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Abstract

Kim, S.K. and A.T. Chronopoulos, An efficient nonsymmetric Lanczos method on parallel vector computers,
Journal of Computational and Applied Mathematics «2 (1992) 357-374.

In this paper, we introduce the s-step biorthogonal Lanczos method for finding a few eigenvalaes of a iarge
sparse nonsymmetric matrix, and we prove that the s-step method generates reduction matrices which are
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the s-step method are less stringent than the standard one. One iteration of the s-stzp biorthogonal Lanczos
algorithm cer{esponds to s iterations of the standard biorthogonal Lanczos algorithm, and the s-step method
has impioved daia locatity and mimmized global communication and superior parallel properiies {o the
standard one on parallel machines {Chronopoulos and Gear (1989) and Kim and Chronopoulos {1991)). We
implement the s-step biorthogonal Lanczos method on the CRAY-2 super computer and discuss the

breakdown conditions and demonstrate the superior performance of the s-step method to the standard one.

Keywords: Biorthogonal; Lanczos; s-step; breakdown conditions reduction; paraliel.

1. Iniroduction

In many cases, scientific and engineering problems recuire the computation of a small
number of eigenvalues of large sparse nonsymmetric matrices. Earlier work on Krylov methods
for nonsymmetric problems focused on variants of the Arnoldi method. The Arnoldi algorithm
generates a single set of vectors and forces their orthogonality by explicitly orthogonalizing each
new vector generated to all preceding Arnoldi vectors {10 12]. One difficulty with the Arnoldi

nradiera ic that it alliayoe Aanly tha wvarnrifatinn of tha atoanuactree Banha sarncidorad tha
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extension of the one-sided Arnoldi procedure to the two-sided Arnoldi procedure [9]. That

extension generates two orthogonal sets of vectors, essentially independently.
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The biorthogonal Lanczos method generates two sets of vectors that are biorthogonal, and a
sequence of nonsymmetric but tridiagonal Lanczos matrices. We will refer to these tridiagonal
matrices as Lanczos reduction matrices. The Lanczos procedure has modest storage require-
ments and therefore can be used on very large matrices. In such procedures the eigenvalue and
eigenvector computations are performed separately. The biorthogonal Lanczos method was
neglected for a long time because it faces serious breakdown problems. The problem of
building the Lanczos vectors in the nonsymmetric case was addressed in [8], where a lookahead
Lanczos algorithm which handles possible breakdown was suggested.

The blorthogenal Lanczos method has two synchro nization points due to inner pmduct

eka
C(Jﬂlp“ldliﬂl]b at Bdbli ltCl’dliUii blﬁp. I.Hlb :uuuuuwa i!ldiil .lilt'fﬂ.EUEy bUi!lC»HtlUl.l Oon a bildlcu*
orv machine. and a larnp amonnt of interorocessor commnnication overhead in a dis-
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tributed-memory parallel machme. In this paper we introduce the s-step biorthogonal Lanczos
method. In one iteration of an s-step method, 25 new directions are formed simultaneously
based on the vectors {g;, 4q;,..., A°7'q.), {p;, (4)p,,....(AT)*"'p} and the preceding direc-
tion veciors. This means, for exampie that the inner products (aeeded for s steps of the
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tandard method) can be pt:t formed mu;uuancuumy and ne vector upuatt:b aic lc‘pmu:u uy
inear combinations. We prove that the s-step biorthogonal Lanczos method like the lookahead
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Lanczos method mtroduced in [8] has fewcr breakdown conditions than the standard one. It
should be noted that the s-step Lanczos method is different from the block Lanczos method [5],
which is used to find multiple eigenvalues. The block Lanczos method uses a block of vectors
instead of a singie: vector in the standard Lanczos method; then the modification consists of
replacing of all the operations with single vector by operations with blocks of vectors. The
s-step Lanczos method is a version of the standard Lanczos meihod that has as few as
synchronization points as possible.

