic flow on
the nCUBE2 parallel computer located at the nCUBE2 located at Sandia National
Laboratory. Tests with real data from the I-494 freeways in Minneapolis were con-
ducted. On the nCUBE2, the parallel method, on a 16-processor configuration, runs
about 4 times faster than on the 2-processor configuration.

The outline of the article is as follows. In Section 2, a traffic flow model is described.
In Section 3, the parallel implementation of the traffic model is discussed. In Section 4,
the test results are shown.

2. A traffic flow model

In this section, we outline a traflc flow model. Such a model is based on a
continuum traffic flow model, a discrete model and a freeway model.

2.1. A continuum model

Lighthill and Whitham [161 first proposed the following simple continuum conserua-
tion equation model for the traffic flow problem.

;+z=g(x, t), (‘1

where k(x, t) and q(x, t) are the traffic density and flow respectively at the space-time
point (x, t). The generation term g(x, t) represents the number of cars entering or

A.T. Chronopoulns, G. Wung / Purullel Computing 22 (19971 1965-1983 1967

leaving the traffic flow in a freeway with entries/exits. The traffic flow, density and
speed are related by the equation

q=ku, (2)

where the equilibrium speed u=(x, t) = u(k) must be provided by a theoretical or
empiricalu-k model. The theoretical u-k model, can take the general form

(3)

where ur is the free jlow speed and kja, the jam density model parameters. More
information on this and other forms of the u-k relationships can be found elsewhere
(see [6] and the references therein).

Since the simple continuum model does not consider acceleration and inertia effects,
it does not describe accurately non-equilibrium traffic flow dynamics. High-order
continuum traffic models that include the momentum equation have also been devel-
oped. Such a model is the semi-viscous model [27] (SVM). This mathematical model for
the traffic flow is adopted for our research. Our main goal is to derive efficient methods
to parallelize the implicit methods applied to SVM. This choice is not a restriction. The
same parallel implicit methods can be applied to other continuum models (e.g. [16,251).

SVM takes into account acceleration and inertia effects by replacing Eq. (3) with a
momentum equation. For example the equation in [27] has the following form,

du 1

Z-T
--[z+(x) -u] - vk$,

where du/dt is the acceleration of an observer moving with the traffic stream and is
related to the acceleration au/at of the traffic stream as seen by an observer at a fixed
point of the road, i.e.

du au au

z- at --+%. (5)

The first term on the right-hand side of (4), T-‘[u,(x) - u], represents the relaxation
term, the tendency of traffic flow to adjust speeds due to changes in free-flow speed
u,(x) along the roadway, where relaxation time T is assumed to vary with density k
according to

T=to(l + ,y..:“&)’
where to > 0 and 0 < r < 1 are model parameters. The second term on the right-hand
side of (4), vkP(8k/dx), represents the anticipation term which is the effect of drivers
reacting to downstream traffic conditions. In this term I, is the anticipation parameter.
As implied in this example, if downstream density is higher due to congestion, speed has

1968 A.T. Chronoppoulos, G. Wang / Purallel Computing 22 (1997) 1965-1983

to be decreased accordingly. Conversely, if downstream density is lower, speed can be
increased. From Eqs. (4)-(6) one derives a momentum model for the traffic flow
described by the following system of PDEs,

au aE
~+~=Z,

where U, E, and 2 are the following vectors:

A typical choice of parameters is: ur = 60, kj, = 180, /3 = - 1, Y = 180, to = 50,
r = 0.80. These parameters depend on the geometry of the freeway but also on the time
of the day and even on the weather conditions.

We note that the momentum conservation model does not require a q - k curve as in
the case of the simple continuum model. However, speed data are required for the
boundary conditions. If speed data are not available from the real traffic data measure-
ments then a q - k curve based on occupancy data [27] is used to generate the speed
data.

