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Abstract

The cost/performance ratio of networks of workstations has been constantly improving. This trend is expected to continue in the

near future. The aggregate peak rate of such systems often matches or exceeds the peak rate offered by the fastest parallel computers.

This has motivated research toward using a network of computers, interconnected via a fast network (cluster system) or a simple

Local Area Network (LAN) (distributed system), for high performance concurrent computations. Some of the important research

issues arise such as (i) Problem partitioning and virtual interconnection topology mapping; (ii) Execution scheduling and load

balancing.

Past results exist for grid partitioning (into subdomains) and mapping to parallel and distributed systems. In our work we

consider the problem of grid partitioning of a 3D domain arising in aircraft CFD simulations in order to schedule tasks for load

balanced execution on a heterogeneous distributed system. This problem has additional restrictions on how to partition the grid.

Past work for this problem were on parallel systems with only few processor configurations. We derive heuristic algorithms for: (1)

homogeneous systems with any number of processors; (2) heterogeneous systems taking into account the processor speed and

memory capacity. We implement our algorithms on a dedicated network of workstations (using MPI) and test them with a CFD

simulation code (TURNS—Transonic Unsteady Rotor Navier Stokes).

r 2003 Published by Elsevier Inc.

Keywords: Distributed systems; CFD simulation; Load balancing
1. Introduction

Distributed computation offers the potential for
cheaper and high-performance computations. Some
companies are beginning to utilize parallel processing
in the form of clusters of workstations, that are idle
during off-hours, to attain supercomputer performance
[19]. Portable parallel software exist for implementing
codes on distributed computer environments (e.g.
Message Passing Interface (MPI) [7]). Several research-
ers have studied the problems of scheduling and load
balancing computations for concurrent execution in
distributed environments. For example see [1,2,5,17,22]
and the references therein.

The benefits of this research are immense for research
agencies (e.g. NASA) and the broader scientific com-
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munity. Design companies and government agencies
have clusters of fast microcomputers, which are under-
utilized. Thus design or testing engineers could run
these simulation codes on these clusters essentially
free of cost.

1.1. Past results

There exist a large number of approaches to grid
partitioning that have been considered in the past. These
approaches are trying to find a mapping of the
computational grid onto processors such that the total
execution time is minimized. Such a mapping can be
obtained by solving a graph partitioning problem which
is known to be NP-complete [15]. We can categorize
these approaches into three classes: (1) spectral parti-
tioning methods [14], (2) geometric partitioning methods
[12], and (3) multilevel partitioning methods (see
[9,10,15] and references therein). Also, some recent
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results on dynamic graph partitioning for scientific
simulations can be found in [16].

We consider an application of geometric partitioning
which has been used to parallelize the computations for
each integration step of a CFD computation in a
homogeneous system [20]. The domain (see Fig. 2) has
some special restrictions in how to be partitioned. The
proposed parallelization algorithm is hard wired inside
the CFD code and it assigns equal subdomains to each
processor and it only works for special selections of
processor configurations (see the appendix).

The CFD code simulates helicopter aerodynamics and
it is written in FORTRAN using MPI [18,20,21]. The
baseline numerical method is the structured-grid Euler/
Navier–Stokes solver TURNS (Transonic Unsteady
Rotor Navier Stokes) (see [18] and references therein).
The implicit operator used in TURNS for time-stepping
in both steady and unsteady calculations is the Lower–
Upper symmetric Gauss–Seidel (LU-SGS) operator of
Yoon and Jameson [23]. The parallel TURNS version
uses the Hybrid LU-SGS and is a parallel modification
to LU-SGS [20]. Once the computational space has been
divided into subdomains, the original LU-SGS algo-
rithm is applied simultaneously to each processor
subdomain. Then, border data between the subdomains
is communicated using the relaxation-type approach of
DP-LUR [20]. Wissink implemented the CG-type
iterative methods GMRES and OSOmin [3,21] in
approximating the solution of the nonlinear system
arising at each time step in the CFD integration.

