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Abstract. This paper discusses both the theoretical and statistical errors obtained by various
well-known dot products, from the canonical to pairwise algorithms, and introduces a new and more
general framework that we have named superblock which subsumes them and permits a practitioner
to make trade-offs between computational performance, memory usage, and error behavior. We
show that algorithms with lower error bounds tend to behave noticeably better in practice. Unlike
many such error-reducing algorithms, superblock requires no additional floating point operations
and should be implementable with little to no performance loss, making it suitable for use as a
performance-critical building block of a linear algebra kernel.

Key words. dot product, inner product, error analysis, BLAS, ATLAS

AMS subject classifications. 65G50, 65K05, 65K10, 65Y20, 68-04

DOI. 10.1137/070679946

1. Introduction. A host of linear algebra methods derive their error behav-
ior directly from dot product. In particular, most high performance dense systems
derive their performance and error behavior overwhelmingly from matrix multiply,
and matrix multiply’s error behavior is almost wholly attributable to the underlying
dot product that it is built from (sparse problems usually have a similar relationship
with matrix-vector multiply, which can also be built from dot product). With the ex-
pansion of standard workstations to 64-bit memories and multicore processors, much
larger calculations are possible on even simple desktop machines than ever before.
Parallel machines built from these hugely expanded nodes can solve problems of al-
most unlimited size. The canonical dot product has a worst-case error bound that
rises linearly with vector length. In the past this has not been deemed intolerable, but
with problem sizes increasing it becomes important to examine the assumption that
a linear rise in worst-case error is tolerable and to examine whether we can moderate
it without a noticeable loss in performance.

Dot product is an important operation in its own right, but due to performance
considerations linear algebra implementations only rarely call it directly. Instead,
most large-scale linear algebra operations call matrix multiply (aka GEMM, for gen-
eral matrix multiply) [1, 3], which can be made to run very near the theoretical
peak of the architecture. High performance matrix multiply can in turn be imple-
mented as a series of parallel dot products, and this is the case in our own AT-
LAS [31, 30] project, which uses GEMM as the building block of its high performance
BLAS [15, 22, 10, 11, 9] implementation. Therefore, we are keenly interested in both
the error bound of a given dot product algorithm and whether that algorithm is
likely to allow for a high performance GEMM implementation. The implementation
and performance of GEMM are not the focus of this paper, but we review them for
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SUPERBLOCK DOT PRODUCT 1157

each algorithm briefly, to explain why certain formulations seem more promising than
others.

1.1. Background and related work. Because dot product is so important
to the error analysis of linear algebra, it has been well studied; probably the main
reference for linear algebra error analysis in general is Higham’s excellent book [17],
which extended the foundation provided by Stewart in [29]. We will therefore adopt
and extend the notation from [17] for representing floating point rounding errors:

fl(x ◦ y) = (x ◦ y) · (1 + δ), with |δ| ≤ u,(1.1)

where (i) ◦ is x ⊕ y, x � y, x � y, x � y for floating point (as opposed to exact) add,
subtract, multiply, or divide operations; (ii) u is the unit roundoff error, defined as
u = 1

2β1−t; (iii) β is the base of the numbers being used; and (iv) t is the number of
digits stored. Also, we assume that |δ| ≤ u and that δanything is reserved notation
for values such that |δanything| ≤ u. By the IEEE floating point standard, for single
precision u = 2−24 ≈ 5.96x10−8, and for double precision u = 2−53 ≈ 1.11x10−16.
This model presumes that a guard digit is used during subtraction, which is a required
feature of IEEE floating point arithmetic.

The floating point computations in dot product are multiplication and addition.
We will see that the multiplicative error does not compound in dot product except
through accumulation, and hence the main algorithmic opportunity for error reduction
comes in strategies for summing the individual elementwise products. Therefore, the
most closely related work is on reducing error in summations, as in [25, 13, 24, 28,
19, 12, 2, 6, 26, 14]. In this paper we use Stewart’s 〈k〉 “error counter” notation [29]:

〈n〉 :=
n∏

i=1

(1 + δi)ρi , with ρi = ± 1, |δi| ≤ u.

Multiple 〈k〉 may represent distinct sets of δi and ρi and are not necessarily equal
to each other (thus cannot be multiplicatively factored out). These terms can be
combined and manipulated as follows, where x1 and x2 are floating point numbers:

(1) x1 〈p〉 � x2 〈m〉 = (x1 · x2) 〈p + m + 1〉, and
(2) x1 〈p〉 ⊕ x2 〈m〉 = (x1 + x2) 〈max(p, m) + 1〉

(i.e., given any 〈p〉 and 〈m〉 there exists a set of δi such that |δi| ≤ u and ρi = ± 1
forming a 〈max(p, m) + 1〉 that satisfies (2)). (2) is the key to algorithmic reduction in
error: if we can evenly balance the size of p and m during addition, we can minimize
the resulting error bound. Conversely, if m = 1 and p = i, as in canonical summation
(where i is the induction variable), then the error bound is maximized. We further
show empirically that the algorithm with the least error bound usually produces the
least error.

Higham (p. 69 of [17]) provides bounds for 〈n〉 (ignoring the possibility of overflow
or underflow).

Lemma 1.1.

|δi| ≤ u, ρi = ±1, nu < 1,

n∏
i=1

(1 + δi)ρi = 1 + θn; |θn| ≤ nu

1 − nu
=: γn.(1.2)

Note that equality holds only for |θ1|.
This paper is concerned only with algorithmic improvements for controlling error

suitable to high performance implementation. A related and orthogonal approach is
using extra and/or mixed precision arithmetic to reduce error, as in [6, 8, 23], but such
approaches often present additional computational demands, and/or architecture-
specific coding techniques, and so they are not the focus of this paper. The broader
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effects of floating point error in linear algebra are also too large a pool of literature
to survey in detail, but more information can be found in the overview texts [29, 17]
and in [5, 21].

