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SUMMARY

Block (including s-step) iterative methods for (non)symmetric linear systems have been studied and
implemented in the past. In this article we present a (combined) block s-step Krylov iterative method for
nonsymmetric linear systems. We then consider the problem of applying any block iterative method to
solve a linear system with one right-hand side using many linearly independent initial residual vectors.
We present a new algorithm which combines the many solutions obtained (by any block iterative method)
into a single solution to the linear system. This approach of using block methods in order to increase the
parallelism of Krylov methods is very useful in parallel systems. We implemented the new method on a
parallel computer and we ran tests to validate the accuracy and the performance of the proposed methods.
It is expected that the block s-step methods performance will scale well on other parallel systems because
of their efficient use of memory hierarchies and their reduction of the number of global communication
operations over the standard methods. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Several authors have studied the block methods for solving linear systems (see, for example, [1–6]
and references therein). In general, the block methods are used to solve linear systems with a
single coefficients matrix and a number of right-hand sides. This number is called the blocksize
of the method. However, these block methods can also be used in solving a linear system with
a single right-hand side if a number of linearly independent initial residual vectors are provided.
The residual vectors are used to compute simultaneously direction vectors that are orthonormalized
(e.g. via modified Gram–Schmidt (MGS)). These direction vectors are then used to advance the
solutions and compute the new residual vectors. At the end all the solutions are combined to obtain
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a single solution. This approach was studied in the past for symmetric and positive-definite linear
systems in [4].

The s-step Krylov methods for solving nonsymmetric linear systems with a single right-hand
side were proposed and studied in the past [7, 8]. These methods exhibit better parallel proper-
ties than the standard methods. These methods form, at each iteration, s independent direction
vectors using repeated matrix–vector products of the coefficient matrix with a single residual
vector [7]. Then the solution is advanced simultaneously using the s direction vectors. The orthog-
onal s-Step GCR/Orthomin was introduced in [8]. In the Orthogonal s-Step GCR/Orthomin
(OSGCR(s)/OSOmin(s,k)) (where s, k are positive integers, [8]), MGS is used to orthonormalize
the direction vectors within each block. The convergence study of the s-step methods can be found
in [7, 8].

Here, we attempt to enhance further the parallel properties of the s-step method by proposing
block s-step methods. At first, a new block OSGCR/OSOmin algorithm for the solution of nonsym-
metric linear systems with multiple right-hand sides is obtained by turning the OSGCR/OSOmin
into a block algorithm. Then we use many initial guesses and combine the final solution approx-
imations into a single solution. We also propose an entirely new method that can be used to
optimally combine the many solutions of a block method with many initial guesses into a single
solution.

The new block OSGCR/OSOmin is expected to exhibit similar convergence properties in
reference to (the class of) the matrix of coefficients as in the s-step methods, assuming that
the initial residual vectors are linearly independent. By varying the parameters k, s in the
OSGCR(s)/OSOMin(s,k) method one obtains methods mathematically equivalent to other well-
known Krylov methods (e.g. OSOmin(1,k) is equivalent to Omin(k) (or Orthomin(k)), OSGCR(s)
is equivalent to Odir(s) and GMRES(s) (see [7, 9] and references therein). Thus, we only test
the block OSOmin method for various k, s and we expect these comparisons to hold for other
well-known methods.

Finally, we present a parallel implementation of our algorithms on a model problem arising
in the discretization of elliptic partial differential equations using a parallel preconditioning to
accelerate the convergence. We present runs on a parallel computer to validate the convergence
and performance of our algorithms.

Notations: (1) The norms used are the 2-norms and the associated inner products throughout the
article unless otherwise stated. (2) We use English upper case letters to denote matrices, English
or Greek lower case letters to denote scalars and English letters with a bar to denote vectors.

The article follows the following structure. In Section 2, a block s-step method is presented and
studied. In Section 3, a new solution averaging method for combining several solutions to a linear
system into a single solution is proposed and studied. In Sections 4 and 5, a partial differential
equation problem discretization that generates a large sparse matrix and a parallel preconditioner
are described. In Section 6, implementation and test results are presented. In Section 7, we draw
conclusions.