Storage is a major consideration for the solution of
three-dimensional problems. The Jacobian matrix is not
computed because CG-type methods use only Jacobian
times vector products which are approximated by
Taylor expansion. The CG-type methods require
a modest amount of extra storage compared to the
storage required by the LU-SGS method [20]. The LU-
SGS method is used as a preconditioner in these iterative
methods to speed up their convergence rate. For more
details about CG-type methods and preconditioning
see [6]. Two CG-type methods (GMRES and OSOmin)
which were tested with TURNS (with LU-SGS pre-
conditioning) with grid size 135� 50� 35 on 4, 8, 19, 57
and 114 processors of IBM SP2 gave similar conver-
gence and performance results [20].

1.2. Our results

We undertake the task of obtaining scheduling
algorithms for the CFD application in [20] for any
configuration of homogeneous or heterogeneous pro-
cessors. We propose geometric partitioning type algo-
rithms which apply to a 3D grid domain problem which
must be partitioned with some special restrictions. The
aim is to schedule the CFD computations of each
subdomain on a dedicated system with an arbitrary
number of: (I) homogeneous processors, and (II)
heterogeneous processors. Parallel solution of such
CFD problems have been based on equal grid partition-
ing [20]. Each processor was assigned a grid subdomain
with equal number of grid points. The three-dimensional
flowfield spatial domain is divided in the wraparound
and spanwise directions to form a two-dimensional
array of processor subdomains, as shown in Fig. 2.
Here, we consider the implementation on a (Ethernet)
network of heterogeneous workstations (Fig. 1). The
programming paradigm used is SPMD (Single Program
Multiple Data) where each processor executes an
identical copy of code on a fraction of the computa-
tional grid. We obtained an improved algorithm for
homogeneous systems which works for every processor
configuration. We then deal with the heterogeneity (in
processor speed and memory) of the processors by
subdividing the space domain into subdomains with
unequal number of grid points.

The problem is how to obtain and map these
partitions on a virtual mesh of heterogeneous proces-
sors. Due to the model implementation in TURNS, only
two dimensions (J and K) of the three-dimensional
gridðJ � K � LÞ are partitioned. The J dimension is
partitioned into equal subpartitions and the K dimen-
sion is partitioned according to the speed of each row of
processors. The speed of a processors column is defined
as the speed of the slowest processor on that column.
Thus, every processor is expected to complete execution
in time proportional to the ratio of its load (i.e. the grid
points mapped to the processor) over processing speed.
Our algorithm checks every possible mesh configuration
and proposes a configuration that minimizes the
execution time. Also our algorithm takes into con-
sideration the memory size of each machine in making
the allocation decision.

Using our scheduling algorithm (II) we were able to
obtain an improvement in the speedup up to 100% for
LU-SGS (see the appendix), and up to 80% for OSOmin
(see the appendix), compared with the equal subdomain
allocation algorithm (I).

1.3. Organization

The remainder of this paper is organized as follows.
In Section 2 we present a scheduling algorithm for
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homogeneous systems and a scheduling algorithm for
heterogeneous systems. In Section 3, we present the
implementation and we discuss experimental results.
Section 4 contains our conclusions and future work.
2. Scheduling algorithms

We now present the algorithms for homogeneous and
heterogeneous systems.

2.1. Algorithm for homogeneous systems

Assumptions. (1) We parallelize only the problem space
domain for one integration time-step.
(2) Processors (PEs) of the parallel system are of the
same design and speed.

(3) We assume a 2-D logical PE rectangular mesh with
p ¼ R � C PEs, where R is the number of PE rows and
C is the number of PE columns (Fig. 2). PEs will be
referred as Prc; r ¼ 0; 1;y;R � 1; c ¼ 0; 1;y;C � 1:

Since the processors have the same speed the goal is to
assign an equal load to each PE, where the load is
defined as a 3-D box of grid points in the space domain.