2.2. A discrete model

We now apply an implicit numerical method (implicit Euler), which is used in
computational fluid dynamics [l I] to discretize SVM. For each traffic model the road
section (the space dimension) is discretized using a uniform mesh. This method provides
an efficient alternative to the explicit methods (e.g. Lax or Upwind) in integrating the
model equations [7]. Let At and Ax be the time and space mesh sizes. We use the
following notation:

kj = density (vehicles/mile/lane) at space node jAx and at time i At,
q; = flow (vehicles/hour/lane) at space node jAx and at time i At,
UJ = speed (mile/hour) at space node jAx and at time i At.
The implicit Euler method applied to the nonlinear PDEs (1) generates, at each

time-step, a nonlinear system involving all space nodes. Newton’s method is applied to
solve numerically this system [l 11. Each Newton step constructs a linear system
AAUj = rhs, where the Jacobian A is a narrowly banded coeficient matrix, the
right-hand side vector is rhs and the vector of unknowns is AUj = Uj' ' - Uj. This
linear system has the following form,

At
= --

2Ax (E;+ I -E,-,)+AtZf+At u;,

A.T. Ckronopo~los, G. Wang /Purdlel Computing 22 (19971 1965-1983 1969

where

0

-uu2+ vkP+’

and

0 0 ;

(

dZ i

Z j= f,&.
’ I

-qkjam - 2rk) + -+I
0 pm 0 pm

- ki;;k-myk .

I j

Let m be the number of interior space nodes in a freeway lane (space domain). The
Jacobian A has dimension n = 2m and it is a block tridiugorzai matrix with each
submatrix block of size 2 X 2. A has the form tridiug[Cj- ,, Dj, Bj+ ,I, where C, =
B ,+,=Oandfor ldj<m wehave

At

2Ax

At q --
Ax k

\ ’

,

li

I At
0 --

cj =
2Ax

, 2Zx(-

At q
-- u2+v) ---

AK k

0
1

Dj =

I) !
’

i

The Jacobian A is also banded with upper/lower bandwidth equal to 3.
This linear system is solved by preconditioned Orthomin(korth) (see Appendix A),

which is an iterative method for linear systems. The solution is then advanced to the
next time-step simultaneously at all space nodes by computing Uj’ ’ = Vj + AU,. At
each time-step, artificial smoothing is added to reduce oscillatory behavior in the
numerical solution [I 11. This is achieved by adding to each term V, the following fourth
order damping term

We have tested several damping coefficients with o ranging from w = 0 (no damping)
to w = 1. The choice o = 1 gave the best results.

In Orthomin(korth), we choose korth = 4, because it gives the fewest number of
iterations for convergence of Orthomin(korth), in our tests. Each iteration of Orthomin
consists of vector operations of the following types: linear combinations, dotproducts,
one matrix times vector product and one preconditioning step 1181. While A is
computed at each time-step, its LU factorization is stored and used over many
Newton/time steps. We recompute LU, if the nonlinear residual exceeds the error
toZerance (8) after a maximum number of iterations (maxiter) of Orthomin(4).

1970 A.T. Chronopoulos. G. Wang/Parullel Computing 22 (1997) 1965-1983

Let us define a flq to be a multiplication combined with/without an addition. We
next give the serial flops count for the various computations of the discrete model.

1. Compute A: 312
2. Compute rhs: 10n
3. Compute the banded LU factorization of A: 9n
4. Compute and apply artificial smoothing: 4n
5. Apply the preconditioned Orthomin(4) (per inner iteration cost):

(a) Compute matrix (A) times vector: 7n
(b) Compute dotproducts: 7n
(c) Compute linear combinations: 1On
(d) Apply preconditioning step (i.e. forward substitution and backward elimina-

tion using L and U): 7n

The implicit Euler method is of second order accuracy with respect to At and it is
unconditionally stable. This method will be called the Euler-Momentum method. This
method involves more computations per time-step than an explicit method. However, the
implicit Euler method allows much larger step-sizes, which makes the overall (serial)
computer execution time faster than an explicit method, see [7].

2.3. A freeway model

We have used two schemes to add/subtract entry/exit (ramp) traffic volumes
to/from the main-lane traffic volume in SVM.

(1) Point entr y / exit scheme: Ramp volumes are assumed to merge into (diverge
from or exit from) the freeway main-lane at a single space node. This treatment is
necessary to simplify the modeling and reduce computation time at such main-lane
nodes.

(2) Weaving entry/exit scheme: This is used when the ramp is directly connected to
another freeway and it is explained in more detail below.