2. A BLOCK S-STEP ITERATIVE METHOD FOR NONSYMMETRIC LINEAR SYSTEMS

We first review the OSGCR/OSOMIN methods [7]. Then we present the block versions of the
methods and we obtain their complexities.
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BLOCK S-STEP KRYLOV ITERATIVE METHODS 5

First, let us consider a linear system with a single right-hand side: Ax̄= f̄ . Let us consider the
OSGCR and OSOmin are applied to a linear system with a single right-hand side. For positive
integers i,k,s, we denote by ji =1 for OSGCR(s) and ji =max(1, i−k+1) for OSOmin(s,k) the
index parameters used in updating the direction vectors [7, 8, 10]. At iteration i , let r̄i denote the
residual error vector. At iteration i , the method generates s direction vectors, which are denoted
by the matrix Pi =[ p̄1i , . . . , p̄si ]. First, APi is obtained from the vectors [Ar̄i , A2r̄i , . . . , Asr̄i ], by
simultaneously ATA -orthogonalizing them against the preceding blocks of direction vectors and
then orthogonalizing them among themselves. Then the direction vectors Pi are formed using the
same linear combinations (as in APi ) starting with the vectors [r̄i , Ar̄i , . . . , As−1r̄i ]. The norm
of the residual ‖r̄i+1‖2 is minimized simultaneously in all s new direction vectors in order to
obtain new solution approximation x̄i+1. All orthogonalizations apply the Modified Gram–Schmidt
algorithm (MGS) [8].

We next present the block OSGCR(s)/OSOmin(s,k) (BOSGCR(s,b)/BOSOmin(s,b,k)), where
b is the blocksize. The methods (OSGCR(s)/OSOmin(s,k)) have been introduced and analyzed
in the past ([7, 8] and references therein). OSGCR is a full orthogonalization method and it is
implemented as a restarted method and OSOmin(s,k) is a truncated method. These methods are the
s-step extensions of GCR (which is a full orthogonalization and it is implemented as a restarted
method) and Omin(k) (or Orthomin(k)) (which is a truncated method) ([9, 10] and references
therein).

The block method to be derived is either due to b right-hand sides or due to b (linearly
independent) initial residuals. The algorithm is a combination of block and s-step iterative method.
For b=1, the methods are the s-step methods.

Let us assume that we are to solve a single linear system with coefficient matrix A and b
right-hand sides. We denote the b right-hand sides by the block vector (which is a matrix of size
n×b):

F=[ f̄ (1), f̄ (2), . . . , f̄ (b)] (1)

Similarly, we denote the solution i th iterate by

Xi =[x̄i (1), x̄i (2), . . . , x̄i (b)] (2)

and the residual i th iterate by

Ri =[r̄ (1)
i , r̄ (2)

i , . . . , r̄ (b)
i ] (3)

If we consider a single right-hand side then, we can write

Ri =F−AXi = f̄ ēT−AXi (4)

where ēT=[1,1, . . . ,1] is a unit vector of size b.
The following notation facilitates the description of the algorithm. We omit (in the notation) the

iteration subscripts that appear in the algorithm. The matrices F (right-hand sides), X (solution
vectors), R (residual vectors), as described above are of dimensions n×b.The matrices P (direction
vectors), AP (matrix times direction vectors), Q, S (are used in the orthonormalization of AP
and similar transformations applied to P , respectively) are of dimension n×sb. And U is an
upper triangular matrix of dimension sb×sb. The matrix of steplengths G is of dimension sb×b.
We denote by ji the lowest index of preceding directions vectors in the orthogonalization step
of the algorithm. Thus, for BOSGCR(s,b): ji =1 and for BOSOmin(s,b,k): ji =max(1, i−k+1).
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This means that BOSGCR(s,b) stores all the preceding direction vectors, where as BOSOmin(s,b,k)
stores only the k preceding direction vectors. Thus, BOSGCR(s,b) is a full orthogonalization and it
is implemented as a restarted method whereas BOSOmin(s,b,k) is a truncated method. Following
the literature [7, 8, 10] we formulate both BOSGCR(s,b) and BOSOmin(s,b,k) in a single algorithm.
Note that if the b right-hand sides are distinct then f̄i �= f̄ j , for i �= j ; else for a single right-hand
side f̄i = f̄ , for i=1, . . . ,b. We denote by � the error tolerance.