In Section 2 we review the biorthogonal Lanczos procedure and its properties. In Sections 3
and 4 we derive the s-step biorthogonal Lanczos method and prove that the s-step method has
fewer breakdown conditions than the standard one. In Section 5 we compare the numerical
implementation of the standard and s-step methods on the CRAY-2 super computer.

nuu-y

2. The biorthogonal Lanczes method

Let A be an n X n nonsymmetric matrix. There are many tridiagonal matrices similar to A

and T, is one of them, Then for some matrix 0, =(gq,,...,4,) we have
0,40, =T, (2.1
Let P,=(p,...., p,) and cplace (2.1) by two separate relations
PTQ. =1, (22)
PIAQ,=T, (23)

By equating columns on each side of AQ,=0,T, and P4 =T, PT in the natural increasing
order, we obtain the following equations. For each j <n,

AQ; = QT +rjej,

PIA=TPT +e57
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where r;, s; are residual vectors after the jth iteration. A and two initial vectors p,, ¢,
essentsally determine all the other elements of P, » Q; and T, In this method, the right space Q
is a Krylov subspace Q= span[qi, Agy,..., A" Ec,},] and the left space P; is a Krylov subspace
P,=span[p,, A'p,... (AT)‘ 'p,] and PTQ =1,

The eigenvalues of the biorthogonal Lanczos matrices 7; are called Petrov values (or Ritz
palues)y of A in Q.. For many matrices and for rpinttvp!\r q;naH J, compared to n, several of the

extreme elgenvalues of A are well approximated by the correspondmg Ritz values. The right
Ritz vector Q;y (=z) obtained from a right eigenvector y of a given T; is an approximation to
a correspondmg right eigenvector of A, and the left Ritz vector P;§ (= z) obtained from a left
eigenvector y of a given I is an approximation to a correspondmg left eigenvector of A. A
simple version of the bior mugﬁﬁai Lanczos algorithm can be formulated as follows.

Algorithm 2.1. The biorthogonal Lanczos algorithm.
g;=0, pp=0and B,=0, y,=0

Choose g, and p, with (p,, g,) =1

For j =1 until Convergence Do

(1) Compute and store Aq;, p/A

@ a; (Aq,, 2

8 iTr T Pj-1Fj-1 T Sjrj
4 B Y; """(r 5;)
(5) g, =r;/B;
_ Pisy =8,/
Endler

Note that pfd ={A"p,)" requires muitiplication by the transpose of A.
Let T, be the tridiagonal matrix at step j:

[ Yy

by a 7V,

N
i
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For each j, the nonsymmetric Lanczos matrix T, is the biorthogonal projection of A onto the
Krylov subspaces spannend by the Q; and TT is the biorthogonal projection of AT onto P,. The
coefficients B; and vy; in T; are not :m;quelv defined by step (4) of Algorithm Z.1. Q; and P are
biorthogonal w;th any chosces of ﬁ], y} which satisty equation ﬁ!y}“( It ,J One possnme
choice is §;= VE( 5 }1 and y,—-sugm 5; ;p, m Observe that the continuation of this
recursion requires that (r;, s, )#0 for any j. (r;, 5; )} = 0 causes the algorithm to break down.
That is why the bxorthogonal Lanczos method has not been widely used. This problem does not
occur in the symmetric Lanczos method.

The simplest a posteriori bound on the accuracy of a Ritz value A; is obtained from the

residual norm of the associated Ritz vectors. The residual norms of the Ritz value A; and the

....
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right Ritz vector z; can be computed by using the formula JI(A4 —A; Dzl = lkr; |l |3;1, for
i=1,...,j, where s is the last element of the ith rxght eigenvector of T,, and the resadual
norms of the Ritz value A and the left Riiz vecior Z can be compuied oy using the formuia
AT —A,Dz 0 = lls; 1 15,1, for i=1,...,j, where §; is the last element of the ith left
eigenvector of T,. These error estimates are used as stcpping criteria.

Remark 2.2. The vector operations for each iteration are 12N + 2Mv, and storage requirements
are 4N + |Ms, where Mv and Ms stand for matrix-vector product and matrix storage of A,
respectively The vectors dise-->4; and Py-.-,p; can be kept in secondary storage, because

Seo we waciiund snliasn tha omoecciosats o e baon e hha soseestadd
HWW VeCIoTs aic uuly TCQuirca wicn mic appiu.ulualh hlsvuv\-huna nave 1o oe COmpuICa.