The weaving scheme is outlined as follows. In the following discussion, let us
consider the traffic flow volume in a freeway section shown in Fig. 1 at a fixed discrete
time. In Fig. 1, volume u, represents the through traffic volume flow from link A to link
B and volume v2 represents the diverging volume from link A to link F, and
qA = v, + vz; u3 is the merging volume from link E to link B and volume vq is the
through volume from link E to link F, and qE = u3 + vq. It is obvious that qF = u2 + v4

Fig. 1. Weaving flows in a freeway.

A.T. Chronc~ppoulos, G. Wang /Parallel Computing 22 (1997) 1965-1983 1971

and qB = u, + u3. Because there are interchanges of v2 and v3, traffic friction at link B
and link E in this case is greater than the case of a single entrance ramp or exit ramp.
Thus, this must be taken into account by calibrating (locally) the uf parameter in the
mathematical model for these space nodes. Also, only merging dynamics at an entrance
ramp must be employed if v2 = 0. Similarly, only diverging dynamics must be em-
ployed if qE = 0.

When the distance between links E and F is less than 600 ft (this is an empirical
choice), merging and diverging movements must be completed within a short distance.
However, since both qE and qF require lane changing in the same limited length of
roadway at the same time, the sum of qE and qF must be included in the generation
term of the model. If the generation term g > 0, the short weaving section is treated as a
single on-ramp, if the generation term g < 0, it is treated as a single off-ramp. The
generation term then becomes

g = (qE - %)/AX.

3. Parallel implementation on the nCUBE2

In this section we outline the basic features of nCUBE2 and discuss the paralleliza-
tion of Euler-Momentum.

3.1. The nCUBE2

The nCUBE2 [23] is an MZMD (Multiple Instruction Multiple Data) hypercube
parallel computer system. In a hypercube of dimension ndim, there are p = 2ndim
processors. These processors are labeled by 0, 1,. . . , p - 1. Two processors Pj, and Pi,
are directly connected iff the binary representations of j, and j, differ in exactly one bit.
For more details on the hypercube routing functions and mapping (onto a hypercube) of
basic computations see [141.

The number of processors to be active is chosen by the user, but must be a power of
2. In Table 1, we show a summary of inter-processor communication times for neighbor
processors and the basic floating point operation times [131. We see that communication
even between neighbor processors is several times slower than floating point operations.

In a hypercube with a high communication latency, the algorithm designer must
structure the algorithm so that large amounts of computation are performed between the
communication steps.

Table 1
Computation and communication times on the nCUBE2

Operation Time Comm. camp.

8 byte transfer 111 psec -

8 byte add 1.23 psec 90
8 byte multiply 1.28 I*sec 86

1972 A.T. Chronopoulos. G. Wang/Parullrl Computing 22 (1997) 1965-1983

3.2. Mapping of the problem and parallelization of Orthomin

Let p be the number of processors available in the system. The parallelization of the
discrete model is obtained by partitioning the space domain (freeway model) into equal
segments Seg , , . . . , Seg,,- , and assigning each segment to the processors Pj,, . . . , Pj,- ,.
The choice of indices j,, . . . , j,- , defines a mapping of the segments to the processors.

The computations associated with each segment have as their goal to compute the
density, volume and speed over that segment. The computation in the time dimension is
not parallelized. This essentially means that the quantities k$ qf, ~1. are computed by
processor Pj,, if the space node jAx belongs to the segment Seg,,. This segment-
processor mapping must be such that the communication delays for data exchanges,
required in the computation, are minimized. Such a mapping of a linear array (of sets)
onto a hypercube is achieved by the Gray code mapping (for a description see [14]).

The computation of the Jacobian A and right-hand side vector rhs require data which
may be located in an adjacent segment. Due to the Gray code mapping the processors
storing these data are immediate neighbors. Thus, the least amount of communication
will be required in computing A and rhs. Computation of rhs is performed at each
time-step but the Jacobian A is computed very infrequently (see [2,8]). The Jacobian
and the right-hand side vector are computed, in parallel, by the processor which is
assigned the corresponding space nodes.