Algorithm 1 BOSGCR(s,b)/BOSOmin(s,b,k)
Initialization
Compute R1=F−AX1 and set Q0= S0=0.
Iterations
For i=1,2, . . . until ‖Ri‖2<� do

1. Compute Pi =[Ri , ARi , . . . , As−1Ri ]
and APi =[ARi , A2Ri , . . . , As Ri ]

2. If (i>1) then
APi := APi −∑i−1

j= ji
Q j (QT

j APi ) (orthogonalize APi against Q ji , . . . ,Qi−1)

Pi := Pi −∑i−1
j= ji

S j (QT
j APi ) (update Pi )

EndIf
3. Compute QR-decomposition (via MGS) of APi and obtain Si

APi =QiUi
Pi = SiUi

4. Compute the steplengths/residuals/solutions
Gi =QT

i Ri
Ri+1= Ri −QiGi
Xi+1= Xi +SiGi

EndFor

We note that (1) BOSGCR(s,b) is the same as BOSOMIN(s,b,0); (2) for b=1 the
BOSGCR/BOSOmin algorithms are identical to OSGCR/OSOmin.

We next present the storage and computational work for a single iteration (serial and parallel
complexities) of Algorithm 1 in Tables I and II. Storage includes the matrix A and the matrices:

[x̄i (1), x̄i (2), . . . , x̄i (b)], [r̄i (1), r̄i (2), . . . , r̄i (b)], {Pj } j=(i−1)
j= ji

, {APj } j=(i−1)
j= ji

We only count vector operations on vectors of dimension (of the linear system) n. We use the
following notation:

• Ops (Operations on vectors of dimension n, ‘+’ or ‘*’)
• Dpr (Dot products)
• Mv (Matrix times vectors)
• Lc (Linear combinations)
• Stg (Storage requirements for vectors besides the Matrix A).

For i�k−1, the BOSOMIN has same complexity and storage as BOSGCR.
We next obtain the vector operation for each iteration of Algorithm 1.
For Step 1: sb matrix times vectors are required.

Copyright q 2009 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2010; 17:3–15
DOI: 10.1002/nla



BLOCK S-STEP KRYLOV ITERATIVE METHODS 7

For Step 2: (i)Dpr (QT
j APi ) is a matrix–matrix multiply of matrix dimensions (sb×n)×(n×sb).

So there are (sb)2 Dpr or 2(sb)2n Ops. For BOSGCR, we have 2n
∑i−1

j=1 (sb)2=2n(i−1)(sb)2

Ops. For BOSOMIN(s,b,k), after the first initial (k-1) iterations for which the complexity equals
BOSGCR, we have 2n

∑i−1
j=i−k (sb)2=2nk(sb)2 Ops.

(ii) The Lc for APi have the same complexity as Dpr.
(iii) For Pi , we use the same Dpr but new Lc are computed, so the complexity is same as Lc

of APi .
So for BOSGCR, the complexity for step 2 is 6n(i−1)(sb)2 Ops. For BOSOMIN with k�i ,

the complexity is 6nk(sb)2 Ops.
For Step 3: This is MGS. The (sb)×(sb) U matrix is upper triangular matrix consisting of

entries that are dot products. To compute the nonzero entries of U, the complexity is n(sb)2/2 Ops.
We can compute Q by Lc: Q=(AP)U−1 and this is a matrix–matrix multiply with dimensions
(n×sb)×(sb×sb). Using the nonzero entries of U−1, so the Lc cost is n(sb)2/2 Ops. The
computation of S is similar with Q, so the Lc cost is n(sb)2/2 Ops. The total complexities for
step 3 are 3n(sb)2/2 Ops.