Next we restructure the biorthogonal Lanczos algorithm. The biorthogonal Lanczos algo-
rithm has three basic types of operations: matrix-vector products, inner products and the vector
upda[es. In Algorithm 2.1 the inner products cannot be performed in paraliel, and step (2) (or
step (4)) must be completed before the rest of the computations in the same step start. lms

. P T T P nf . Anr nld Forin tha minin sromare of anol
foICes QOWbIC alTcsses Of veCions P, 4, 1y 3, A, P A WOH INC MMall MCHOory atl Cacn

Algorithm 2.3 is a varnant of Algorithm 2.1 and Algorithm
processing.
Algorithm 2.3. The restructured biorthogonal Lanczos algorithm.
q,=0, p,=0
e cein = o wmretbe f o - Y. 2o £}
ARRER fﬂ, 5‘1 WIALLR \J 123 00, U
For j = 0 vntil Convergence Do
(1) Compute and store Ar;, sf4
(2) B]?; = (rj, S])
a;. =(Ar;, 5)/(r;, 5,)
3) g, =r;/B;

P =5,/
{4) r im!‘ff_ﬂ/ﬁj ijjmaj+i4j+i
Sipr =8 A/')’x _B}p:“—aj_!_ip?;i
EndFor

The biorthogonal vectors g;, p; in Algorithm 2 3 are generated in the same way as the

gtandard hinetho 2] ¥ o Za ] Attt £ tha Aiffns fhatagraa M T
FLAREARELER AR uxunsuuf,uual Ml!hwﬂ lllhlllw wulpuiauuuany lllD ulll‘dlbilw U‘vlwﬂc&ll ﬂlgu.uuuua

2.1 and 23 is in the computation of o, I S In step (4), Ar, /B, and s A/'v! cannot bhe

replaced by Ag;., and p,MA because steps (3) and (4) are cnmputed at the same time after
step (2). Therefore we need two extra vector operations (i.¢., scalar times a vector operation),
to compute r;, 5; in step (4) of Algorithm 2.3. However, Algorithm 2.3 seems more promising
than mgoﬂmm 2.1 for parailei processing necause the two inner products required to aavance

nh foratinn ~ron ha avacatad cimsoaltonansole Al ) P At
€acn wLralion <an o execuied alulunaubuualy. ruau, Ofic l.llCluUly awccp uﬁuug,i LIIG: Ricl

required to complete each iteration allowing better management of slower memories

EpsaL.ns. L3 EIL EAEDN =% 81 30 L225-23E8°0
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memory hierarchy computer, i.c., the data locality of Algortthm 2.3 is better than that of the
standard algorithm.

In the next section we propose an s-step biorthogonal Lanczos algorithm, which executes
simuliancously in a ceriain sense s consecutive steps of Aigorithm 2.1.
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3. The s-step biorthogonal Lanczos method

I ot ue denante h‘r L the iteration numbear in the csten bhiorthoronal Lanczos method, We will
Al ML RAWEILF LW T RARW ALWERLALAWSAE FARALAAL WA A LAAN 2 »JI.\' LIERSL I.llu&\lll Al EdCELANwd R F2Y ARAWEIARILE, FY W ¥V [

denote by v and w the s-step biorthogonal Lanczos vectors instead of p and g of the standard
biorthogonal Lanczos method. Given the vectors Uk, UE,...,Uf we will use V, (each of
dimension N) to denote the matrix of {v;, v7,...,v;}. Given the vectors wj, wZ,...,w; we will
use W, (each of dimension N) to denote the matrix of {w}, wZ,...,w;}. The subspace V, is

spanned by {v;, Avi,..., A o)} so_that V, is made orthogonal to the subspaces

W, (774 W Also the eﬂhenzxr‘p W. ic enanned by [w! ATW { AT\’ lwll <n that
Wi—is Wiw22e0s ¥ spanned by n;, 4 w;,..., (4 s0 that

W, is orthogonal to vector sets Vi_s Vigsennn Vo

Let the s X s matrix Wk VLbe nonsingular. Then LU decomposition with row exchanging
can be applied to the matrix W'V, as follows:

Wlil.‘.«lt?r ll.k lb a pﬁllll
upper triangular matrix.

o

Remark 3.1. Assume that W be orthogonal to ¥ ;, for iy #i,. Then WV, can be decomposed
into L, * U, as follows:

[ (WIV,) =Ly * U, (3.1.0)
whova F o ri!nnfw;“ ‘i“ f 1 FJ :A;nn‘m; --? u?¥ and T1T — ionfﬁ ﬁ M\
(i AR ¥ CHGE Lr )y Logy ey Lapy Vg URUELW s W gseayip; alibe Lag SHSSLE R E1Zsr ey LAif).