Most of the execution time in the Euler-Momentum method is spent in the solution of
linear systems. Thus, we now concentrate our discussion on the parallel implementation
of the Orthomin method to solve the linear system. We have four main computations to
be parallelized: a linear combination, a dotproduct, a matrix times vector product and
a preconditioning step. We will only explain how the matrix times vector and the
preconditioning are parallelized. The parallelization of the dotproducts and linear
combination is studied in [13,201.

Let n = 2 pq + s be the dimension of the linear system, where 1 < q and s = 2(p - 1).
The special choice of n is not really a restriction and it is made for discussing the
parallelization of the domain decomposition preconditioning. We distribute the matrix A
and rhs data row-wise to the p processors so that each processor gets 2q + 2 rows,
except for the last (in the Gray code mapping) processor, which gets 2q rows. Fig. 2
shows an example of the matrix of coefficients and the vector of unknowns for
maxj = 11 (number of space nodes), or n = 22 (dimension of matrix and right-hand side
vector), which is assigned to four processors of the nCUBE.

Let the entries (with subscripts omitted for simplicity of notation) of the matrix
(shown in Fig. 2) be as follows:

a=l+At
k,,, - rk

tOkjam ’
b= -At k(kjamy2rk) +$q]*

0 ,am

cc----
2Tx[-

u2 + Y], d= ‘;, At q

X e= -2x

,“:,[-

At
f=-- u* + v], h=-

2Ax’

A.T. Chronc~poulos. G. Wuqq/ Purullcl Computing 22 (1997) 1965-1983 1973

3.3. Parallelization of the preconditioning

Preconditioners are used to accelerate the convergence of iterative methods. In
determining a preconditioner (matrix) P,, we look for a matrix that is a close
approximation to the inverse of A, so that

P,=A-’ (8)
or AP, has clustered eigenvalues. The matrix P, must be computed easily. Equivalently
stated the system P,-’ x = b must be easy to solve.

The basis for the Incomplete Lower Upper (KU) factorization method is that the
matrix A is decomposed into upper and lower triangular matrices U and L such that
A=LlJ+@, where P,-‘= LU and 0 is an error matrix. Also, we assume that if the
entry Aj,,j, is zero, then both Uj,,j, and Lj,.j = 0. In other words, L and U have the
same sparsity patterns as A. This is the ILU(O\ p reconditioning method. ILU(0) must be
implemented properly on a parallel computer, in order to maintain its effectiveness (see
[3,18]). We consider two different parallel implementations of ILU preconditioning:

(a) Overlapped Submatrix Regions (USR ILU) by Radicati di Brozolo and Robert in

[31.
(b) The Domain Decomposition (DD ILU) [24].
In method (a) the matrix is partitioned into a number (p, equal to the number of PEs)

of overlapping horizontal submatrix regions (see [3]). We consider overlapped regions
consisting of 2 matrix rows. The L and U factors are computed independently for each
region. When the ILU step is applied the (forward elimination)/back-substitution is
computed independently for each region and then the average of the two results is

4

p3

matrix

4

vector
AM

Fig. 2. Original structure of the matrix A and the vector AU.

1974 A.T. Chronopnulos, G. Wang/ Parallel Computing 22 (1997) 1965-1983

.

.

Region,

Fig. 3. Processor assignment for OSR ILU.

computed for the overlapped regions. More details on (a) are in [3] or [18]. Fig. 3
illustrates the OSR ILU matrix mapping onto the hypercube.

Method (b) is based on domain decomposition. The space domain is partitioned into
p disjoint subdomains. The grid nodes of each subdomains and the corresponding

fs es bs a
11 0 0 hi

k e,
0 h
cs 4
0 -h
J, 6,

0 h

.

ca d
0 -h
JLO%X

Fig. 4. Partition of the linear system and mapping to processors in DD ILU.