For Step 4: (i) �i =QT
i Ri are Dpr and it is a matrix–matrix multiply with dimensions (sb×n)×

(n×b). So total cost is 2sb2n Ops.
(ii) Ri+1 is Lc and it is matrix–matrix multiply with dimension (n×sb)×(sb×b) so the cost

is 2sb2n.
(iii) Xi+1 is similar to Ri+1 and its cost is 2sb2n Ops.
So the total complexities for Step 4 is 6nsb2 Ops.
Counting (the serial) complexities in the steps of the Algorithm 1 yields the totals in Table I.
Parallel processing complexities are obtained from Table I for Ops divided by p (the number

of processors used to run the algorithm in parallel). In addition, we must also consider the local
and global (parallel processor system) communication operations. Table II contains the parallel
complexity.

Remark
The parameters s and b affect the parallel performance of the methods. The s-step methods were
shown to be well-suited to achieve high performance for parallel computers with architecture
based on (cache or local memory) memory hierarchy [8]. The combination of block and s-step
methods is expected to lead to high performance on the massively parallel (including multicore)
computers due to the following properties: (a) They further enhance the efficient use of the memory
hierarchy over the s-step methods; (b) They further reduce the number of global communication
operations (due to dot products), because several dot products are performed simultaneously.
Properties (a) and (b) are exploited in parallel programming by using BLAS-2 and BLAS-3

Table I. Number of Ops for the i th iteration of BOSGCR and BOSOmin.

Ops OSGCR OSOmin

Stg 2n(i+1)sb 2n(k+1)sb
Dpr (2i+1/2)n(sb)2+2nsb2 (2k+1/2)n(sb)2+2nsb2

Mv nsb nsb
Lc (4i+1)n(sb)2+4nsb2 (4k+1)n(sb)2+4nsb2

Copyright q 2009 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2010; 17:3–15
DOI: 10.1002/nla



8 A. T. CHRONOPOULOS AND A. B. KUCHEROV

Table II. Parallel complexities of BOSGCR and BOSOmin.

Ops OSGCR OSOmin

Stg 2(i+1)sb∗ n
p 2(k+1)sb∗ n

p

Dpr ((2i+1/2)(sb)2+2sb2)∗ n
p ((2k+1/2)(sb)2+2sb2)∗ n

p
Mv sb∗ n

p sb∗ n
p

Lc ((4i+1)(sb)2+4sb2)∗ n
p ((4k+1)(sb)2+4sb2)∗ n

p

Local Comm 6sbn2/3 6sbn2/3

Global Comm (sb)2/2+(i+1/2)sb+1 (sb)2/2+(k+1/2)sb+1

[11] and by using a special implementation of the multiplication of a sparse matrix by many
vectors [12].

We next discuss the main convergence properties of of (BOSGCR) BOSOmin(s,k). The conver-
gence of (OSGCR) OSOmin(s,k) (with 1�s,k) has been studied [7, 8]. In analogy to these results
we give the following theorem which describes the convergence of (BOSGCR) BOSOmin(s,k).

Theorem 1
Let 1�s and assume that the degree of the minimal polynomial of all residual vectors
[r̄i 1, r̄i 2, . . . , r̄i b] is greater than s. Assume that for each iteration i=1, . . . (in Algorithm 1) (a
definiteness condition) all diagonal elements of Ri

TA j Ri ) are positive for some j (with 1� j�s).
Then (BOSGCR) BOSOmin(s,k) converge to the solution.

Proof
It is similar to the case s=1 which can be found in [8]. �

The condition Ri
TA j Ri �=0, for some j (with 1� j�s), provides that one of the steplengths

Gi
j is not zero and thus progress toward the solution is made at the i th iteration of Algorithm 1.

3. USING BLOCK ITERATIVE METHODS TO SOLVE LINEAR SYSTEMS
WITH A SINGLE RIGHT-HAND SIDE

In this section, we discuss how a linear system with a single right-hand side could be solved
using block iterative methods. In parallel processing this approach has the advantage that it uses
better parallel properties of the block methods to provide an overall faster solution of the linear
system on parallel computers. This approach was studied for symmetric and positive-definite linear
systems in [4]. We provide a new method to combine the block approximate solution vectors into
a single approximate solution vector of the linear system. Although we implemented this method
in conjunction with Algorithm 1, it can be used with any other block iterative methods.