The assumption of this remark will be proved to be true for the vector blocks {I/},...,¥,},
{(#,,...,W,} generated in the s-step biorthogonal Lanczos algorithm.

Lemma 3.2. Let T be a tmﬁagonal matrix and T, = U] TU,‘ for j =sk. Then T, is similar to the
mairix T; and T, is the foiiowing biock iridiagonal mairix:

G, E,
F, G, E,
Tk= ’
Ey s
Fy_y Gk_

where G; and E, are s X s matrices. The matrix F, is an s X s matrix whose only nonzero element is
at location (1, s).

Proof. U, is nonsingular if V! Wk is nonsingular. By Remark 3.1, U, is nonsxngufar if all U, for
i= I, ...k, are nonsmgular So T, 1s similar to the matrlx 1 Since U, = diag{l,, Uz,...,f.iki

TF L 2 “E hao tha cérnioture ac I
dllU U 101 i~ f., vuauy N, lb an §X3§ Upper 1iidll§l§ldl 'uaum, Uk nas e Same Siruciure as [

Thus the product U, 'T, U, for j = sk is a block tridiagonal matrix with lower diagonal blocks in
a special form. We will demonstrate this for the special case s =3, k = 3. The general case is
shown similarly but the description is more complicated:
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Lemma 3.3. Let T be a tridiagonal matrix and ()T =L} '"T,L, forj=sk. Then (T,)7 is similar
to the matrix T fmd T is the following block fndmganai matrix:
G, E,
F, G, E

E; 4
| F_, G, |

where G, and E; are s X s matrices. The matrix F, is an s X s matrix whose only nonzero element is
at location (1, s).

Proof. Same as the proof of Lemma 3.2. O

We will use the foi}owmg s-dimensional column notations for the matrices G,, E; in the
matrix T, and G;, E, in the matrix T,:

Gi={a}'ils Eg"'[?i]) fij=§ ces Sy

where a/ =[alV,.. "‘]T and v/ = [y, ..., ¥y,
_[a’] { ‘} fOf}*l s 8,
where &/ =[a&}, ..., f”]T and ¥/ ={$!,. ., ¥5 "

Theorem 34. Let A be an nXn nonsymmetric matrix and V, = WV Voo sV, W=
W, W,,...,W,), for n =sm, are biock biorthogonal. Then

AV, =V,T ., (3.1.1)
where T,, is the block tridiagonal of Lemma 3.2, and T,, is similar to the tridiagonal matrix T,
generated by the biorthogonal Lanczos method.
Proof. By premultiplying by L' and postmultiplying by U,;! equation (3.1.0) we obtain
L1 wWTy U-'=1.

Let PT=L ', W7 and Q =V, U;',ie., ¥V, =QU, and W] =11, L, P". Then we have
AQU, =QU,T,.

By multiplying both sides of the equations by ¥/, !, we obtain
AQ=0QU, T, U".

By multiplying both sides of the equations by ¢!, we obtain
Q- 4Q=U,T,U,".

From Lemma 3.2, U, T, U- " is a tridiagonal matrix. We can replace Q' by PT from PTQ =1,
then we obtain

PAQ =U,T,U;".
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Then U, T, U;" is the tridiagonal matrix formed by the standard biorthogonal Lanczos method.
(W

Theorem 3.5. Let A be an nXn nonsymmetric matrix and V,,={V,, V,,....V,}, W, =
{W,. W,,...,W, ), for n=sm, are block biorthogonal. Then

AW, =w,T,, (3.1.2)

where T,, is the block tridiagonal of Lemma 33, and ('}"f.,,)T is similar to the biorthogonal
tridiagonal matrix T,.