A.T. Chronopoulm. G. Wang/ Parullel Computing 22 (1997) 1965-1983 1975

unknowns are mapped to each processor via the Gray code mapping. The set of (p - 1)

grid nodes, which separate the subdomains define the separutor set. Let us assume (for
simplicity) that each subdomain consists of q nodes. Then A and rhs have dimension
n = 2 pq + 2(p - 1). Fig. 4 shows the partitioning of the matrix/(vector of unknowns)
(according to the domain decomposition) across the (p = 4) processors of a hypercube,
with q = 2. After a reordering of the unknowns we move the separator set unknowns to
the last 2(p - 1) rows of the unknowns’ vector. If p -z q, computing the separator
unknowns involves much less cost than computing each of the p other sets of (q)
unknowns. Thus, we assign this task to all the processors in order to reduce the
communication cost. The parallel LU, based on domain decomposition, is outlined in the
Appendix B (see [241).

The parallel implementation introduces flops overhead only in the preconditioning
step. For OSR ILU it is due to the overlapped submatrix regions computations. Since
each such region only consists of 2 rows this overhead is of order p. The flops overhead
for DD ILU is due to the Schur complement computations, which is of order p3. In both
cases the overhead is negligible, if p +z q. For large p, the computations in the Schur
complement must be distributed across the processors of the system. Also, it may be
faster to solve the Schur complement iteratively.

4. Results

We have implemented the Euler-Momentum method on the nCUBE2 parallel
computer located at the Sandia National Laboratory.

2500 ,
upstream boundary -

downstream boundary ---~

0
I I I I

7:oo 7:30 a:00 &30
Time (a.m.)

Fig. 5. Boundary conditions input data.

1976 A.T. Chronopoulos, G. Wang/Parallel Computing 22 (199711965-1983

Fig. 6. Density (cars/miles) vs. (time: hours, distance: miles).

As our freeway test-site, we considered Eastbound I-494, which is a multiple
entry/exit freeway section in the Minneapolis, Minnesota freeway network. The East-
bound I-494 section extends from the Carlson Pwy to Portland Avenue. We simulated
the traffic in a 12-mile stretch of the freeway, which has 12 entry and 10 exit ramps, for
a period of 2 hours. Simulation input data are available from measurements collected by
the Minnesota Department of Transportation. These data contain 5-minute measurements
of the traffic volume at the entry/exit ramps, the upstream/downstream boundaries of
the freeway segment and at a number (nst = 18) of intermediate check-station sites. Fig.
5 shows the upstream/downstream volume input data for the period of simulation (2
hours). The rest of the input data are not shown but could be plotted similarly.

Distance \...--.: ’

Fig. 7. Speed (miles/hours) vs. (time: hours, distance : miles).

A.T. Chrmopoulos, G. Wang/ Parallel Computing 22 (1997) 1965-1983 1977

Fig. 8. Volume (cars/hour/lane) vs. (time: hours, distance:miles).

To test the Euler-Momentum, the time-step selection was made as follows. The
time-step was increased so that the maximum error did not exceed that of the errors
reported in past research (see [7,17,27]), for explicit methods. After testing we selected
E = 1O-6 and muxiter = 40, for Orthomin(4). The time and space mesh sizes were
At = 10 set and Ax = 200 ft. There are 313 interior space nodes in the discrete model.
The dimension of A is n = 626 and 720 time-steps are taken for the 2 hour long
simulation.

Figs. 6-8 show the computed density, speed and volume plotted versus the space
domain and the time. We compare volume and speed data computed by the simulations
with the check-station sites’ data. Let IV be the number of discrete time points at which
real traffic flow data are collected. We use the following error function to measure the
effectiveness of the simulation in comparison with actual data:

The error statistics are summarized in Table 2. The relative errors are about 10% for the

Table 2
Errors for traffic volume and weed (l-494)

Sites

I
2

3
4
5

OSR ILU

Volume (veh/5 min)

0.12
0.11

0.09
0.05
0.1 I

Speed (miles/hour)

0.03
0.07
0.08
0.07
0.13

DD ILU

VAume (veh/5 min)

0.12
0.13
0.13
0.16
0.17

Speed (miles/hour)