In mapping the space domain of J � K � L grid
points to a logical two-dimensional mesh of PEs the
following restrictions apply:
(i)
L

J

K

Fig. 2

array
Because of the symmetric boundary condition
applied at the airfoil surface in the J direction
(data at ð j; �; 1Þ must equal data at ðJ � j; �; 1Þ), the
same number of grid points are assigned to
processors Pr;� and PR�r�1;�: This means that if J

is odd then R must be odd, because J points are
distributed among R PEs.
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of processors.
(ii)
 The L dimension is not divided at all. We only
partition the J � K mesh and assign one partition
to each PE.
(iii)
 Each PE has only four adjacent PEs (implied
by (ii)).
(iv)
 No PE can have fewer than 5 grid points assigned in
each direction (J or K). The reason is that each PE
has two shared boundary grid points with each of
its four adjacent PEs (Fig. 3).
Let a (or a þ 1)and b (or b þ 1) be the number of grid
points allocated on J and respectively K direction,
where a ¼ IðJ � 2Þ=Rmþ 2 and b ¼ IðK � 2Þ=Cmþ 2:
In a mapping any number of the four types of processor
loads: a � b; ða þ 1Þ � b; a � ðb þ 1Þ and ða þ 1Þ �
ðb þ 1Þ may occur (see Fig. 4).

We use as an estimate of the total execution time
ðTestÞ; the load corresponding to the largest value of the
loads that occurred in the mapping divided by the PE
speed. For simplicity we omit the division by speed
because all PEs are assumed to have the same speed. For
some configurations all four types of loads may not
occur and then we will consider the maximum among
these loads. The goal is to minimize Test; by finding an
optimal configuration p ¼ R � C of processors under
our assumptions and restrictions. Fig. 4 is such an
example with p ¼ R � C ¼ 5� 3:

Remark. Given a number of available PEs and a space
grid it is possible that a smaller number of PEs may
produce a lower Test: For example, for p ¼ 59 and a grid
with J ¼ 135; K ¼ 50 and L ¼ 35; the best factoriza-
tion ðR ¼ 59; C ¼ 1Þ gives a ¼ 4 and b ¼ 50; and Test ¼
ða þ 1Þ � b ¼ 250: On the other hand, for p ¼ 58 and
the same grid, the best factorization ðR ¼ 29; C ¼ 2Þ
gives a ¼ 6 and b ¼ 26; thus Test ¼ ða þ 1Þ � b ¼ 182:
The best configuration in this case is the second one
because it gives a lower Test:

Our algorithm checks every possible factorization p ¼
R � C of p PEs and proposes a configuration with
minimum Test over all configurations under our
assumptions. Note that it is possible that a configuration
with a smaller number of processors can produce a
smaller Test: The algorithm starts from the number q of
available PEs and returns p PEs (where p ¼ R � C and
r, cr1,c r+1, cPP P

Shared grid points

Fig. 3. Shared boundary grid points.
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ppq) such that ðR;CÞ ¼ argmin Test: Our heuristic
approach checks these configurations by decrementing
q by one at each stage.

Given p PEs our algorithm checks every possible
factorization of p and forms the logical PE mesh with
the lowest Test:

Algorithm I.

The algorithm has two phases. In Phase 1 the pro-
cessor mesh configuration ðR;CÞ that gives the
minimum Test is determined. In Phase 2 the pro-
cessor mesh configuration determined in Phase 1 is used
to map the grid points to processors. The values
of a; arem; b; brem used in Phase 2 are the values
corresponding to the configuration ðR;CÞ determined
in Phase 1.

2.2. Algorithm for heterogeneous systems

We use the Assumptions 1 and 3 of Algorithm I, and
we consider a system in which the PEs may have
different speeds.
Given a number of processors p ¼ R � C; we divide
the J � K sized space grid in p rectangular partitions,
with the J dimension divided into R subpartitions and
the K dimension divided into C subpartitions. These
subpartitions are in general of unequal size.