Proof. Same as the proof of Theorem 3.4. 0O

Corollary 3.6. The block tridiagonal matrices T,, (f‘k)'f, for k=1,...,m, have the same
eigenvalues as the biorthogonal Lanczos reduction matrix T;, for j = sk.

Proof. By Lemma 3.2, the matrices T, (T;)T and T, for j =sk are similar. O3

In the end of this section we prove that the matrix Wf?}c is symmetric and Tk = fk. If
k <m, then by equating column blocks in (3.1.1), (3.1.2) we obtain the following equations:

AV, =V, T, +x.eY, fork=1,....m, (3.2.1)
AW, =WT, +y.el, fork=1,...,m, 322)

where the vectors x,, y, are the residual vectors. From (3.2.1), (3.2.2) we derive the following
block equations:

AV, =V,_|E,_,+V,G, +x.e%, (3.3.1)

AW, =W,_E,_,+ WG, +y,ek, (33.2)

where ¥, =0, E,=0and W,=0, £,=0.
Equations (3.1.1_)»~(3.3.2_) motivate the derivation of an s-step biorthogonal Lanczos algo-
rithm. Let ¢ =[t;7,.... T, & =[5}7,.. ., 731" denote the parameters in defining v, w]. We

now give the defining equations of the s-step biorthogonal Lanczos method in the form of an
algorithm.

Algorithm 3.7. s-step biorthogonal Lanczos algorithm.
=0, ¥=0, [vi]=0, [#i]=0, 1<i<s
Vo=[vh avh.., 7], W= [wh, Awl,.., (A7) W]

Fer k == 1 until Convergence Do

Select [a;], [7;-,], 1<i<s, to orthogonalize V, against W, _, in (3.3.1). Also select [d],
[#:-:} 1 <i<s, to orthogonalize W, against ¥, _, in (3.3.2). These give

ko =AU —Vi_yyi_ ~Viap, (34.1)

Werr =A'WE = Wi~ Wi (342)
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Select [#]], 2 <j <, to orthogonalize {Av} , ,,..., A" 'v}, |} against W, which gives
vl =AT"pl, ~Vt], forj=2,...,s. (35.1)

ooiE

Also select [£]], 2<j<s, to orthogonalize {A™w} , ,,...,(A")"'w},,} against V,, which
gives

N - f AN ¥ i Eoe 1. M . 17 2
W"Q_‘_]‘—(ﬂ } Wk+]""'"k‘ks BOL J™ Ldysuuyd. {3-5-2}

Lemma 3.8. In Algorithm 3.7 vector sets V,.,, W;,, are block biorthogonal, i.c., W, is
orthogonal to V;_ for i, #i,.

_ L | RS wma 3.8 by induction. It is obvious that V.. W. are block biorthoeconal
I'Te0L. W¢ Wil pIove LCmma J5.0 UV MNauCluonn. 1L B Ulﬁluub_lll L Vz 2 #IC DICUA DIUTLIIVEUHAL
Cunnnee thn . W, are block biorthosonal, Then fW AV V=0 for =1 i—2 Sn nl
U”RR L g A“‘ r k, L d k L2 Uzvlt LFEVLE LA Ubvl RELw AW AE \ F SR k’ U AENFR ¥ " - -3 - i WS uk+l
in (3. 1) orthogonal to W), for I=1,...,k — 2. By using this fact, we derive (W, A '}, )

=0, for I = I,...,k 1. So vl,,, for j=1,...,s, in (3.5.1) is orthogonal to W,, for I=1,...,
k — 1. Therefore v, +1 is orthogonal to W,,....,W, in Algorithm 3.7. Similarly W, , is

orthogonal to V,C, cees Vk 0

i i J o Y -
Next, we demonstrate how to determine the parameters @y, ¥i_1» Lt} and &, ¥;_,, £ _in

Algorithm 3.7. Equation (3.3.1) muitiplied by W,T from the left and (3.3.2) multiplied by V7
from the left yield

WIAV, = W,V,G,. (3.6.1)

VIATW, = VIW,G,. (3.6.2)

Equation (3.3.1) multiplied by W,T , from the left and (3.3.2) multiplied by V", from the left
yield