0.03
0.08

0.08
0.07
0.1 I

1978 A.T. Chronopoulos, G. Wang/Parallel Computing 22 (1997) 196.51983

Table 3
Time (in seconds) in OSR ILU version for I-494

No. of PEs Matrix/rhs ILU Dotproducts

2 32.0 111.4 95.5
4 16.9 66.7 71.2
8 9.2 36.8 53.9

16 4.4 23.8 57.0

Matrix X vet. Lin. Comb. Total Time

75.0 93.4 483.1
45.4 54.0 296.2

26.3 27.7 177.8
17.2 22.1 133.6

Table 4
Time (in seconds) in DD ILU version for I-494

No. of PEs Matrix/ rhs ILU Dotproduct Matrix X vet. Lin. Comb. Total Time

2 32.2 202.1 82.2 67.3 148.0 536.3
4 17.8 95.0 43.5 31.0 59.1 247.5
8 12.2 68.8 27.8 15.0 24.5 152.2

16 13.1 102.6 24.8 8.6 11.8 168.6

volume but they are lower for the speed. This accuracy range of agreement with the
measured data is acceptable (see [7,17,27]). We consider the relative speedup:

SD=;,
P

where T2 is the execution time on two processors and T, is the execution time on p
processors. Relative speedup is considered because the preconditioning code was

4

4
$ 2.5

0

speedupnag oi processor -

Fig. 9. Speedup for the OSR ILU method on nCUBE2.

A.T. Chronopoulos. G. Wang/Parullel Computing 22 (1997) 1965-1983 1979

Fig. 10. Efficiency for the OSR ILU method on nCUBE2.

designed to run on more than one processor and thus we could not obtain the timing on
a single processor.

Parallel execution times (on nCUBE2), for OSR ILU and DD ILU, are summarized in
Tables 3 and 4. The speedups and efficiencies on nCUBE2 are summarized in Figs.

Fig. I 1. Speedup for the DD ILU method on nCUBE2.

1980 A.T. Chmnopoulos, G. Wung/ Parallel Computing 22 (1997) 1965-1983

1

08

G 0.6
5
‘G
E
(u

0.4

0.2

0
1.5 2 25 3

log Of no. of processors

Fig. 12. Efficiency for the DD ILU method on nCUBE2.

9-12. From Tables 3 and 4, the times for the DD ILU parts (Matrix/rhs/ILU/
Dotproducts) are greater than the corresponding OSR ILU parts. This is due, in part, to
the fact that these parts require more communication in DD ILU than the in OSR ILU.
Also, due mainly to the communication costs, in setting up the problem, the time on the
2 processors is so long that it leads to a superlinear speedup for the 4-processor case.

Since the size of the problem is kept fixed the speedup drops as the problem is solved
with more processors. Overall, the performance of the parallel implicit methods, studied
here, is satisfactory and it is expected to improve for simulation of longer freeway
segments and networks of freeways. At the present time the input data available are for
single freeway sections.

Acknowledgement

The comments of the anonymous referees, which helped improve the presentation of
some parts of the paper are gratefully acknowledged. We are grateful to Mr David Berg
of Minnesota Department of Transportation for providing the traffic measurements data.

Appendix A. The Orthomin iterative method

We next describe the Orthomin iterative method to solve Ax = rhs, where A is
nonsymmetric matrix of dimension n. Orthomin applies to nonsymmetric linear systems
with the symmetric part of A being positive definite. Let korrh be a positive integer. We

A.T. Chronopoubs. G. Wung/Parullel Compuring 22 (1997) 1965-1983 1981

describe the orthomin iterative method with preconditioning as follows. In this algo-
rithm, j; = max(O,i - korrh + l), P, is the right preconditioner, which is obtained by the
LU decomposition of the matrix A. For more details, see [18].

Algorithm 1. Orthomin (korrh)

1. Choose x0 = 0.
2. Compute r0 = rhs - Ax,.
3. po = t-0.

For i = 0 step 1 Until convergence Do

4. U; = (r; Api)/(Api Api)

5. xi+, = xi + ai pi

6. ri+ I =ri-a;Api
7. If II ri+, I] < tolerance, then stop
8. Compute AP,ri+ ,
9. b; = (AP,r,+ ,Apj>/<Ap,Apj), ji <j< i

10. pi+, = P,.ri+, + Ei.Dj b,‘pj,
11. Ap;+,=AP,r,+, +$j,b;Apj

Endfor

Appendix B. Domain decomposition

We will outline the parallel algorithms for the complete LiJ factorization of a matrix
and the solution of a linear system using the domain decomposition method (see
[28,24]). In our implementation, we obtain the LU factors only once and we use them to
solve the linear systems of the precondirioning step in the Orthomin iterations, over
several Newton/time steps. This is a domain decomposition ILU(0) type method (see
Km.