1.2. Outline. The remainder of this paper is organized in the following way:
Section 2 surveys some known dot product implementations, including their error
bounds, while section 3 introduces a general class of dot product algorithms we call
superblock, which we believe is new. Section 4 then shows some results from our
statistical studies of these algorithms, which will allow us to draw some conclusions
about these techniques, the most important of which are summarized in section 5.

2. Known dot products. In this section we give an overview of several dot
products of interest. Note that we are primarily interested in dot products that could
likely be extended into high performance GEMM implementations. Since GEMM has
O(N3) floating point operations1 (flops) and O(N2) memory use, after tuning its per-
formance is typically limited by the amount of computation to be done, and therefore
we do not consider methods requiring any additional flops (e.g., compensated sum-
mation or the algorithms described in [27]). For performance reasons, we also avoid
sorting the vectors of each individual dot product as discussed in [19, 7, 26]. Finally,
we do not consider using extra or mixed precision, as both the performance and accu-
racy of such algorithms is strongly influenced by the architecture and compiler, and
our focus here is on general algorithmic strategies.

Therefore, we present and analyze three known methods in this section, including
comments indicating their suitability as a building block for high performance GEMM
implementation. Section 2.1 discusses canonical dot product, section 2.2 surveys two
versions of the blocked dot product, and section 2.3 presents pairwise dot product.

2.1. Canonical dot product. The canonical algorithm is
for (dot=0.0,i=0; i < N; i++) dot += X[i] * Y[i];

which calculates the dot product for two n-dimensional vectors, x = {xi}n
i=1 and

y = {yi}n
i=1, in the order

((. . . (((x1 � y1) ⊕ x2 � y2) ⊕ x3 � y3) ⊕ . . .) ⊕ xn � yn)
⇐⇒ (x1 · y1) 〈n〉 + (x2 · y2) 〈n〉 + (x3 · y3) 〈n − 1〉 + · · · + (xn · yn) 〈2〉 .

In [17] and much of the summation literature, this method is called the recursive
algorithm. Since the pairwise algorithm (surveyed in section 2.3) is naturally im-
plemented using recursion and this method is naturally implemented using a simple
iterative loop, we avoid this name and refer to this algorithm, which is certainly the
most widely used in practice, as canonical. The forward error bound is given on
p. 69 of [17] as follows: For s = xTy and ŝ = xT � y,

|s − ŝ| ≤ γn|x|T|y|.(2.1)

1Strassen’s partitioning can reduce the order of the floating point operations to ≈ O(N2.807),
and various refinements can reduce the exponent even further, but at the cost of increasing the
error bound significantly. The forward error bound for N x N matrix multiply using a canonical dot
product is O(N). In Higham’s numerical stability analysis (p. 359 of [16]), he arrives at a bound
(depending upon the level where recursion stops) of O(3N2 + 25N) (for one level of recursion) to
≈ O(6N3.585 − 5N) (for full recursion). Thus Strassen’s algorithm and refinements thereof are not
considered in this paper, since our aim is reducing error. The superblock technique described herein
may well reduce these error bounds to make Strassen’s algorithm more acceptable, but that is a line
of inquiry we do not address here.
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For insight into this result, notice that the subscript on the γ term is the greatest
number of flops to which any given input is exposed; this is the maximum error
counter 〈·〉. This leads us to the observation that different algorithms distribute flops
differently over their inputs, and thus the more uniformly an algorithm distributes
flops over inputs the better it will be on worst-case error. Dot product forward error
bounds are all of this general form; for expositional simplicity we shall abuse notation
by referring to the error bound by the γ element that changes from algorithm to
algorithm. Thus we shall say the canonical algorithm has a γn error bound or, in a
further abuse of notation to ease exposition, an O(n) error bound.

Implementation notes. Canonical dot product is the usual starting point for opti-
mized block products. A host of transformations can easily be performed on canonical
product (unrolling, pipelining, peeling, vectorization, prefetching, etc.). SIMD vec-
torization (as is used in architectural extensions like SSE or 3DNow!) in particular
is equivalent to a “postload” blocked dot product, as discussed next in section 2.2,
and will approximately divide the error bound by the vector length; e.g., if n is a
multiple of the vector length of 4, a typical vectorization will produce an error bound
of γ( n

4 +3). Canonical dot product is almost never used to directly build a high perfor-
mance GEMM, since it fails to efficiently use the memory hierarchy. Dot product has
no opportunity for cache reuse, but GEMM does. Therefore, when parallel dot prod-
ucts are used to implement matrix multiply, they are typically blocked to encourage
cache reuse, and this type of dot product is discussed in section 2.2.

2.2. Blocked dot product. For some optimizations it is necessary to block
operations into chunks that make good use of the various levels of local memory that
exist on computers. For a dot product of two vectors of large dimension N , this implies
breaking up the vectors into Nb-sized subvector chunks that are computed separately
and then added together. There are two obvious algorithms for blocked dot product,
which we call preload and postload ; we show that postload is strongly preferable to
preload due to error growth. Figure 2.1 gives pseudocode for both versions of the
algorithm (we assume N is a multiple of Nb for expositional simplicity throughout
this section).

s = 0.0
blocks = N

Nb

for(b = 0; b < blocks; b++)
{

for(i = 0; i < Nb; i++)
s = s ⊕ (x[i] � y[i])

x += Nb; y += Nb

}
return(s)

(a) Preload blocked dot product

s = 0.0
blocks = N

Nb

for(b = 0; b < blocks; b++)
{ sb = (x[0] � y[0])

for(i = 1; i < Nb; i++)
sb = sb ⊕ (x[i] � y[i])

s = s ⊕ sb
x += Nb; y += Nb

}
return(s)

(b) Postload blocked dot product

Fig. 2.1. Pseudocode for blocked dot products.