More generally, in order to apply some block iterative method, in which b vectors are iterated,
to solving a single right-hand side system

Ax̄= f̄ (5)

Copyright q 2009 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2010; 17:3–15
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BLOCK S-STEP KRYLOV ITERATIVE METHODS 9

one must have b linearly independent initial residual vectors available. Then the output of the
block method iterations produces b approximate solutions. It is also possible that on input we have
only one initial guess and we want to get only one solution (approximation) at the end. If we use
a preconditioned method, in which a preconditioning matrix depends upon some parameter and it
is also easy to construct, then it would be possible to obtain b initial guesses, choosing b different
parameter values. For an application of this approach, see the end of Section 5.

In order to apply BOSGCR/BOSOmin to the case of a single right-hand side we must simply
add the following step to Algorithm 1: 5. Combine the b solutions Xi+1 to obtain a single solution
ˆ̄xi+1.
We now derive a new solution averaging algorithm that extracts (optimally) a single approximate

solution from b approximate solutions. Let

Xi = [x̄ (1)
i , x̄ (2)

i , . . . , x̄ (b)
i ] (6)

Ri = [r̄ (1)
i , r̄ (2)

i , . . . , r̄ (b)
i ] (7)

be the block approximate solutions and block residual vectors, respectively. For brevity, we shall
omit the index i in the rest of this section.

Theorem 2
Let R be a matrix of full-rank. The optimal linear combination of the b solutions X to obtain a
single approximate solution ˆ̄x is given by

ˆ̄x= 1

ēT�̄
X �̄ (8)

where

�̄=c(RTR)−1ē, c �=0 (9)

for any nonzero scalar c and ēT=[1,1, . . . ,1] a unit vector of size b.

Proof
Since the right-hand side is the same we can write

R=F−AX = f̄ ēT−AX (10)

where ēT=[1,1, . . . ,1] is a unit vector of size b. Multiplying the last equation by some
b-dimensional vector �̄ (to be determined) and scaling both sides by the scalar ēT�̄ one can obtain

1

ēT�̄
R�̄= f̄ −A

(
1

ēT�̄
X �̄

)
(11)

So, the residual ˆ̄r = f̄ −A ˆ̄x of the approximate solution vector

ˆ̄x= 1

ēT�̄
X �̄ (12)

equals

ˆ̄r = 1

ēT�̄
R�̄ (13)

Copyright q 2009 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2010; 17:3–15
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Now we are ready to formulate an optimization problem for a solution averaging vector �̄

Find �̄=argmin�̄‖ˆ̄r‖2 (14)

By direct computations we get
∥∥∥∥ 1

ēT�̄
R�̄

∥∥∥∥
2

= 1

(ēT�̄)2
�̄
T
RTR�̄ (15)

Then by using the Cauchy–Schwarz inequality

(ēT�̄)2�(�̄
T
(RTR)�̄)(ēT(RTR)−1ē) (16)

we obtain ∥∥∥∥ 1

ēT�̄
R�̄

∥∥∥∥
2

� �̄
T
RTR�̄

(�̄
T
RTR�̄)(ēT(RTR)−1ē)

(17)

It is seen now that a minimal value of ‖ˆ̄r‖2 equals

1

ēT(RTR)−1ē
(18)

which is attainable if and only if

�̄=c(RTR)−1ē, c �=0 (19)

for any nonzero scalar c. We choose c=1 for simplicity. The equation RTR�̄= ē should be solved
with a special care, since usually columns of matrix R may be nearly linearly dependent vectors
and thus RTR may have a large condition number. QR-decomposition with column pivoting is an
suitable tool for factorizing the matrix RTR. MGS with column pivoting could be used to compute
(the QR-decomposition) R=QRW , where QT

RQR = Ib×b (the identity matrix) and W an upper
triangular b×b-matrix. Then we find �̄ from the equation WTW �̄= ē. �

Now using Theorem 2, we obtain a solution averaging algorithm as follows.

