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SUMMARY

Several Krylov subspace iterative methods have been proposed for the approximation of the solution
of general non-symmetric linear systems. Odir is such a method. Here we study the restarted version
of Odir for non-symmetric inde�nite linear systems and we prove convergence under certain conditions
on the matrix of coe�cients. These results hold for all the restarted Krylov methods equivalent to
Odir. We also introduce a new truncated Odir method which is proved to converge for a large class
of non-symmetric inde�nite linear systems. This new method requires one-half of the storage of the
standard Odir. Copyright ? 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this article, we consider a linear system of equations

Ax=f (1)

where A is a non-singular non-symmetric real matrix of dimension n. If the symmetric part
of the coe�cient matrix A is positive de�nite then it is called de�nite. We de�ne the min-
imal polynomial of a nonzero vector v with respect to matrix A as the least degree monic
polynomial qk(�) so that qk(A)v=0.
Conjugate gradient (CG)-type iterative methods for a non-symmetric linear system obtain

approximations to its solution by projecting onto subspaces generated by subsets of the vectors
{r0; Ar0; : : : ; Air0; : : : }. Some of these iterative methods minimize (at each iteration) an error
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functional over the projected subspaces. This property is called the error minimization prop-
erty. This property guarantees monotone convergence to the solution (maybe after an in�nite
number of iterations). Various formulations of Krylov subspace iterative methods have been
derived and studied. (See, for example, Reference [1–7] and the references therein.) Here
we consider the Odir method [7], which can be applied to general non-symmetric matrices.
CG-type methods for non-symmetric linear systems usually are proposed in three forms:

(i) The full orthogonalization method (e.g. FOM=GCG-LS=Odir=GMRES [1; 5; 7]), where
the size of the projected subspace increases by one at each iteration.

(ii) The restarted methods (e.g. GCG-LS(m)=GMRES(m)=Odir(m) [1; 5; 7]), where the
method completes m iterations in a cycle and then it restarts with an initial vector
equal to xm.

(iii) The truncated method (e.g., MIOM(k)/orthomin(k)/truncated-Odir(k) [3; 7; 8]) stores
and uses only the k most recent direction vectors in approximating the solution.

The full orthogonalization methods possess an error minimization property. However, the
restarted and the truncated versions may not possess this property. Therefore, these meth-
ods may not converge for certain linear systems. The restarted methods have been proved
to converge for a class of non-symmetric linear systems [9; 10]. However, they may fail to
converge for several classes of non-symmetric matrices (even for some skew-symmetric ma-
trices) initial-residual-vector combinations [11]. The truncated versions of these methods have
been proven to converge for only symmetric positive de�nite linear systems.
In this article, we prove that the Odir(m) method (and all other equivalent Krylov subspace

methods) converge, for m �xed, for a class non-symmetric inde�nite problems. Also, we
prove residual error bounds. We then derive a new generalization of the Odir method called the
continued Odir(m; k) method (COdir(m; k)). The COdir(m; k) method is equivalent to Odir(m)
method, for 16m and k=0; and it is a truncated method, for 16m; k. The COdir(m; k)
method is guaranteed to converge for a larger class of matrices than that for which the
Odir(m) method converges.
Throughout this article the English letters i; j; : : : ; m; n and s will denote integers. The in-

dexes m; k are the maximum number of stored Krylov vectors in the restarted and truncated
methods, respectively. The role of m; k for the COdir(m; k) method will be explained later. In
Section 2, we review the s-step minimal residual method and present convergence theorems
for non-symmetric inde�nite matrices. In Section 3, we review the Odir method and prove
results on the convergence of the Odir(m) method. In Section 4, we present the COdir(m; k)
method and prove convergence results. We summarize our results in Section 5.

2. RESIDUAL ERROR BOUNDS

In this section, we obtain some residual error bounds for the Odir(m) method (with s6m) for
non-symmetric inde�nite matrices under the assumption that As is de�nite for some 26s6m.
In proving the results, we use the s-step minimal residual (s-MR) method, which is equivalent
(in exact arithmetic) to the Odir(s) method. (See Reference [9].) In �nite arithmetic, the s-
MR method is not useful because it is not stable. It has been proven that the s-MR method
and the Odir(s) method converge for de�nite matrices, all symmetric and skew-symmetric
matrices and for a class of non-symmetric inde�nite matrices [9].
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ODIR METHOD FOR NON-SYMMETRIC INDEFINITE LINEAR SYSTEMS 73