The preload algorithm of Figure 2.1(a) is probably the most obvious implemen-
tation. However, it is not optimal errorwise. The term s is used in every intermediate
computation, so the error term on s will dominate the total error. The first add to s
is an add to zero that does not cause error. So there are N − 1 adds to s, along with
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the γ1 error bound from the multiply, which means that preload blocked dot product
has the same error bound as canonical.

Now consider a slight alteration to this algorithm, as shown in Figure 2.1(b).
Instead of accumulating on a single value throughout the computation, we accumulate
the dot product for each block separately and then add that result to s. So the blocked
dot product consists of N

Nb
canonical dot products each of size Nb, each of which then

adds to the total sum. In [17, p. 70] Higham notes the forward error bound for this
algorithm is now

|s − ŝ| ≤ γ( N
Nb

+Nb−1
) |x|T|y|.(2.2)

If we assume a fixed Nb, postload reduces the error bound by a constant factor
which depends on Nb. The minimum value is found by looking at the γ subscript as
a function of Nb, say f(Nb) = Nb + N

Nb
−1. As Higham notes, the minimum occurs at

Nb =
√

N , yielding an error bound of γ(2
√

N−1), thus changing the order of the error.
Extending this procedure to an arbitrary number of levels of blocking is the key idea
behind superblocking.

Implementation notes. Most high performance GEMM implementations use one
of these blocked algorithms, where the Nb value is chosen based on the size of one of the
caches and other architectural features (such as the number of floating point registers,
instruction cache size, etc.). It is perhaps not obvious, but the postload algorithm
requires no extra storage when used in GEMM. When extended to GEMM, the scalar
accumulators used by the dot product algorithm naturally become output matrices.
However, these output matrices must be loaded to registers to be operated on, and
thus the architecture provides a set of temporaries that are not present in storage.
This is indeed where the algorithms get their names: in preload, the summation-so-far
is loaded to the registers before beginning the loop indexing the common dimension
of the input matrices, but in postload the summation is not loaded until that loop
is complete. Therefore, whether the preload or postload algorithm is used varies by
library (ATLAS mostly uses the preload algorithm at present); indirect experience
with vendor-supplied BLAS seems to indicate that many use the preload version,
but it is impossible to say for sure what a closed-source library does algorithmically.
However, personal communication with Fred Gustavson (who is strongly involved in
IBM’s computational libraries) indicates that at least some in the industry are aware
of the error reductions from postload and have at least historically used it.

In a high performance library Nb is chosen to optimize performance and can be
heavily architecture dependent, and so it cannot typically be varied exactly as called
for to get the γ(2√n−1) bound. In our own ATLAS (and we suspect in other libraries
as well), Nb is either completely fixed or selectable from a small set of values that
obtained the best performance. However, even libraries with a fixed Nb can produce
lower-order worst-case errors for a reasonable range of problems sizes, and those that
can choose amongst several candidate Nb’s can do even better, as we outline next in
section 2.2.1.

2.2.1. Optimal and near-optimal blocking for postload dot product.
Postload blocked dot product has the error bound given in (2.2), but to achieve this
bound Nb must be variable, and we believe in most implementations it is not. What
we show here is that there is wide latitude in choosing Nb, so a few fixed block sizes
can achieve the O(

√
N) error bounds across an expansive range of problem sizes.

More formally, suppose, for some small constant c, that Nb = c · √N . Then the error
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factor on each term will be

γ(
c·√N+ N

c·√N
−1
) = γ(c·√N+ 1

c ·
√

N−1) = γ((c+ 1
c )

√
N−1).(2.3)

Implementation notes. The utility of this modified bound becomes clear with an
example. Suppose we have a GEMM with an Nb = 60, a typical value used by ATLAS.
This is the perfect block size for N = 3600. But it achieves nearly the same error
bound for all N ∈ [900, 14400]: If N = 900, the optimal blocking factor is 30, so at
this extremity, Nb = 1

2

√
N , and so by (2.3) we have an error bound of γ(2.5

√
N−1).

At the other extremity, the optimal blocking factor for N = 14400 is 120. Then
Nb = 2

√
N , so by (2.3) we again have an error bound of γ(2.5

√
N−1). This is only

about 25% higher than if we were able to use the optimal values of 30 and 120, and no
N ∈ [900, 14400] has a worse bound. If we wanted O(

√
N) bounds on much larger N ,

a second choice of N ′
b = 240 would seamlessly cover the adjacent range N = 14400 to

N = 230400 with the same bound, γ(2.5
√

N−1). Any N ′
b ∈ (60, 240] would overlap the

range [900, 14400]; in such cases Nb or N ′
b could be chosen, either the one producing

the lesser bound or by performance related criteria. Because of this wide latitude in
choosing Nb, one may imagine a GEMM implementation in which a small handful of
block sizes with overlapping ranges are chosen in order to allow O(

√
N) error bounds

across the full range of practical problem sizes, with little to no impact on even the
most highly tuned performance.

scalar dotProduct
(int n, Vector X, Vector Y)

{ scalar sum;
int n1 = n/2;
int n2 = n - n1;
if (n == 1) return (X[0] * Y[0]);
sum = dotProduct(n1, X[0:n1-1], Y[0:n1-1]);
sum += dotProduct(n2, X[n1:n-1],Y[n1:n-1]);
return (sum);

} // END *** dotProduct ***

(a) Pairwise pseudocode

x1 � y1 x2 � y2 x3 � y3 x4 � y4
. . .

xn−3 � yn−3xn−2 � yn−2xn−1 � yn−1 xn � yn

⊕ ⊕ ⊕ ⊕. . .

��� ��� ��� ��� ��� ��� ��� ���

⊕ ⊕. . .

�
���

�
��	





�
����


⊕

................................�

..................................�

(b) Pairwise summation diagram

Fig. 2.2. Pseudocode and flop exposure of pairwise dot product.