Algorithm 2 (solution averaging for block iterative methods)
For b initial solution guesses X1=[x̄ (1), . . . , x̄ (b)]T compute
residuals R=[r̄ (1), . . . , r̄ (b)]T= f̄ ēT−AX
where: ē=[1, . . . ,1]T
Iterate with the block iterative algorithm and compute R and X
Compute the QR-decomposition R=QRW
(by applying MGS with column pivoting)
Back-Solve two b×b linear systems WT�̄= ē, W �̄= �̄,
Compute:
an average solution: ˆ̄x= 1

ēT�̄
X �̄

an average residual: ˆ̄r = 1
ēT�̄

R�̄

an estimate for the average residual:
‖ˆ̄r‖= 1√

(ēT�̄)

Copyright q 2009 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2010; 17:3–15
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We note that the block iterative algorithm, in Algorithm 2, could be BOSGCR/BOSOmin (i.e.
Algorithm 1) or any other block iterative algorithm.

4. A LARGE SPARSE TEST PROBLEM

We consider the discretization of an elliptic partial differential equation boundary value problem
on a cubic region by the method of finite differences. This is a standard elliptic problem and the
right-hand side function is constructed so that the analytic solution is known

�u+�(xux + yuy+zuz)= f (x, y, z) (20)

If this problem is discretized using the centered difference scheme on a uniform nx ×ny×nz grid
(where nx =ny =nz =nh) with mesh size h=1/(nh+1), we obtain a linear system of equations
[Aūh = f̄h] of size n=n3h . If we use natural ordering of the grid points in the x , y, z directions,
then the matrix A is a block five diagonal matrix of the form

A=[C̃k, D̃k, B̃k], 1�k�nh (21)

where C̃k, D̃k, B̃k are matrices of size n2h ; and C̃1= B̃nh =0. The matrices C̃k, B̃k are diagonal
matrices and D̃k are five diagonal matrices. For fixed k, each row of submatrices [C̃k, D̃k, B̃k]
contains coefficients of equations for grid points in 1 horizontal plane of the 3D space domain
(i.e. fixed z=k∗h, x, y vary). Thus, the matrix has nonzeros only on seven diagonals. The matrix
is large. For example, if nh =100, then the dimension of A is n=106.

As an example one could consider solving b=4 linear systems using the block methods. For
m=1,2, . . . ,b, we could choose the following exact (function) solutions:

u[2m−1]
h = w(x, y, z)sin(�mxyz), m=1,2 (22)

u[2m]
h = w(x, y, z)cos(�mxyz), m=1,2 (23)

where

w(x, y, z)= x(1−x)y(1− y)z(1−z)exp(xyz) (24)

and x, y, z are taken at grid points. The right-hand sides f̄ (m)
h could be obtained by matrix–vector

products Aū(m)
h , m=1,2,3,4.

The sparse nonsymmetric matrix A is a seven diagonal matrix due to the 7-point discretization
operator. We use the following notations (shown in the subscripts of the matrix coefficients): o
(for origin), e/w (for east/west), n/s (for north/south) and t/b (for top/bottom). Thus, āo is the
main diagonal, āb, ās, āw are the (nonzero) subdiagonals and āt , ān, āe are the are the (nonzero)
superdiagonals of A. We note the block structure of matrix introduces zero entries on the super/sub-
diagonals at a small number of index locations j (where: 1� j�n3h). These locations correspond
to the problem discretization at the domain boundaries. The main diagonal consists of nonzeros
for this model problem, but the matrix may not be diagonally dominant. For simplicity of notation
we assume that the index range of the diagonals is: −n2h+1� j�n3h+n2h . Then for 1� j�n3h , the

Copyright q 2009 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2010; 17:3–15
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12 A. T. CHRONOPOULOS AND A. B. KUCHEROV

matrix times vector product is given by:

Aȳ( j) = ās( j)ȳ( j−nh)+ āw( j)ȳ( j−1)+ āo( j)ȳ( j)

+āe( j)ȳ( j+1)+ ān( j)ȳ( j+nh)+ āb( j)ȳ( j−n2h)+ āt ȳ( j+n2h) (25)

where

āb( j) = 0, −n2h+1� j�0 (26)

āt ( j) = 0, n3h+1� j�n3h+n2h (27)

ās( j) = 0, −nh+1� j�0, āw( j)=0, j =0 (28)

āe( j) = 0, j =n3h+1, ān( j)=0, n3h−nh+1� j�n3h (29)

5. A PARALLEL PRECONDITIONING

We consider right preconditioning because it minimizes the norm of the residual error. Left
preconditioning is similar (see [13, 14] ), but it minimizes the norm of the preconditioned residuals.
Let K−1 be the preconditioning matrix. The transformed system is

(AK−1)(K x̄)= f̄ (30)

which is then solved by the iterative process. Either K is a close approximation to the A, i.e.