The solution and residual vectors at the ith iteration of the s-MR method are given by

xi+s = xi + a1i ri + · · ·+ asiAs−1ri (2)

ri+s = ri − a1i Ari − · · · − asiAsri (3)

where the scalars aji ; j=1; 2; : : : ; s are selected so that xi+s minimizes the error function
E(xi+s)= ‖f − Axi+s‖2 over the a�ne subspace Li= {xi +

∑s−1
j=0 ajA

jri; aj ∈R}.
The methods s-MR and Odir(s) are equivalent (in exact arithmetic) because they minimize

the same error function over the same Krylov subspace. Due to lack of any orthogonality
between the direction vectors, the s-MR method is not computationally robust to implement.
However, it is a useful tool in the theoretical analysis of its mathematically equivalent coun-
terparts.
For the matrix A; let M =(A+AT)=2 and N =(A−AT)=2 be its symmetric and skew symmet-

ric parts. The matrix M 2 (N 2) is symmetric and non-negative (non-positive) de�nite [5; 9]. Let
the eigenvalues of a symmetric matrix B of dimension n be denoted by �n(B)6 · · ·6 �1(B).
The following convergence result is of interest for non-symmetric inde�nite matrices and was
proven in [9]:

Theorem 2.1. Assume that the degree of the minimal polynomial of r0 satis�es 26s6m. If
(a) d= �n(M 2)+�n(N 2)¿0 or (b) d=−[�1(N 2)+�1(M 2)]¿0; then the matrix A2 is de�nite
and s-MR and Odir(s) (with s6m) converge to the solution. The residuals satisfy

‖ri+s‖226c1‖ri‖22 (4)

where c1 = [1− d2=�1(A2TA2)].
We prove the following convergence result for the s-MR method for normal non-symmetric

inde�nite matrices. This result is of special interest in classifying the class of matrices for
which the Odir(s) method (with s6m) takes many steps before any signi�cant residual norm
reduction is observed [11].

Theorem 2.2. Assume that the degree of the minimal polynomial of r0 is greater than or
equal to 8 and the matrix A is normal inde�nite; with eigenvalues �j= �j+i�j; where i =

√−1
and j=1; 2; : : : ; n. De�ne the following regions in the (�-�) complex plane: (i)–(ii) in
Figure 1 and (iii)–(iv) in Figure 2.

(i) the north and south open cone bounded by �=±�;
(ii) the open cones in the complement of region (i);
(iii) the east and west open cones bounded by �=±0:198913� and the north and south

open cones bounded by �=±0:668179�;
(iv) the open cones in the complement of region (iii).

Then the following statements hold:

(a) If 26s and the eigenvalues of A are con�ned to either region (i) or (ii) (Figure 1);
then s-MR and Odir(s) (with s6m) converge. Furthermore; the associated residuals
satisfy

‖ri+s‖226c2‖ri‖22 (5)
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Figure 1. Lines: �=±�.

Figure 2. Lines: �=± 0:668179� and ± 0:198913�.

where c2 = [1− d2=�1(A2TA2)]; d is given by
d= min

16j6n
{|�2j − �2j |}¿0

(b) If 86s and the eigenvalues of A are con�ned to either region (iii) or (iv) (Figure 2);
then the s-MR and Odir(s) methods (with s6m) converge. Furthermore; the associated
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residuals satisfy

‖ri+s‖226c3‖ri‖22 (6)

where c3 = [1− d8=�1(A8TA8)]; d is given by
d= min

16j6n
{|�8j + �8j + 70�4j �4j − 28(�6j �2j + �2j �6j )|}¿0

Proof
Since A is normal there is a unitary transformation U such that A=UHDiag(�j)U . Then

(A2 + A2T)=2=UHDiag((�2j − �2j ))U (7)

and

(A8 + A8T)=2=UHDiag(�8j + �
8
j + 70�

4
j �
4
j − 28(�6j �2j + �2j �6j ))U (8)

If we consider only the single steepest descent direction pi=As−1ri for s=2, 4, 6, 8, then

d= min
v 6=0
|(v; Asv)=(v; v)| (9)

For the particular choice of s=2, 8 it is easy to identify the inclusion regions (i)–(iv) and
verify that the inequality on the residual norm holds. We prove the case s¿8. For 06l; k
let �l;k be the moments (Alri ; Akri). Consider the approximate solution