2.3. Stability of the pairwise dot product. Finally, we consider the pairwise
algorithm, which can be naturally implemented using recursion, as shown in Fig-
ure 2.2(a). This algorithm performs precisely as many flops as the canonical form,
but, instead of accumulating the products one by one, it constructs a �log2(n)� deep
binary tree of them, as shown in Figure 2.2(b). Thus this algorithm has the property
of distributing the flop load exactly equally among its inputs and thus minimizing
the worst-case error. Pairwise is discussed in [17, p. 70], where Higham produces an
error bound for the forward error for this algorithm:

|sn − ŝn| ≤ γ(�log2 n�+1)|x|T|y|.(2.4)

Pairwise demonstrates an instance where recursion, by distributing usage of
prior results uniformly, inherently improves the error bound of the result. In general,
this is a powerful principle: The fewer flops elements are subjected to, the lower the
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worst-case error. We will demonstrate in section 4 that these lower worst-case error
algorithms do indeed produce lower actual errors on average than canonical.

Implementation notes. Despite its superior error bound, this algorithm has sev-
eral drawbacks that prevent it from being the default dot product for performance-
aware applications. First, the general recursive overhead can be too expensive for
most applications. Second, the smaller sizes found towards the bottom of the recur-
sion prevent effective use of optimizations such as unrolling, pipelining, and prefetch.
These optimizations often must be amortized over reasonable length vectors, and, for
optimizations such as prefetch, we must be able to predict the future access pattern.
Straightforward recursive implementation will limit or completely remove the free-
dom to perform these optimizations, and so it is generally much less optimizable than
a loop-based implementation, even when the recursive overhead can be minimized.
We note that the naive version of this algorithm requires n

2 workspaces (stored on
the stack in the recursive formulation) to store the partial results. Generally, extra
workspace usage results in greater cache pollution, which tends to degrade perfor-
mance even further. With smarter accumulator management, we may reduce the
worskpace requirements to (1 + log2(n)) (see [4] for details). We will derive a similar
result using our superblock algorithm in section 3. However, since in matrix multiply
these workspaces must be matrices (as opposed to scalars for dot product), pairwise
is usually not practical due to memory usage, even if the performance considerations
highlighted above do not discourage its use.

3. Superblocked dot product. The error bound on a dot product is primarily
due to summation; the initial multiplication of elements adds only one to the final
γ subscript. Thus we begin both our analysis and introduction with superblock
summation: Given t temporaries we can accumulate a sum in t levels; so our initial
idea was to find optimal blocking factors for each level to minimize the upper bound
of the floating point error. We discovered the ideal blocking factor is identical for all
levels, which also simplifies the error bound. The code for this generalized superblock
dot product is given in Figure 3.1(a), and an illustration of the summation part of the
algorithm is shown in Figure 3.2. In Figure 3.2 note that each level needs only one
temporary, so all shown summations are using the same workspace. Therefore, after
level t − 1 receives its Nbth addition into the first running sum shown on the left of
level t− 1 of Figure 3.2, the t− 1 sum is added into the current t− 2 sum and zeroed,
and the next summation shown to the right is begun using the same workspace. The
principle is straightforward; on each level the blocking factor Nb is identical,2 and for
t-level summation this requires Nb = N1/t.

When there is only one level (t = 1) this algorithm becomes canonical, for
t = 2 it becomes postload blocked, and for t = log2(N) it becomes space-optimal
pairwise (as shown in Proposition 3.3). Therefore, all the algorithms surveyed in
section 2 may be viewed as special cases of the superblock class of dot products. In
Proposition 3.1 we first prove the superblock summation result and its error bound;
then in Proposition 3.2 we extend that result to the superblock dot product.

Proposition 3.1. For a t temporary superblock summation, the blocking factor
that minimizes the worst-case error counter is N

1
t , which produces a worst-case error

counter of 〈t(N 1
t − 1)〉, corresponding to an error bound of γ

(t(N
1
t −1))

.
Proof. The proof is inductive on t. The proposition is trivially true for t = 1,

producing a worst-case error counter of 〈1(N
1
1 − 1)〉 = 〈N − 1〉.

2For clarity we assume the computation produces an integer blocking factor.
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scalar dotProd(Vec X, Vec Y, int t)

{ int n = X.length;

int nb = pow(n, 1/t);

scalar tmp[t] = {0.0};

int cnt[t] = {0};

for (i=0; i < n; i++)

{

tmp[t-1] += X[i] * Y[i];

if (++cnt[t-1] == nb)

{

for (j=t-2; j; j--)

{ tmp[j] += tmp[j+1];

tmp[j+1] = 0.0;

cnt[j+1] = 0;

if (++cnt[j] < nb) break;

}

}

}

return(tmp[0]);

}

(a) t-level superblock

scalar dotProd(Vec X, Vec Y, int nb)

{ int n = X.length;

int nblks = n/nb;

int nsblks = sqrt(nblks);

int blksInSblk = nblks/nsblks;

scalar dot=0.0, sdot, cdot;

for (s=0; s < nsblks; s++)

{ sdot = 0.0;

for (b=0; b < blksInSblk; b++)

{

cdot = X[0] * Y[0];

for (i=1; i < nb; i++)

cdot += X[i] * Y[i];

sdot += cdot;

X += nb; Y += nb;

}

dot += sdot;

}

return(dot);

}

(b) 3-level fixed-Nb superblock

Fig. 3.1. Pseudocode for superblock algorithms.

Fig. 3.2. “t”-level superblock summation.