We form a linear array of PEs ðP0;P1;y;Pp�1Þ by
sorting the PEs in non-increasing order according to
their processing speed: speedðP0ÞXspeedðP1ÞXy

XspeedðPp�1Þ and map the PE subpartition ðr; cÞ of
the 2D mesh to processor PcRþr:

Because of the mapping of the PE linear array onto
the 2D mesh and the ordering of PE according to the
speed, the processors of a PE column are expected to
have approximately the same computing power. Thus,
we divide the J dimension into equal subpartitions. The
K direction is partitioned and mapped according to the
speed of each PE column, where the speed of a PE
column is defined as the speed of the slowest PE on that
column. This mapping may result in slightly under-
utilizing a fast processor, but it avoids the more
important issue of overloading a slow one.

Every PE is expected to complete execution in time
proportional to the ratio of its load over its processing
speed. We take T̂est to be the maximum of these ratios.
The goal is to find a configuration ðR;CÞ of PEs that
minimizes T̂est:

Our algorithm checks every possible factorization p ¼
R � C of p PEs and proposes an optimal configuration
with minimum T̂est over all configurations under our
assumptions. This is a suboptimal solution to the
general grid partitioning problem see [4,13] and refer-
ences therein.
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Note that it is possible that a configuration with a
smaller number of processors can produce a smaller T̂est:
An example similar to the Remark in Section 2.1 can be
easily presented. The algorithm starts from the number
q of available PEs and returns p PEs (where p ¼ R � C

and ppq) such that ðR;CÞ ¼ argmin T̂est: Our heuristic
approach checks these configurations by decrementing q

by one at each stage.

Algorithm II.

Remark. (i) Both algorithms only check rectangular
meshes corresponding to integer factorizations of p: (ii)
The algorithms only deal with 2D PE meshes because of
the special parallel implementation of TURNS (see
Introduction and [21]).

We next show an example to illustrate Algorithm II.
Example 1. We assume a distributed system of 15
heterogeneous PEs arranged in a 2D mesh presented in
Fig. 5. In this figure the speed of each processor is given
in parenthesis under the processor label. We consider a
space grid with: J ¼ 135 and K ¼ 50 and we apply
Algorithm II. In this example we are not interested in
finding the best PE mesh configuration, we only show
how the algorithms works for a given configuration. We
consider the number p of PEs fixed and we skip the first
for loop in Phase 1. Then the following values are
computed:

a ¼ Ið135� 2Þ=5mþ 2 ¼ 28; arem ¼ 3;

column speedð0Þ ¼ 3; column speedð1Þ ¼ 2;

column speedð2Þ ¼ 1;

total speed ¼ 6;

lð0Þ ¼ 25; lð1Þ ¼ 16:67; lð2Þ ¼ 8:33;

brem ¼ 1;

bð0Þ ¼ 26; bð1Þ ¼ 18; bð2Þ ¼ 9:

The mapping obtained in Phase II is presented in Fig. 5.
For example P00 will get a þ 1 ¼ 29 points on J

direction and bð0Þ þ 1 ¼ 27 points on K direction.
We next use an example to show that Algorithm II is

more efficient than Algorithm I, in heterogeneous
systems.

Example 2. We assume that we have three columns on
the PE mesh ðC ¼ 3Þ: Let the speed of column c be sðcÞ
so that sð1Þ4sð2Þ4sð3Þ: We assume that there are K
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grid points on the K direction. First we use the equal
allocation and each column of PEs will get K=3 points. In
this case Test ¼ K=ð3 sð3ÞÞ because the slowest processor
will finish last. Using the balanced allocation according to
the Algorithm II we have the following allocations:

K
sð1Þ

sð1Þ þ sð2Þ þ sð3Þ; K
sð2Þ

sð1Þ þ sð2Þ þ sð3Þ;