Let us consider the partition of the linear system in Fig. 4. Let us assume, for
simplicity, that n = 2pq + s and let s = 2(p - 1) be the number of unknowns in the
separator set. Let us denote by A,, . . . , & the first p diagonal submatrix blocks (each of
size 2q X 2q) and by KS the last diagonal submatrix block (of size s X s, which is
related to the separator set unknowns). Let us denote by Bi the vertical border submatrix
blocks (each of size 2q X s) and by the horizontal border submatrix blocks 2, (each of
size s X 2q).

The parallel domain decomposition complete LU factorization is the following.

Algorithm (Block LU Factorization)

1. on every processor, compute the LU decomposition Ai = L&l,, i = 1,. . . , p.
2. on every processor, solve the system AiZi = B;, i = 1,. . . , p.
3. on every processor, form C,Z,, i = 1,. . . , p.
4. on every processor, broadcast cizi so that every processor has the data ciz,, i =

1 P. 9.s-y
5. on all processors, form the Schur Complement A^ = KS - Cf= ,cizi and compute its

LU decomposition.

1982 A.T. Chronopoulos, G. Wung/ Parallel Cwnpuring 22 (1997) 1965-1983

The parallel domain decomposition forward elimination and back-substitution is the
following.

Algorithm (Block LU Linear System Solution)

I. on every processor, solve the system AT. Zi =bi, i = 1,. . . , P.

2. on every processor, form C; I&, i = 1,. . . , p.
3. on every processor, broadcast I?~ Zi so that every processor has the data ciZ,, i =

1 P. 7.a.t
4. on all processors, form 6 = b, - Cp,,C, Zi.
5. on all processors, solve the system AYs = 6.
6. on every processor, form Ci = bi - ii XL, i = 1,. . . , p.
7. on every processor, solve the system AiIii = Ti, i = 1,. . . , p.

References

[l] A. Brambilla, C. Carlenzoli, Cl. Gazzaniga, P. Gervasio and G. Sacchi, Implementation of domain

decomposition techniques on the nCUBE2 parallel machine, in: A. Quarteroni, J. Periaux, Y.A.
Kuznetsov and O.B. Widlund, eds., Domain Decomposition Methods in Science and Engineering,

Contemporary Mathematics, Vol. I57 (American Mathematical Society, 1994) 345-35 1.
[2] P.N. Brown and A.C. Hindmarsh, Reduced storage matrix methods in stiff ODE systems, Appl. Marh.

cornput. 31 I 1989) 40-91.
[3] G.R. Di Brozolo and Y. Robert, Parallel conjugate gradient-like algorithms for sparse nonsymmetric

systems on a vector multiprocessor, Parallel Compufing 11 (1989) 223-239.
[4] T.F. Chart and T.P. Mathew, Domain decomposition algorithms, Acru Numerica (1994) 61- 143.
[5] P.E. Bjorstad and 0. Widlund. Iterative methods for the solution of elliptic problems on regions

partitioned into substructures, SIAM J. Numer. And. 23 (6) (1986) 1097- 1120.
[6] A.T. Chronopoulos, P. Michalopoulos and J. Donohoe, Efficient traffic flow simulation computations,

Math. Comput. Modelling I6 (5) (1992) 107- 120.

[7] A.T. Chronopoulos et al., Traffic flow simulation through high order traffic modelling, M&z. Compuf.

Modelling 17 (8) (1993) I l-22.
[S] A.T. Chronopoulos and C. Pedro, Iterative methods for nonsymmetric systems in DAEs and stiff ODES

codes, Math. Compur. Simulation 35 (1993) 21 l-232.

[9] J.J. Dongarra and R.E. Hiromoto, A collection of parallel linear equations routines for the Denelcor HEP,
Parallel Computing 1 (1984) l33- 142.

[IO] .I. Gustafson, Cl. Montry and R. Benner, Development of parallel methods for a 102Pprocessor
hypercube. SIAM J. Sci. Star. Compuf. 9 (1988) 609-638.