Therefore, assume the proposition is true for t. For t+1 level blocking we choose
Nb as the lowest level blocking factor. This will produce a worst-case error counter of
〈Nb − 1〉 on each block summation, with N

Nb
elements (the block sums) to be added in

the subsequent t levels of the addition. By the proposition, the ideal blocking factor
for these remaining t levels is ( N

Nb
)

1
t , and will produce a worst-case error counter of

〈t(( N
Nb

)
1
t − 1)〉, which shall be added to 〈Nb − 1〉 to find the worst-case error counter

of a (t + 1)-level superblock summation. This can be expressed as 〈f(Nb)〉 with
f(Nb) shown in (3.1a). We minimize this and solve for Nb, as shown in (3.1b).

f(Nb) = Nb − 1 + t

((
N

Nb

) 1
t

− 1

)
,(3.1a)

f ′(Nb) = 1 + t

(
N

1
t × −1

t
× N

−1
t

−1

b

)
= 0 ⇒ 1 = N

1
t × N

−(t+1)
t

b ⇒ Nb = N
1

t+1 .(3.1b)
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Thus the optimal Nb for level t + 1 is N
1

t+1 , leaving N
Nb

= N

N
1
t

= N
t

t+1 elements
to be summed in t levels. By our assumption the optimal blocking factor for these
elements is (N

t
t+1 )

1
t = N

1
t+1 , so the same blocking factor is used on all t + 1 levels.

Substituting this Nb into (3.1a) gives the worst-case error counter of〈
N

1
t+1 − 1 + t

((
N

t
t+1

) 1
t − 1

)〉
⇐⇒

〈
(t + 1)(N

1
t+1 − 1)

〉
which implies an error bound of γ

((t+1)(N
1

t+1 −1))
, as desired.

Proposition 3.2. The following bound holds true on the forward error for the t
temporary superblock dot product computation:

|sn − ŝn| ≤
(
γt( t√N−1)+1

)
|x|T|y|.(3.2)

Proof. Superblock dot product differs from summation only in that it has 1
additional error factor of (1 + δ) due to the multiply, and we note that adding 1 to
the subscript of the result proven in Proposition 3.1 yields (3.2).

Proposition 3.3. An N = 2t, t-level superblock dot product is equivalent to
the space-efficient pairwise dot product.

Proof. Replacing N with 2t initially, and later t with log2(N), and applying
Proposition 3.2 tells us the worst-case error counter must be〈

t((2t)
1
t − 1) + 1

〉
=
〈
t(2

t
t − 1) + 1

〉
= 〈t + 1〉 = 〈log2(N) + 1〉 ,

which implies the error bound

|s − ŝ| ≤ γ(log2(N)+1)|x|T|y|
identical to the pairwise result (2.4), which is accomplished in t = log2(N) work-
spaces.

Storage note. Caprani [4] showed space-efficient pairwise takes �log2(N)� + 1
storage locations, which disagrees with our count of t = log2(N) (where we assume
�log2(N)� = �log2(N)�) as just shown in Proposition 3.3. Caprani uses a stack-based
scheme almost identical to ours, but his algorithm assumes a separate temporary
storage area for the final result; instead we assume the result is being computed in
place. This accounts for the one unit difference, and thus we do not claim to require
less storage despite the differing counts.

3.1. Fixed-Nb superblock. As so far presented, superblock is interesting
mainly from a theoretical standpoint, since its implementation would probably be
only a little more practical than pairwise. However, we can make a straightforward
adaptation to this algorithm which makes it a practical algorithm for building a high
performance GEMM (at least in the way we perform GEMM in ATLAS) in those
cases where the problem size is too great for postload blocked GEMM alone to give
the lower-order worst-case error term. As previously mentioned, in implementation
Nb is either fixed or at most variable across a relatively narrow range. Therefore, we
assume Nb is not variable when deriving our practical superblock algorithm. The
second choice is how many temporaries to require. Depending on the types and levels
of cache blocking applied by ATLAS’s GEMM, each additional temporary beyond the
problem’s output N × N matrix and the machine’s registers (which handle the post-
load dot product in the innermost loop) would require either an Nb×Nb temporary in
the best case or an N×Nb in the worst. Also, additional storage locations will tend to
depress performance due to added cache pollution. Therefore, we choose to add only
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one additional workspace beyond the problem’s output and the machine’s registers,
leading to the t = 3 algorithm shown in Figure 3.1(b) (for clarity we again assume
that all blocksize calculations produce nonzero integral answers). This produces an
error bound of γ

(Nb+2(
√

N
Nb

−1))
(note that, as expected, this is the same as (3.2) when

Nb = 3
√

N). We believe this algorithm, requiring only one additional buffer, will pro-
vide reasonable error reduction on pretty much all problem sizes that are practical in
the near and medium term (section 4 puts some statistics behind this belief), without
insupportable workspace requirements or sharp performance reductions.

4. Statistical studies. It is widely known that worst-case errors are almost
never seen in practice. This is mostly due to the fact that a prior overestimation is
often balanced by a later underestimation, so that the worst-case bound is indeed
loose. Many practitioners believe that with these extremely loose bounds and the
self-cancelling nature of floating point error, all of the algorithms perform fairly in-
distinguishably for most data. This idea is endorsed in a limited way in [19], which
demonstrates that there exist particular data and orderings which will make any of
these “better” dot product algorithms produce worse results than the others (e.g., a
case can be constructed in which pairwise gets worse error than canonical). The
conclusion of this paper goes further (remember that the “recursive summation” of
Higham is our “canonical”):

However, since there appears to be no straightforward way to predict
which summation method will be the best for a given linear system,
there is little reason to use anything other than the recursive sum-
mation in the natural order when evaluating inner products within a
general linear equations solver.

This section provides results of statistical studies we have undertaken, which show
that there is indeed a benefit on average to using the lower worst-case error algorithms
and that this benefit grows with length (though not at anything like the rate suggested
by the worst-case analysis).