K
sð3Þ

sð1Þ þ sð2Þ þ sð3Þ

for the three columns of PEs. In this case we have T̂est ¼
K=ðsð1Þ þ sð2Þ þ sð3ÞÞ: Since 3 sð3Þosð1Þ þ sð2Þ þ sð3Þ
we conclude that Test4T̂est:

3. Implementation and results

3.1. Distributed environment

In our experiments, we use a heterogeneous network of
workstations which includes two groups of computers: (i)
45 SUN Ultra-10 ð440 MHz; 128 MBÞ; three Pentium PC
ð450 MHz; 128 MBÞ; one SGI-O2 ð270 MHz; 128 MBÞ
and two SGI-O2 ð20 MHz; 64 MBÞ and (ii) 12 SUN
Ultra-1 ð166 MHz; 64 MBÞ: The workstations in group (i)
are connected to each other via a 100 Mb=s switched
Ethernet. The workstations in group (ii) are connected to
each other via a 10 Mb=s switched Ethernet. As a message-
passing library we use the MPICH 1.2.0 [7]. For
compiling the TURNS code on SUN workstations we
use the Sun WorkShop Compiler FORTRAN 90
SPARC Version 2.0, for SGI workstations we use the
MIPSPro FORTRAN 90 compiler and for LINUX PCs
we use the Lahey/Fujitsu LF95 compiler. We ran our
programs in a dedicated environment.

3.2. Implementation details

We implemented (in C++) a load balancer based on
the two algorithms described in the previous section.
The first one considers the environment as a homo-
geneous network of workstations. The user has to
provide the dimensions of the grid and the number of
processors. The output is a parameter file used for
compiling the TURNS code. The second program takes
into consideration the heterogeneity of the computers.
The user has to provide a list of machines with their
speed and amount of memory in addition to the
dimensions of the grid. The output is a parameter file
used for compiling the TURNS code.

3.3. Experimental results

3.3.1. Performance analysis

In order to analyze the performance of our algorithms
we quantify the processing power of the heterogeneous
distributed environment as a number of virtual proces-
sors. The fastest processor in the system is considered to
be one virtual processor. Let S be the set of processors
used in a distributed system configuration, si be the
clock speed of processor i; iAS; and smax the clock
speed of the fastest processor. Slower processors are
considered to be fractions of one virtual processor. We
define the number of virtual processors as

Vp ¼
P

iAS si

smax
: ð1Þ

For example, if we have three Pentium PCs
ð450 MHz; 128 MBÞ; three SUN Ultra-10 ð440 MHz;
128 MBÞ workstations, one SGI-O2 ð270 MHz;
128 MBÞ and two SGI-O2 ð200 MHz; 64 MBÞ work-
stations the number of virtual processors is Vp ¼
3�450þ3�440þ1�270þ2�200

450
¼ 7:42:

We use the following notations:

* p—number of workstations;
* Vp—number of virtual processors;
* Tcomp—computation time per integration step;
* Tcomm—communication time per integration step;
* Tp—execution time per integration step on p work-

stations, Tp ¼ Tcomp þ Tcomm;

In order to compare the efficiency of our load balancer
we used as a base line the execution time obtained using
an equal allocation.

We computed the speedup according to the following
equation [8]:

Sp ¼ minfTP1;TP2;y;TPpg
Tp

; ð2Þ

where TPi is the execution time per integration step on
workstation Pi:

3.3.2. Tests and results

In this section we present the experimental results for
the proposed scheduling algorithms. We ran the code for
two commonly used methods: (1) LU-SGS and (2)
OSOmin (see the appendix), for several different
configurations of workstations. The dimensions of the
problem grid are: J ¼ 135; K ¼ 50 and L ¼ 35: The
results of these runs are presented in Table 1.

We present in Tables 2 and 3 the execution times for
two configurations resulting from the equal and
balanced allocations. In both cases Algorithm II chooses
a configuration with a smaller number of PEs. For
example in Table 2, 15 slow PEs are excluded which
reduces the execution times for LU-SGS and OSOmin.