�xi+1 = xi + (�0;8=�8;8)A7ri

then E(xi+1)6E(�xi+1)¡E(xi) provided that �0;8 6=0. Now,

|�0;8|= |(ri; A8ri)
∣∣∣∣= |rTi

(
A8 + A8T

2

)
ri

∣∣∣∣¿d
The inclusion region de�ned by (iii) is determined by solving the inequality

�8 + �8 + 70�4�4 − 28(�6�2 + �2�6)¿0
Equality holds for �=±0:198913�;±0:668179� (where the slopes are given accurate in six
digits). �

Note that in Theorem 2.2, we only considered the s-MR, with 26s or 86s; and identi�ed
the normal matrices for which the method converges. However, the class of normal matrices
for which convergence is guaranteed is much larger. This can be shown by verifying that the
inclusion regions of As for s=4 or 6 are di�erent from (i)–(iv) and nonempty.

Remark 1
Let us assume that in a Krylov subspace iterative method

xi+s= xi + aipi + · · ·+ ai+s−1pi+s−1
and the residual ri+s is minimized over the subspace {pi; : : : ; pi+s−1}. If the residual can be
proved to be orthogonal to {Ari; : : : ; Asri}; then the residual norm bounds of between ‖ri+1‖22
and ‖ri‖22 proved for s-MR also apply between the residual norms of ri+s and ri (of the Krylov
subspace method under consideration). In this case, we state that the iterations i; : : : ; i+ s− 1
of the iterative method contain one iteration of the s-MR method.
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3. THE ODIR METHOD

In this section, we review the Odir method and we investigate its convergence properties for
non-symmetric inde�nite matrices. Odir forms ATA-orthogonal direction vectors and minimizes
(at each iteration) the residual norm error E(xi) = ‖f − Axi‖2 for de�nite matrices [7].
However, the truncated version of the Odir (TOdir(k)) method may not converge even if A
is de�nite. For non-symmetric inde�nite matrices, the Odir method is guaranteed to converge
if n iterations are taken. However, convergence is not warranted for the Odir(m) method.
In this section, we �nd conditions under which the Odir(m) method converges for inde�nite
matrices. Let x0 be an initial guess to the solution of (1) and let r0 = b − Ax0 be the initial
residual. Let ji=0. The Odir algorithm can be summarized as follows.

Algorithm 1. Odir method
compute r0; set p0← r0
for i=0; 1; : : : until convergence do

ai← rTi Api=(Api)TApi
xi+1← xi + aipi
ri+1← ri − aiApi
bij←−(A2pi)TApj=(Apj)TApj for ji6j6i
pi+1←Api +

∑i
j=ji b

i
jpj

Api+1←A2pi +
∑i

j=ji b
i
jApj

endfor

In the Odir method, the storage requirements for the vectors pi and Api increase up to the
dimension n of the coe�cient matrix. In the restarted Odir(m) method after k ∗ m iterations,
we restart the algorithm with initial guess xk∗m instead of x0. The truncated version of the
TOdir(k) method has also been proposed in Reference [7]. The algorithm for TOdir(k) is
obtained by setting ji=max(0; i − k + 1). If the matrix is symmetric or skew symmetric, it
can be easily proven [7] that the Odir(2) method is equivalent to the Odir method. There
are examples of non-symmetric de�nite matrices for which the TOdir(k) method does not
converge.
The following proposition, which was proved in Reference [7] for de�nite matrices, relates

the direction vectors of the Odir and GCR methods [3]. The de�niteness of A was used to
prove that all step-lengths ai in the Odir method are non-zero. However for inde�nite matrices,
some step-lengths may be zero.
The following fact was proved in Reference [7].

Proposition 1. Let 0¡i and assume that in the Odir method the step-lengths a0; a1; : : : ; ai
are not zero; then; for 16j6i+1; the direction vectors (generated by the Odir method) are

pj=
−1
aj−1

�pj (10)

where �p0 =p0 = r0 and

�pj= rj +
j−1∑
l=0

�bjl �pl (11)
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and

�bjl =−
(Arj; A�pl)
(A�pl; A�pl)

(06l6j) (12)

The following remark explains why this result does not hold for the TOdir(k) method.