4.1. Experimental methodology. A frequently used approach for experimen-
tal exploration of algorithmic improvements is to select vectors with known properties
that will behave in known ways. In contrast to this approach, we wish to understand
how much error reduction a user can expect on more typical data. To get a feel for
this, we chose a more statistical approach, where we contrast the behavior of vari-
ous algorithms using the same randomly generated vectors. For each vector length
n we randomly generate 10,000 different vector pairs, and each algorithm (including
canonical) is run on each of these vector pairs (so algorithms are always compared
using the same data) using IEEE single precision. The amount of error is found
by comparison to an “exact” answer for the same pair computed with IEEE dou-
ble precision and compensated addition (originally described by Kahan [20]; various
error analyses reported by Higham (p. 85 of [18])), which is theoretically accurate
to ±u for IEEE single precision.3 We consider two cases of interest for unstruc-
tured data, and so we have separate charts for when the elements are generated
continuously in the range [−1,1] and [0,1]. All of these experiments were run on an
x86 machine using single precision SSE instructions (so that true 32 bit precision is
enforced).

3Keep in mind the error bound is for an accumulation in double precision and then translated
to single precision for comparison.
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Because we wish to make a statistical argument, it is important that we are mea-
suring something that can be meaningfully averaged over our 10,000 experiments.
Relative error is a fairly standard metric of error, so we originally averaged the in-
dividual relative errors of each algorithm (i.e., for each input X and Y , compute
|X·Y −X̂·Y |

|X·Y | ). Unfortunately, this approach is fundamentally flawed for mixed-sign
data: over the 10,000 trial vector pairs it is not uncommon to find a few outliers for
which the relative error denominator, |X ·Y |, is very small, making the individual ratio
so large that these outliers dominate the overall average (in some cases eliminating a
single outlier would reduce the average by an order of magnitude). Therefore, we see
that averaging ratios where the denominator can be arbitrarily near zero makes the
average too sensitive to outliers and is therefore unlikely to represent the “typical”
case. We also considered averaging the ratios of the relative errors produced by the
two algorithms, but of course on identical input vectors the denominators (|X · Y |)
would cancel, leaving the ratio of two absolute errors in the form |e1|

|e2| , and this suf-
fers from the same sensitivity drawback: If on a particular vector pair the second
algorithm produces an |e2| very near zero, a huge individual ratio can overwhelm the
overall average ratio.

We chose instead to average the absolute errors for each algorithm first and then
find the ratio of these two averages. It is important to point out that “average absolute
error” is a relatively meaningless measure of algorithmic error in isolation; but the
ratio of these averages, when both algorithms are processing identical vector pairs,
does have statistical value: For a given n this ratio is proportional to the ratio of
the statistical expected value of their forward errors4 and proportional to the ratio of
their expected relative errors (assuming the dot product is never zero).

Further, if on a particular dot product one algorithm produces error |e1i | and a
second algorithm |e2i | = α · |e1i |, with α > 1, then in general it requires log2(α) more
bits to represent |e2i | than to represent |e1i |, implying log2(α) fewer bits of accuracy
in |e2i |, regardless of the magnitude of |e2i |. The same formula does not hold for the
averages5 |e1| and |e2|, but in our experiments we did calculate the average bits of
accuracy and found over all algorithms tested a greater than 99% correlation6 between
our ratio, log2(|e1|/|e2|), and the average bits of significance lost (or added) when it
is positive (or negative, due to |e1|/|e2| being less than 1). In fact for our algorithms
log2(|e1|/|e2|) by itself predicted the average advantage in bits of significance within
0.9 bits for the same-sign vectors and within 0.5 bits for mixed-sign vectors.

4.2. Results. For each of the charts shown here, we compare the surveyed
algorithms against canonical. The algorithms are pairwise, autol3superblock
(superblock with t = 3 and Nb = 3

√
N), l3superblock60 (superblock with t = 3

and a fixed lowest-level blocking of Nb = 60), autoblock (postload blocked with

4Consider the form of the upper bound on error for an individual dot product of n length
vectors Xi and Yi, |ei| ≤ c · |Xi|T|Yi|, where c is a constant (usually computed as γf(n), e.g., γn or
γlog2(n), but with n given this reduces to a constant). The constant c is statistically independent

of the values of |Xi|T|Yi|. We adopt this form as the model for the expected amount of error; so for
algorithm 1 we assume a linear model for the error on each vector pair of |e1i |=c1i · |Xi|T|Yi|, and
for algorithm 2 (on the same vector pair) |e2i |=c2i · |Xi|T|Yi|. Using appropriate random variables,
taking expected values on both sides, using the independence argument, and assuming the errors
are normally distributed, we find E(c1)/E(c2)=|e1|/|e2|; i.e., the ratio of the average absolute errors
is proportional to the ratio of forward errors. A similar argument holds for relative errors; thus we
believe this ratio is a reasonable general measure for comparing algorithmic error.

5The average of the logs of a set of values does not equal the log of the set’s average value.
6This result is with the exception of block60 on same-sign data, which had only a 95% correlation.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SUPERBLOCK DOT PRODUCT 1167

(a) For random data in range [−1,1]

(b) For random data in range [0,1]

Legend: Black hourglasses: Pairwise. Red
dashed line: autol3superblock. Dark blue solid
line: l3superblock60. Light green point-down tri-
angle: autoblock. Light blue squares: block60.

Fig. 4.1. Average absolute error of tested algorithms. Color is available only in the online
version.

Nb =
√

N), and block60 (postload blocked with Nb = 60). These parameter val-
ues were chosen due to practical reasons: Nb = 60 is a typical midrange blocking
factor (when Nb is selected for performance), and t = 3 requires only one additional
workspace in GEMM.