Fig. 6 shows the speedup in LU-SGS execution time
for equal and balanced load allocation (using Algorithm
II). In general, using the balanced allocation we
obtained a much better speedup than using the equal
allocation. For example, using balanced allocation the
speedup is 5.58, 11.16 and 16.74 and using the equal
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Table 1

Execution and communication time per integration step for LU-SGS

and OSOmin using equal and load balanced allocation

p ðVpÞ PE

mesh

Allocation

method

LU-SGS OSOmin

Tcomm=TpðsÞ Tcomm=TpðsÞ

1 (1) 1� 1 — —/16.74 —/52.02

9 3� 3 Equal 3.2/5.2 11.9/17.2

(7.5) Balanced 1.5/3.1 5.09/9.83

15 3� 5 Equal 2.5/3.5 8.2/11.6

(11.2) Balanced 1.5/2.3 3.5/7.4

28 7� 4 Equal 1.5/2.1 6.1/7.8

(21.7) Balanced 0.9/1.5 3.2/4.3

33 11� 3 Equal 1.7/2.1 4.5/5.9

(23.6) Balanced 1.2/1.5 3.23/4.09

35 7� 5 Equal 0.7/1.1 1.6/3.0

(35.0) Balanced 0.7/1.1 1.6/3.0

60 15� 4 Equal 1.2/2.0 3.6/4.4

(52.9) Balanced 0.8/0.9 2.13/2.7

Table 2

Execution times for Vp ¼ 35:0 and 41.0

p ðVpÞ PE

mesh

Allocation

method

LU-SGS OSOmin

Tcomm=TpðsÞ Tcomm=TpðsÞ

35 7� 5 Equal 0.7/1.1 1.6/3.0

(35.0) Balanced 0.7/1.1 1.6/3.0

50 5� 10 Equal 1.6/2.0 4.4/5.3

(41.0) Balanced 1.1/1.3 2.8/4.2

Table 3

Execution times for Vp ¼ 52:9 and 54.0

p ðVpÞ PE

mesh

Allocation

method

LU-SGS OSOmin

Tcomm=TpðsÞ Tcomm=TpðsÞ

60 15� 4 Equal 1.2/2.0 3.6/4.4

(52.9) Balanced 0.8/0.9 2.13/2.7

63 21� 3 Equal 1.25/2.1 3.2/3.9

(54.0) Balanced 0.74/0.9 2.49/2.89
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allocation the speedup is 3.22, 7.97 and 8.37, when the
number of virtual processors is 7.5, 21.7 and 52.9. We
obtained the same speedup for both allocations at Vp ¼
35:0: This is because all 35 workstations included in this
configuration are of the same speed (i.e. homogeneous
system). For all configurations the balanced allocation
achieved a speedup from 5.58 to 16.74. The gain in
speedup for LU-SGS using balanced allocation is from
40% to 100% and this is expected to increase with the
number of virtual processors.

Fig. 7 shows the speedup for OSOmin for both equal
and balanced allocations. As in the case of LU-SGS, we
obtained similar speedup curves showing that the
balanced allocation achieves a much higher speedup
than the equal allocation. For example, using balanced
allocation the speedup is 5.29, 12.09 and 18.40 and using
the equal allocation the speedup is 3.02, 6.69 and 11.80,
when the number of virtual processors is 7.5, 21.7 and
52.9. The speedup is the same for both types of
allocations at Vp ¼ 35 because the workstations in-
cluded in this configuration are of the same speed and
the balanced allocation is the same as the equal
allocation. The achieved speedup is from 5.29 to 18.40.
It can be observed that for the same size grid the
speedup using balanced allocation increases with the
number of virtual processors providing good scalability.
The gain in speedup for OSOmin using balanced
allocation is from 44% to 80% and this is expected to
increase with the number of virtual processors. How-
ever, this is not true for equal allocation as it can be seen
in Figs. 6 and 7.