Remark 2
For the TOdir(k) method, it is not possible to prove a similar result involving only k direction
vectors. To see this, consider pk+1 =Apk +

∑m
l=1 b

m
l pl. Using the assumptions of Proposition

1 with i= k + 1, we can obtain pk+2 =− a−1k+1[rk+2 +
∑k+1

l=0 b
k+1
l pl]. This expression involves

the direction vector p0. Therefore, it is not possible (for general non-symmetric matrices) to
map the TOdir(k) direction vectors into the Orthomin(k) direction vectors [3; 6]. Also, using
this expression for pk+2, we can write the step length

ak+2 = [−(rk+2; Ark+2) + b0k+1(rk+2; Ap0)]=[ak+1‖Apk+2‖22]
because rk+2 is orthogonal to Apk+1 : : : Ap1. However, (rk+2; Ap0) 6=0, in general. Thus, ak+2
maybe zero even for A de�nite.

We next express the direction vectors pi generated by the Odir (or Odir(m)) method in
terms of preceding direction vectors and Alri, where 06l and ri is the residual vectors. Now
assume that the residual vector ri+s is A-orthogonal to all preceding direction vectors. Then
we can conclude that ri+s is A-orthogonal to ri; Ari; : : : ; As−1ri. We will say that an s-MR
iteration is embedded in s consecutive iterations of the Odir (or Odir(m)) method. This
allows us to use the residual error bounds of Section 2. We can then establish convergence
and obtain error bounds.

Remark 3
The direction vectors pj (16j) in the Odir method can be expressed in the form

pj=Ajr0 +
j−1∑
l=0

�bj−1l pl (13)

where

�bj−1l =− (A
j+1ri; Apl)
(Apl; Apl)

(06l6j − 1) (14)

To see this, one uses Algorithm 1 (Steps 4–5) and the AT A-orthogonality of the direction
vectors.
The following proposition expresses the direction vectors in terms of powers of A applied

to a residual rj (for 16j) and preceding direction vectors.

Proposition 2. Assume 16i and that the step-length ai−1 (in the Odir method) is not zero.
Then for i6j the direction vectors are given by

pj=− 1
ai−1

�pj (15)

Copyright ? 2001 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2001; 8:71–82
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where

�pj=Aj−iri +
j−1∑
l=0

�bj−1l pl (16)

and

�bjl =−
(Aj−i+1ri; Apl)
(Apl; Apl)

(06l6j − 1) (17)

Proof
Recall that the direction vector pi is de�ned by the recursion

pi=Api−1 +
i−1∑
l=0
bi−1l pl

Since ai−1 6=0, we obtain that
Api−1 = [ri − ri−1]=ai−1

and ri−1 ∈ span{p0; : : : ; pi−1}. Therefore, pi= a−1i−1 �pi where

�pi= ri +
i−1∑
l=0

�bi−1l pl

The parameters �bi−1l =− (Ari; Apl)=(Apl; Apl); 06l6j − 1 are determined by the ATA-ortho-
gonality of pi against pl. Now inductively we can form pj for i¡j. �

We next prove that under the assumption that As is de�nite for some s6m, then the Odir(m)
method reduces the residual error norm.

Theorem 3.1. Let s (for 0¡s) be an integer and assume that (v; Asv) 6=0 for all nonzero
vectors v. For j=0; 1; : : : ; assume that the degree of the minimal polynomial of r0 is greater
than (j + 1)s then there exists some k (for 16k6s) such that the step-length ajs+k−1 in
the Odir method is not zero and ‖rjs+k−1‖¡‖rjs+k−2‖.
Proof
We use induction on j. For j=0, assume that ai=(ri; Api)=(Api; Api)=0 for all 06i6s− 1.
Since ri is orthogonal to Apl for l¡i, using Remark 3, we obtain (r0; Asr0)=0, which contra-
dicts the hypothesis. Thus, ak−1 6=0 for some k¡s. For 16j, we must prove that there exists
index i such that js + 16i6(j + 1)s with ai−1 6=0. From the induction hypothesis, there is
a largest positive integer l such that j(s − 1) + 16l6js and al−1 6=0. Assume that ai=0
for l¡i and ri= rl. This implies that (ri; Api)=0. Now applying Proposition 2 and using
the orthogonality of ri and Apj (for j¡i), we conclude that (rl; Ai−lrl)=0. Because of the
assumptions this implies that i6l+ s− 1. This proves that ajs+k−1 6=0 for some k (16k6s).

�

We next use this theorem and the results of Section 2 to obtain residual error bounds for
the Odir(m) method.
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Corollary 3.1. Under the assumptions of Theorems 2:1 and 2:2; the following residual error
bounds are obtained after iterations of the Odir(m) method (with m= ks) for one full cycle

‖rm‖226ck�‖r0‖22 (18)

where c�; �=1; 2; 3, are the residual norm bounds constants in Theorems 2:1 and 2:2.