AK−1≈ I (31)

or AK−1 has clustered eigenvalues. The preconditioner K must be easily invertible, so that the
linear system K ȳ= z̄ is easy to solve. Following [8], in combining right preconditioning with
BOSGCR/BOSOmin, we only need to modify Step 1 of Algorithm 1, as follows:

1. Compute Pi =[K−1Ri ,K−1(AK−1)Ri , . . . ,K−1(AK−1)s−1Ri ],
APi =[AK−1Ri , (AK−1)2Ri , . . . , (AK−1)s Ri ].

In analogy to [15], we will consider a parallel incomplete decomposition preconditioner based on
a domain overlapping. Let p be the number of processors. We split the domain into p overlapping
subdomains. First, we split a computational domain along the z-axis into p subdomains, each
of them contains (nh/p+2) xy-planes. So, each two neighbor subdomains share 2 overlapped
xy-planes. We note that the entries of A corresponding to one xy-plane are in a single row
block segment: [C̃k, D̃k, B̃k]. Second, we consider a restriction of the original operator on each
subdomain. The loss of connection between subdomains is partially compensated for by introducing
overlapping planes.

Third, on each subdomain we construct an incomplete LU decomposition (ILU) preconditioner
K as follows K =K�(�)= L̄ D̄Ū where L̄, Ū are unit lower/upper triangular and D are diagonal
matrices, respectively, and 0���1. In our case we chose L and U with the same sparsity pattern
as A. In this case, one can easily see that only the diagonal of the matrix is modified by the
elimination.
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Applying the ILU(0) algorithm only the main diagonal entries of A change. Let ˜̄ao( j) be the
new main diagonal entries. Then

˜̄ao( j)=ao( j)− āw( j)∗ āe( j−1)
˜̄ao( j−1)

− ās( j)∗ ān( j−nh)
˜̄ao( j−nh)

− āb( j)∗ āt ( j−nh2)
˜̄ao( j−nh2)

We show the sparsity patterns of these matrices by their action on a vector v in the matrix times
vector product.

D̄v̄( j) = ˜̄ao( j)v( j) (32)

L̄ v̄( j) = v̄( j)+ āw( j)v̄( j−1)+ ās( j)v̄( j−nh)+ āb( j)v̄( j−n2h) (33)

Ū v̄( j) = v̄( j)+ 1
˜̄ao( j)

∗(āe( j)v̄( j+1)+ ān( j)v̄( j+nh)+ āt ( j)v̄( j+n2h)) (34)

−n2h+1� j�n3h+n2h (35)

If we set d̄( j)=1/ ˜̄ao( j), then the ILU (ILU(�)) with 0���1 computes d̄( j) such that:

1/d̄( j) = āo( j)− āw( j)d( j−1)(āe( j−1)+�ān( j−1)+�āt ( j−1))

−ās( j)d̄( j−nh)(�āe( j−nh)+ ān( j−nh)+�āt ( j−nh))

−āb( j)d̄( j−n2h)(�āe( j−n2h)+�ān( j−n2h)+ āt ( j−n2h)) (36)

with j =−n2h+1, . . . ,n3h+n2h .
We use the parallel I LU (�) preconditioner described above. We take �=1 for the iteration

process (which provides the fastest convergence), and use other values 0��<1 to generate initial
multiple guesses. We compute b initial guesses as follows

x̄ (m)
0 =K−1(�m) f̄ , �m = b−m

b
, m=1,2, . . . ,b (37)

6. IMPLEMENTATION AND TEST RESULTS

We ran our tests on a IBM SP at the University of California, San-Diego (SDSC), U.S.A. The IBM
SP at SDSC is a Power-3 processor clustered SMP system. Each processor has peak performance
of 1.5 GFLOPS. We used MPI and Fortran and BLAS 1–3 for our implementation [11].