In Table 1 we also show the communication time for
all configurations and allocation methods. A high
percentage of the execution time is due to the commu-
nication, since we keep the problem size fixed. The
performance gains due to our algorithm will be more
significant in heterogeneous clusters with fast commu-
nication.

3.3.3. Load balancing considering memory capacity

Our load balancer incorporates a technique that takes
into consideration the memory capacity of each machine
in making the allocation decision. This technique is
based on the following assumptions: (i) The allocated
grid points to some PEs in the system exceed their local
available memory. (ii) The final configuration (with
reduced number of PEs) given by the algorithm will
accommodate all grid points in the local memory. We
consider systems for which the PEs with a higher speed
have also a larger memory. This technique works as
follows. At first the load balancer allocates the grid
points according to Algorithm II and then checks each
PE (in order from the slowest to the fastest) if the
allocation exceeds its memory capacity. If assumptions
(i) and (ii) are not true then the algorithm will execute
with the old allocation. The PEs which have their
memory capacity exceeded are eliminated from the
distributed system and we get a lower p in Algorithm II.
Then a new allocation is computed using Algorithm II.
As an example we considered the q ¼ 63 PEs case in
which the load balancer, without taking into account the
memory capacity, suggests p ¼ 60 PEs as the best
configuration. We ran the load balancer considering
the memory capacity and in this case it excluded 18
processors. By not using 18 PEs, the number of PEs
becomes p ¼ 45 and the execution time for OSOmin is
reduced from 2.7 to 2:5 s: For LU-SGS we obtained the
same execution time but with fewer PEs. These results
are shown in Table 4.
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Fig. 6. Speedup vs. number of virtual processors for LU-SGS.
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Fig. 7. Speedup vs. number of virtual processors for OSOmin.
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4. Conclusion and future work

In distributed simulations, the delivered performance
of networks of heterogeneous computers degrades
severely if the computations are not load balanced. This
article deals with 3D grid domain partitioning, sub-
domain mapping and associated computation schedul-
ing for heterogeneous distributed systems for a CFD
application in helicopter aerodynamics. We derived new
algorithms for grid partitioning taking into account
processor speed and memory capacity. We implemented
our algorithms on a network of workstations (using
MPI) and tested it with the CFD simulation code. Test
run comparisons of these algorithms demonstrated
significant efficiency gains. The importance of our
results is that they can be applied to other CFD
simulation codes. We base our system performance
on the individual processor clock rates. Other more
reliable measurements of performance could be used in
future work.
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Table 4

Execution time per integration step for LU-SGS and OSOmin using

load balanced allocation

Configuration Memory taken TpðsÞ
into account

LU-SGS OSOmin

63�460 No 0.9 2.7

63�445 Yes 0.9 2.5
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Appendix. A testbed CFD simulation code

Accurate numerical simulation of the aerodynamics
and aeroacoustic of rotary-wing aircraft is a complex
and challenging problem. Three-dimensional unsteady
Euler/Navier–Stokes computational fluid dynamics
(CFD) methods are widely used (see [18] and references
therein), but their application to large problems is
limited by the amount of computer time they require.
Such an example of a CFD application, which we will
focus on, is the computation of a helicopter aerody-
namics. Efficient utilization of parallel processing is one
effective means of speeding up these calculations [20].
The baseline numerical method is the structured-grid
Euler/Navier–Stokes solver TURNS (Transonic Un-
steady Rotor Navier Stokes) (see [18] and references
therein) developed in conjunction with the US Army
Aeroflightdynamics Directorate at NASA Ames Re-
search Center. It is used for calculating the flowfield of a
helicopter rotor (without fuselage) in hover and forward
flight conditions. The governing equations solved by the
TURNS code are the three-dimensional unsteady
compressible thin-layer Navier–Stokes equations, ap-
plied in conservative form in a generalized body-fitted
curvilinear coordinate system. The implicit operator
used in TURNS for time-stepping in both steady
and unsteady calculations is the Lower–Upper
symmetric Gauss–Seidel (LU-SGS) operator of Yoon and
Jameson [23].