Proof
Using Remark 3, Proposition 2, and Theorem 3.1 for 06j6k−1, we can show that r( j+1)s is
orthogonal to Alrjs, for 16l6s. This implies that the iterations js+l, for 06l6s−1, contain
one iteration of the s-MR method. Now using repeatedly Theorem 3.1 and the residual error
bounds of Theorems 2:1 and 2:2, we obtain the result. �

4. THE CODir(m; k) METHOD

The Odir(m) method can be modi�ed to eliminate the need to compute=store the sequence of
vectors {pi}, for i ¿ 0. (See [12; 13].)
Following the methodology in Reference [12], we compute an orthonormal set V =

{v1; v2; : : : }, with v1 =Ap0=‖Ap0‖2 =Ar0=‖Ar0‖2. We set �11 = ‖Ar0‖2. We then apply the mod-
i�ed Gram–Schmidt (MGS) method to obtain vj, for 1¡j6m :

Avj−1 =
j∑
i=1
�ijvi

The vectors vj are essentially the vectors Apj of Algorithm 1. Let AV̂m denote the matrix [Ar0;
Av1; : : : ; Avm−1]. Then the following equality holds:

AV̂m=VmRm (19)

where

Rm=



�11 : : : �1m

. . .
...
�mm


 (20)

and Vm=[v1; : : : ; vm]. At the mth iteration, we compute the residual vector as follows:

rm= r0 − Vmwm

where wm=[(r0; v1); : : : ; (r0; vm)]T.
If we assume that the degree of the minimal polynomial of r0 exceeds m then Vm is

orthonormal and Rm is nonsingular. The residual vector rm equals

r0 − VmRmym= r0 − AV̂mym

where ym=(Rm)−1wm. Thus, we have xm= x0 + V̂ mym.
Let us �x m. Then the arrays wm and ym are of size m and the arrays Vm and Rm are of

sizes n×m and m×m, respectively. We plan to use the arrays Vm, Rm, wm and ym, in an
outer-inner iteration. Thus, we introduce a subscript denoting the outer iteration index. For
example, for outer iteration l we have Vml , R

m
l , w

m
l and y

m
l . Also, in order to simplify our

notation, we drop the superscript m from these arrays and use Vl, Rl, wl and yl, instead.

Copyright ? 2001 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2001; 8:71–82



80 A. T. CHRONOPOULOS AND D. KINCAID

For outer iteration l=2, we start from the vector rm and we construct arrays Vl, Rl, in the
same fashion as for l=1. Let AV̂2 denote [Arm; Av1; : : : ; Avm−1]. At outer iteration l=2, we
apply the MGS method three times:

(a) to orthonormalize AV̂2 :
AV̂2 =V2R2 (21)

(b) to orthogonalize the set V2 against the previous set V1 :

Ṽ2 =V2 + V1B(2;1) (22)

where B(2;1) is an m×m array and
(c) to orthonormalize Ṽ2 in order to obtain the �nal set �V2 :

Ṽ2 = �V2 �R2 (23)

We note that if we orthogonalize V2 against only m1 vectors in V1 (with m1¡m instead
of all the m vectors), then the matrix B(2;1) will have (m−m1) zero rows. For l=1,
�R1 =R1 and �V1 =V1.

We are now ready to compute r2m as follows:

r2m= rm − �V2w2

where w2 = [(rm; �v(2;1)); : : : ; (rm; �v(2; m))]T. We note that

r2m= rm − �V2 �R2 �R−1
2 w2 = rm − Ṽ2 �R−1

2 w2 = rm − (V2 + V1B(2; 1)) �y(2; 2)
where �y(2; 2) = �R−1

2 w2.
We can now express r2m in terms of AV̂1 and AV̂2 :

r2m= rm − AV̂2y(2;2) − AV̂1y(2;1)
where y(2;1) =R−1

1 B(2;1) �y(2;2) and y(2;2) =R
−1
2 �y(2;2). Thus, we can obtain x2m :

x2m= xm + V̂2y(2;2) + V̂1y(2;1)

In the discussion above, we have presented the �rst 2m iterations (or the �rst two outer
iterations) of the COdir(m; k) method, for k6m.
We denote by the COdir(m;∞) method the algorithm when no truncation is performed.