Average absolute errors for the various algorithms are charted in Figure 4.1(a)
and (b), scaled by the constant εM = 2−23 (εM is the smallest power of 2 which
can be added to 1 to get a different number) for display purposes. In both charts,
for the majority of the span the ranking of the curves is (from top (worst) to bot-
tom (best)): canonical, block60, autoblock, autol3superblock, l3superblock60,
and pairwise (although autol3superblock and l3superblock60 are nearly indis-
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tinguishable). We see that the improved algorithms perform notably better than
canonical. However, if we take the mixed-sign data as the more typical case, we
can perhaps better understand the above quote from Higham: despite the obvious
win experienced on average by the improved methods, the total error is quite low,
and it seems unlikely many problems would be so sensitive to error that an improved
algorithm would be critical.

The error buildup is much more appreciable on same-sign data, but of course
here we might expect the fact that the answer is also large to help hide the increased
error. In this case, however, if the vectors are sufficiently long, new elements cease
to change the result due to alignment error, and thus, for long enough vectors, this
should eventually prove intolerable, even in relative error. Therefore, areas in which an
improved algorithm might be critical include extremely long same-sign vectors, vectors
which have long-running patterns of same-sign results, but whose answer is nonetheless
small (e.g., imagine multiplying two vectors which produce positive results for the
first n

2 elements and negative for the remainder), highly iterative algorithms which
accumulate error, or applications processing inherently low resolution data (such as
8-bit sensor readings). However, even absent these conditions, our results show that
these improved methods substantially reduce the average error, and therefore it makes
sense to employ at least those methods which do not negatively impact performance
whenever possible.

These graphs are revealing, but the fast-rising canonical error makes all other
algorithms almost indistinguishable due to scale, as well as making all errors appear
somewhat linear. Therefore, in our remaining error charts, we track the ratio of
canonical’s average absolute error divided by the average absolute error achieved by
the improved method (as discussed in section 4.1). Thus, an algorithm with a plotted
ratio of 10 achieved an average absolute error 10 times smaller than canonical on the
vectors of that size. Note this inverts the order of the charts relative to Figure 4.1, so
canonical will always be “1” and pairwise, with the least error, will always be the
curve on top. The average is over the 10,000 trial vector pairs; each algorithm uses
the same unique 10,000 vectors for each vector length n.

Figure 4.2 shows the average (over the 10,000 trials) absolute error of the canon-
ical algorithm divided by the average error of the surveyed algorithms on the range
N = [1000, 100000] in steps of 1000, with the problem sizes along the X-axis and the
error ratio along the Y-axis. Figure 4.2(a) shows this chart for mixed-sign vectors,
and Figure 4.2(b) shows the same for all-positive vectors. In Figure 4.2(a) the order
of the curves from top (best) to bottom (worst) is pairwise, autol3superblock,
l3superblock60, autoblock and block60. The canonical algorithm is not shown;
it would be the horizontal line of “1” (and thus the most error prone algorithm in the
chart). In Figure 4.2(b) the algorithm l3superblock60 is above autol3superblock,
although they are both still quite close.

The first thing to note is that the error ratios for the all-positive data is much
larger than for the mixed sign. This may at first be counterintuitive, as all-positive
vectors have a condition number of 1. However, one of the main ways these algorithms
reduce error is by minimizing alignment error (i.e., bits lost when mantissas with
differing exponents must be aligned prior to adding) by tending to add elements that
are likely to be in the same basic range (since they have been exposed to a more
balanced number of flops). Alignment error is less of an issue for mixed-sign data, as
the dot product accumulator does not necessarily grow at every step as it can with
same-sign data.
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(a) For random data in range [−1,1]

(b) For random data in range [0,1]

Legend: Black hourglasses: Pairwise. Red
dashed line: autol3superblock. Dark blue
solid line: l3superblock60. Light green point-
down triangle: autoblock. Light blue squares:
block60.

Fig. 4.2. Ratio showing reduction in average absolute error. Color is available only in the
online version.

The worst performer of the improved algorithms is always block60, which nonethe-
less produces 7 (8) times less error on average than canonical for long vectors (mixed
and same sign, respectively). It may seem surprising that block60 is competitive with
autoblock, since block60 has O(N) error bound where autoblock has O(

√
N). How-

ever, our analysis in section 2.2.1 shows block60 has an O(
√

N) error bound for much
of this range. Since actual error builds up much slower in practice, block60 main-
tains this lower-order behavior longer as well (note that the range where block60
is almost the same as autoblock, N < 10000, is well within the lower-order range
proven in section 2.2.1). Since this form of GEMM requires no extra storage, this is a
strong suggestion that, even absent other measures, it makes sense to utilize postload
blocking in modern GEMM algorithms and that it produces lower average errors on
most problem sizes in use today.

Another surprising result is how much difference separates the l3superblock al-
gorithms from the autoblock algorithm, since they both have an O(

√
N) error bound.

The different 3-level superblock algorithms, as expected, behave almost the same in
practice, which indicates that a fixed-Nb superblock, which allows for much greater
tuning freedom than autoblocked, will be adequate for error control. In mixed-sign
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data, the 3-level superblock algorithms behave as expected: autol3superblock is
generally slightly better, but since the lines are so close, superblock60 occasionally
wins. For same-sign data, superblock60 actually wins across the entire range, though
again the difference is minor. It is difficult to say why this might be the case, but
we note that the optimal block factor is based on a worst-case analysis which does
not happen in practice, so using larger Nb should not cause a problem. It may be
that Nb = 60 results in fewer alignment error on average when adding the higher level
blocks (e.g., the summation totals for Nb = 60 are more uniform than for Nb = 3

√
N),

but this is pure speculation on our part. We note that l3superblock is substan-
tially better errorwise (with an error almost 23 (55) times better than canonical,
respectively) than postload blocked for all but the very beginning of this range,
which suggests that error-sensitive algorithms may want to employ superblock even
for reasonably sized vectors if the performance effect can be made negligible.