The parallel TURNS version uses the Hybrid LU-
SGS which is a parallel modification to LU-SGS [14].
Once the computational space has been divided into
subdomains, the original LU-SGS algorithm is applied
simultaneously to each processor subdomain. Then,
border data between the subdomains is communicated
using the relaxation-type approach of DP-LUR [20].
The use of multiple relaxation sweeps is retained to
enhance robustness of the original algorithm lost in the
domain decomposition. On a single processor, hybrid
LU-SGS is identical to the original LU-SGS algorithm.
On many processors (in the limit as the number of
processors approaches the number of gridpoints), the
algorithm becomes identical to DP-LUR (see [20] and
references therein). Like DP-LUR, hybrid LU-SGS can
be implemented such that it is completely load balanced
with only nearest-neighbor communication required
between the subdomains. Hybrid LU-SGS can be
implemented such that it is completely load balanced
with only nearest-neighbor communication between the
sub-domains. In tests with transonic and supersonic
problems with up to 512 subdomains, the hybrid LU-
SGS method converges with a single relaxation sweep
but the convergence rate is less than that of original LU-
SGS. With two relaxation sweeps, the convergence
rate is essentially identical to original LU-SGS.
Further details of the hybrid LU-SGS algorithm are
given in [20].

Inexact Newton methods coupled with Conjugate
Gradient (CG)-type iterative methods for nonsymmetric
linear systems have also been used. Many authors
studied the CG-type methods for CFD applications (see
[1,11] and references there in). CG-type methods like
GMRES were shown to be most efficient. Wissink
implemented the CG-type iterative methods GMRES
and OSOmin [3,21]. The two methods gave similar
convergence and performance results. Storage is a major
consideration for the solution of three-dimensional
problems. The Jacobian matrix is not computed because
CG-type methods use only Jacobian times vector
products which are approximated by Taylor expansion.
The CG-type methods require a modest amount of extra
storage compared to the storage required by the LU-
SGS method [20]. The LU-SGS method is used as a
preconditioner in these iterative methods to speed up
their convergence rate. For more details about CG-type
methods and preconditioning see [6].

We now review the parallel implementation of
TURNS for a parallel system with homogeneous
processors [21]. The time stepping is serial. The three-
dimensional flowfield spatial domain is divided in the
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wraparound and spanwise directions to form a two-
dimensional array of processor subdomains, as shown in
Fig. 1. Each processor executes a version of the code
simultaneously for the portion of the flowfield that it
holds. Coordinates are assigned to the processors to
determine global values of the data each holds. Border
data is communicated between processors, and a single
layer of ghost-cells stores this communicated data. The
Message Passing Interface (MPI) software routes com-
munication between the processor subdomains.

TURNS approximates the solution at each time step
based on two alternatives: (a) the relaxation (DP-LUR
or LU-SGS) methods described above, or (b) the
iterative (Inexact Newton OSOmin method). There are
essentially four main steps of the inexact Newton
algorithm [21]; (1) explicit (flux) function evaluation to
form the right-hand side vector, (2) preconditioning
using hybrid LU-SGS (explained above), (3) implicit
solution by the iterative solver, and (4) explicit applica-
tion of boundary conditions. The (Jacobian-free) matrix
multiplications are based on function evaluations in (3).
Local processor communication is required in (1)–(4).
We also have global communications in the error
computation at each timestep and in the dotproducts
in the Krylov methods.

The parallel implementation of TURNS with hybrid
LU-SGS and OSOmin was performed on the IBM SP.
Each processor was assigned a grid subdomain with
equal number of grid points [21]. We now consider the
implementation on a network of heterogeneous work-
stations. To deal with the heterogeneity of the proces-
sors we consider subdividing the space domain into
subdomains with unequal number of grid points.
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