We will show later that the COdir(m;∞) method is equivalent to the Odir method. At outer
iteration l of the COdir(m; k) method, we must store the k vectors of preceding outer iterations.
We denote by lk the index of the earliest Vj that we orthogonalize the current Vl against. We
have: lk =0 for the COdir(m;∞) method and lk = max(0; l−(k=m+1)+1) for the COdir(m; k)
method.

Algorithm 2. COdir(m; k) method
i1← 0; i2←m
compute ‖ri1‖2
for l=1; : : : until ‖ri1‖2¡� do (Outer-Iteration)

1. AV̂l ≡ [Ari1; Av1; : : : ; Avm−1]←VlRl (via MGS)
2. Ṽl←Vl +

∑l−1
j=lk VjB(l; j) (via MGS)

3. Ṽl← �Vl �Rl(via MGS)
4. wl← [(ri1; �v(l;1)); : : : ; (ri1; �v(m;l))]T
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5. ri2← ri1 − �Vlwl
6. �y(l;l)← �R−1

l wl
7. y(l;j)←R−1

j B(l;j) �y(l;l), for j= lk ; : : : ; l− 1
8. xi2← xi1 + V̂ly(l;l) +

∑l−1
j=lk V̂jy(l;j)

9. compute ‖ri2‖2
i1← i2; i2← i1 +m

endfor

We note that the COdir(m; 0) method is identical to the Odir(m) method. We set k1= k=m.
We note that the parameters m and k are small (e.g. m¡30 and k= k1×m where k1=0 or
1 or 2). All storage requirements or operations on vectors of size n will be termed vector
else they will be termed scalar.
Algorithm 2 requires that we store: xi1, �Vl, rj and Vj, for j= lk ; : : : ; l − 1. Thus, in terms

of vector storage, Algorithm 2 requires at most m+ k + k1 + 1 vectors to be stored.
The work per outer iteration consists of either scalar work (Steps 6 and 7) or vector work

(Steps 1–5 and 8): (a) Steps 1–3: m2(k1 + 1) dot products and m2k1 vector updates, (b)
Steps 4 and 9: m + 1 dot products, (c) Steps 5, 8, and 9: m(k1 + 1) vector updates. Thus,
there are ≈ 2mk +m+ k + 2 vector operations per (inner) iteration.
Theorem 4.1. Let us assume that the degree of the minimal polynomial of r0 exceeds m.
Then unless the algorithm has terminated the following are true :

(i) The vectors �Vl are orthogonal to Vj; for j= lk ; : : : ; l− 1.
(ii) The residual vector ri2 is orthogonal to �Vl and Vj; for j= lk ; : : : ; l.
(iii) xi2 minimizes ‖ri2‖2 over the a�ne subspace xi1 + �Vl.
(iv) COdir(m;∞) is mathematically equivalent to Odir.
Proof
Property (i) follows from the construction of �Vl. Item (ii) follows from (a), the selection of
wl, (b), (i), and (c), which is the fact that ri1 is orthogonal to Vj, for j= lk − 1; : : : ; l − 1.
Property (iii) follows from (ii). Item (iv) is proved by induction on the outer iteration. It is
obvious for l=1. For 1¡l, using the induction and Step 5 of Algorithm 2, we see that ri2
is orthogonal to the Krylov subspace of dimension lm. �

Corollary 4.1. If the matrix A is symmetric and positive de�nite, or of the form I − N
where N is skew symmetric then the COdir(m; k) method is mathematically equivalent to
the COdir(m; 1) method and to the truncated-Odir(2) method.

Proof
The proof follows if we show that B(l;j) =V Tl Vj=0, for j= lk ; : : : ; l − 2, because of the fol-
lowing: (a) Vl ⊂ {Arm(l−1); : : : ; Am−1rm(l−1)}, (b) we can use the fact that A is a special matrix
which can be transposed in the dot products V Tl Vj, and (c) from (ii) of the previous theorem:
rm(l−1) is orthogonal to Vj, for j= lk ; : : : ; l− 1. �

Corollary 4.2. Under the assumptions of Theorems 2:1 and 2:2; the COdir(m; k) method
with m= sj contains j iterations of an s-MR method. Thus

‖r(i+1)m‖226c j‖rim‖22 (24)

where c is the constant in the error bounds of Inequalities (4)–(6).
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Proof
This result follows from Algorithm 2 and Remark 1. �

5. SUMMARY

We have proven some convergence results for the restarted Odir method and other equivalent
Krylov methods. We then derived a new truncated Odir method, which requires only half of
the storage of the standard truncated Odir method. This new method converges for the same
class of matrices as does the restarted Odir method.
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