[111 C. Hirsch, Numerical Compururion of Internal and Exrernul Flows, Vol. 2 (Wiley, 1988).
1121 D.E. Keyes and W.D. Gropp, A comparison of domain decomposition techniques for elliptic partial

differential equations and their parallel implementation, SIAM J. Sci. Sfa~ist. Comput. 8 (2) (1987)

166-202.
[13] S.K. Kim and A.T. Chronopoulos, A class of Lanczos-like algorithms implemented on parallel comput-

ers, Paratlef Computing 17 (1991) 763-778.

[I41 V. Kumar et al., Introduction to Parallel Computing Design and Analysis of Algorithms

(Benjamin/Cummings, 1994).
[IS] C.J. Leo and R.L. Pretty, Numerical simulation of macroscopic continuum traffic models, Transportdon

Reseurch 26B (3) (1990) 207-220.
[16] M.H. Lighthill and G.B. Witham, On kinematic waves: II A theory of traffic flow on long crowded roads,

Proc. Royul Sot. Ser. A 229 (1178) (1955) 317-345.

A.T. Chronopoulos, G. Wang/Parallel Computing 22 (1997) 1965-1983 1983

[17] A.S. Lyrintzis et al., Continuum modeling of traffic dynamics, in: Proc. 2nd Internaf. Confi on
Applications of Advunced Technology in Transportdon Engineering, ASCE, Minneapolis, MN (1991)

36-40.
[18] S. Ma and A.T. Chronopoulos, Implementation of iterative methods for large sparse nonsymmetric

systems on parallel vector computers, Internut. J. Supercomputer Appl. 4 (1990) 9-24.

[19] J. Mandel and M. Brezina, Balancing domain decomposition for problems with large jumps in
coefficients. Mark Comput. 65 (1996) 1387-1401.

[20] O.A. McBryan and E.F. van der Velde, Matrix and vector operations on hypercube parallel processors,
Parallel Computing 5 (1987) 117-125.

[21] G. Meurant, Domain decomposition methods for solving large sparse linear systems, in: E. Spedicato, ed.,

Computer Algorithms for Solving Linear Algebraic Equations: The Stare of’ the Art, NATO ASI Series,
Series F: Computer and Systems Sciences, Vol. 77 (Springer, Berlin, 1991) 185-206.

[22] L. Mikhailov and R. Hanus, Hierarchical control of congested urban traffic-mathematical modeling and
simulation, Math. Comput. Simulation 37 (1994) 183- 188.

[23] nCUBE2 Programmers Guide, nCUBE, 919 E. Hillsdale Guide Boulevard, Foster City, CA 94404, 1992.
[24] J.M. Ortega, Introduction to Parallel and Vector Solution of Linear Systems (Plenum Press, 1988)

120-124.
[25] H.J. Payne, FREEFLO: A macroscopic simulation model of freeway traffic Transportation Reseurch

Record 772 (1979) 68-75.
[26] A. Quarteroni, Domain decomposition and parallel processing for the numerical solution of partial

differential equations, Surv. Muth. Indusrry 1 (1991) 75-l 18.

[27] P. Yi et al., Development of an improved high order continuum traffic flow model, Transportation
Research Record 1365 (1993) 125-132.

[28] G. Rodrigue, Domain decomposition: A unified approach for solving fluid mechanics problems on

parallel computers, in: H. Adeli, ed., Purdel Processing in Compurutionul Mechanics (Dekker, 1991)
297-330.

[29] U. Schendel, Basic concepts for the development of parallel algorithms and parallel solution of linear

systems, in: H. Adeli, ed.. Parallel Processing in Computational Mechanics (Detier, 1991) 33-67.
[30] J.H. Shadid and R.S. Tuminaro, A comparison of preconditioned nonsymmetric Krylov methods on

large-scale MIMD machine, SfAM J. Sci. Comput. 15 (2) (1994) W-459.

[31] S.G. Ziavras, Efficient mapping of algorithms for a class of hierarchical systems, IEEE Trans. Parallel
Distributed Systems 4 (11) (1993) 1230- 1245.