Finally, we notice that pairwise is decidedly better on average across the range.
The clear superiority of pairwise over the next best tested algorithm, l3superblock60,
indicates it may be interesting to study higher level superblocks to see how the
performance/error win trade-off plays out in practice. We note that the pairwise
algorithm displays a sawtooth pattern for the same-sign data, with the least average
error (maximum ratio) found at powers of two. Again, the reason is probably due
to alignment error: when pairwise’s binary tree becomes unbalanced because N is
slightly above a given power of 2, each branch of the tree will yield markedly different-
sized values, thus increasing the probability of alignment error. It seems likely that
changing the algorithm to better balance the addition tree could moderate the drops,
but, since pairwise is not our main focus, we did not investigate this further.

Since standard methods work fine in practice for smaller problems, we have con-
centrated primarily on these large problem sizes. However, as many people are inter-
ested in small-case behavior, Figure 4.3 gives the same information for N = [10, 1000]
in steps of 10. Here we see less algorithmic difference, as one would expect. For in-
stance, for all N ≤ 60, canonical, l3superblock60, and block60 are the same algo-
rithm. These fixed-size block algorithms do not strongly distinguish themselves from
canonical until any N mod Nb is overwhelmed by problem size, as we see. Therefore,
the fixed-Nb algorithms are mainly interesting for decreasing error for large problems;
since these are precisely the cases in which we most need to ameliorate the buildup
of error, this is not a drawback in practice.

Having considered average performance, we next consider exceptions to the av-
erage. For each algorithm we tallied its “Win/Lose/Tie” record against canonical
on the same vectors. Here we discuss l3superblock60, but very similar conclusions
apply to all the algorithms in keeping with the ranking of their error bounds. “Win”
means the alternative algorithm had less error, “Loss” means it had more error, and
“Tie” means the error was identical within the roundoff error. For mixed-sign data,
l3superblock60 wins or ties against canonical 95% of the time, and for same-sign
data 99% of the time, becoming increasingly superior as the vector length increases.

For the small percentage of cases in which l3superblock60 loses to canonical,
it is never because l3superblock60 produced an excessively large error. In fact,
the largest error it produces in such circumstances is still only 52% of canonical’s
average error: The reason l3superblock60 loses is because canonical produced an
unusually small error on that particular vector: On average, when canonical wins
against l3superblock60, the canonical error is just 10% of the overall average of
canonical error and the l3superblock60 error is 20% of that overall average.
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(a) For random data in range [−1,1]

(b) For random data in range [0,1]

Legend for Figure 4.3: Black hourglasses:
Pairwise. Red dashed line: autol3superblock.
Dark blue solid line: l3superblock60. Light
green point-down triangle: autoblock. Light
blue squares: block60.

Fig. 4.3. Ratio of average absolute errors and small problems. Color is available only in the
online version.

4.2.1. Results as a percentage of worst-case error bound. It is well known
that the theoretical worst-case error bound is extremely loose and almost never
achieved for long vectors. Our statistical studies agree strongly with this common
wisdom, as shown in Figure 4.4, where we plot the worst error achieved over 10,000
randomly generated vector pairs for each problem size. As expected, mixed-sign data
shows lower actual error, and the percentage of the worst-case error goes down strongly
with vector length. What may be less well known is just how small the actual error
is, at least on this type of data: we see that, even for short vectors of same-sign data
(the worst case for error), the worst error ever achieved over 10,000 trials was less
than 3% of the theoretical worst-case error bound and that for long vectors this drops
off to a paltry 0.35% (which is nonetheless more than two orders of magnitude greater
than the percentage encountered for long-vector mixed-sign data).

Essentially this is because, at a high enough condition number for a given N , the
interim sum of the dot product of our randomly generated vectors tends to remain
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(a) For random data in range [−1,1]

(b) For random data in range [0,1]

Fig. 4.4. Canonical: worst actual error vs. upper bound.

relatively close to zero and thus does not get large enough to create significant amounts
of alignment error. We emphasize that this is a feature of our vector generation, since
it is easy to create pairs of vectors whose dot product will have an arbitrarily high
condition number and absolute error on par with a dot product with a condition
number of 1 (e.g., imagine a product producing all positive numbers for the first half
of the product and all negative for the rest). However, our randomized method is
extremely unlikely to produce such cases.

One seemingly counterintuitive result that we can observe from these figures is
that the lower the condition number, the larger the absolute error. This is because
low condition numbers are associated with low relative error, and here we are charting
absolute error. It is not a contradiction to have both. Upon reflection it will make sense
that absolute error will be higher for low condition numbers, because a low condition
number implies |X|T · |Y| ≈ |XT ·Y|, and, for randomly generated data, this implies a
growing interim sum and more opportunity for alignment error. On the other hand, for
our randomly generated mixed-sign data the interim sum is equally likely to increase
or decrease with each add, reducing the opportunity for the buildup of alignment error.
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5. Summary and conclusions. In summary, we have presented a survey of
several of the most important known dot products along with their error proper-
ties (section 2), and we showed that the lower-order error achieved by postload
blocking is not overly sensitive to block size (section 2.2.1), so a relatively small
selection of hand optimized block sizes can accommodate an extremely wide range
of vector sizes. Further, we have presented a new class of dot product which sub-
sumes these known algorithms, including a modification which is suitable for high
performance GEMM (section 3). Finally, in section 4 we demonstrated that despite
the very large difference between the theoretical worst-case bounds and the errors
observed in practice, which make the worst-case bounds of the algorithms extremely
poor estimates of actual error, the worst-case bounds do provide a fairly reliable guide
to sorting out which algorithms will provide less error in practice.

Our main conclusion is twofold. The first is that, contrary to some thought, algo-
rithms with lower worst-case error bounds behave noticeably better in practice. The
second is that, with the strategies we have outlined, using such algorithms should be
possible with little to no performance loss in high performance libraries such as AT-
LAS. As solvable problem size continues to rise, we believe it will become increasingly
important that such libraries do so.
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