We see that the algorithms consist of the following operations: (i) Sparse Matrix×vector; (ii)
Inner Products; (iii) Linear Combinations; (iv) MGS. Our implementation is outlined as follows: (1)
Map A and vectors to a logical linear array of PEs (processors); (2) on each PE use BLAS-2 (e.g.
SDOT, SGER for (ii)–(iv)); (3) use ALLREDUCE for global communication (e.g. for (ii)); (4)
use local PE communication (e.g. for (i)). For our experiments nh =64 so the size of a matrix is
n=n3h =262,144.

Convergence tests: The results are in Table III. We ran Algorithm 1 for b=1 and b=4 with
the solution averaging method (Algorithm 2), for convergence. We report the number of iterations
(Iter’s). The Maximum Relative Residual Error in 2-norm (MRRES1 and MRRES4 for b=1 and
b=4, respectively). The Maximum True Error in ∞-norm (MError1 and MError4 for b=1 and
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Table III. BOSGCR(s,b,k) and BOSOMin(s,b,k), for b=1, b=4.

Method (s,k) Iter1 Iter4 MError1 MRRES1 MError4 MRRES4

BOSGCR (4,0) 15 12 6.9E−13 4.88E−11 3.3E−12 3.20E−7
(8,0) 8 5 3.0E−13 1.63E−11 4.3E−11 1.58E−7

BOSOmin (2,3) 30 21 1.2E−12 6.08E−11 9.8E−12 8.04E−7
(4,1) 15 10 1.0E−12 4.60E−11 1.2E−10 3.31E−7
(8,1) 7 4 8.7E−13 6.49E−11 7.9E−10 4.62E−7

Table IV. (s,b,k)=(8,4,0); execution times (seconds).

Method p Av Prv DotPr LinComb LocCom GlobCom Tp/Tcom

BOSGCR 64 1.01 1.90 3.45 4.21 1.92 2.66 17.11/4.58
8 2.41 2.87 4.23 23.90 1.79 1.33 49.28/3.13
1 15.45 20.52 20.16 182.68 0.00 0.00 338.50/0.00

Table V. (s,b,k)=(8,4,1); execution times (seconds).

Method p Av Prv DotPr LinComb LocCom GlobCom Tp/Tcom

BOSOMIN 64 0.96 1.64 8.58 7.83 1.73 3.87 30.37/5.61
8 2.78 3.25 24.62 54.81 2.03 2.46 123.78/4.49
1 13.13 17.40 101.39 298.74 0.00 0.00 600.50/0.00

b=4, respectively). We use (MRRES=)Maxbm=1(‖rmi ‖2/‖rm0 ‖2)<�, as the stopping criterion. Iter
is the total number of iterations. Our aim in this test was to obtain Maximum True Error of order
10−10. We used a tolerance �=10−10 at first in all the runs. Then we observed that we can use a
tolerance �=10−6 in the Algorithms 2, with b=4 (thus with fewer iterations) and obtain Maximum
True Error less than 10−10.

Performance tests: The results are in Tables IV and V. We ran the algorithms on p=1,8,64
PEs and measured the times for: Matrix times vector product (Av), Preconditioning step (Prv),
Dotproducts (DotPr), Linear Combinations (LinComb), Local Communication (LocCom), Global
Communication (GlobCom), Total Communication Time (Tcom), Parallel Execution Time (Tp).

7. CONCLUSIONS

We present and study a block s-step Krylov iterative method for nonsymmetric linear systems.
Such methods have enhanced parallel properties over the standard methods. We then consider
applying block iterative methods to solve a linear system with a single right-hand side. We derive a
new algorithm which combines the multiple solutions obtained by any block method into a single
solution. We study the convergence and the parallel performance of the new methods. We have
implemented our algorithms with a parallel preconditioning to approximate the solution of a large
sparse linear system. Our results show that methods are convergent and they are scalable.
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