W1 AV, =WV By (3.7.1)
T
VI, AW, =V W, .E,_,. (3.7.2)

Equation (3.5.1) multiplied by #W," from the left and (3.5.2) multiplied by VI from the left
yield

0=W'4'" ’vw1 WV, i, for j=2,...,s, (3.8.1)

_ gl PR S ST Al ~ - - fq R‘)‘
0=PT(A"Y Wi, ~VIWii, forj=2,...,s. (3.8.2)

Lemma 3.9. In equations (3.6.1)-(3.8.2 ) (. "::“{5' E. _EE. . 4 d! Ef" 1<ls k-!f.:Tu.E_As..
A AZERINER ware Ai6 CALALERILVIO \nFelfen ) \uuu 7y o J3 e f o ] i-1i F&l = = b 5 K K

in (3.1.1), (3.1.2).

Proof. From Algorithm 3.7, we obtain vf =0f(A)], w/ =w{(A"w;, for j=1,...,s, where
j{(A), W} #(AT) are the polynomials in A4, AT,



366 S.K Kim, A.T. Chronopoulos / A nensymmetric Lanczos method

By induction we will prove that coefficiunts of Fj( 4), wj(A") are the same. It is obvious that
coefficients of #{(A), w{(A4"), for j=1,...,s, are the same in Algorithm 3.7. Suppose that
coefficients of £/{ A), w/{A"), for ] <k -1, are the same. Then

(wis vf) = (Bi(AT)w}, 5(A)vy) = (Bi( A)ot, W(AT W) = (v], wf).
This implics_that W, V=0T W,., for [ <k — 1. Similarly we can prove that W'V, = V,"AW,
wr 3AKWIQ AW, _, and WA o) = VT (ATY 'wy, ; therefore G, =G, E,_ =E,_,
and tj=t tor I<k-1 and j=2,...,5. Now we prove the induction step /=+k. From
(3.4.1)(3.5.2), woefficients of F{(A), w{(A") are the same.

L .
This then is used to orove that ufTv = T alen 3 =48 K =K and #/f
LI iCh !a LA i.u FAVYW RMQL TR L VL T F L TP L, Qs s muk, g} “"“k“i ang Ly

)

]

i
Equations (3.6.1), (3.7.1) and (3.8.1) determine [e], [vi_,), 1 <i<s, and [#]], 2<j<s, as
solutions of 3s — 1 linear systems of size s. Let us denote by M, = Wk V,.

Remark 3.10. Let M, be nonsingular. Then from (3.6.1), (3.7.1) and (3.3.1) it follows that the
following linear systems must be solved to determine [af], [y._,}, 1 <i<s, and [#]), 2<j<5:

AT i o where @i = [l Ani) {wrS  Api \IT o
v Sy, WilIC & VW AU e\ W, AU (5‘9}
M,_yi_,=¢l_,, whereel_ = [(wk,,, Avi ). (Wi_ps Avk)] (3.10)
— . . . . _ T 3.11
M.t =b], where b} = [(w}, 4770}, ), ... (wi, A0k )] (3.11)

T leteser tha hlanls hamethoaoanalitey ~Af tha tars vastoe cate L7 b2 1 tha linaner cuctorme ( 0\=f’l if\
LSRR, LEW UIUWR UlUlillUBUllﬂlily L I.!I.\.- EWLF VLI O fk, I'f!\, {ll\- 131601 OSYSULWILILY Wt/ J T \wWek L)

can be determined from previously computed inner products and the following 2s inner
products:

(wi- 3 ) (Wi, Avg),....(wy, A~ 10g), (3.12)
= thg only 2s mmer products (on vectors of size N) which are required in forming f'ki iﬂ}kﬁ—i
and Wkﬂ in Algorithm 3.7. Reducing inner products in the s-step biorthogonal Lanczos

method is similar to that of the s-step Lanczos method [7].

‘yﬂ TaLNIRY rmpnrmxh‘
¥y & NOW ICKOIUR

1k
theorv developed abov

Algorithm 3.11. s-step biorthogonal Lanczos algorithm.

Select ¢}, w), {7;,] =0, 1<igs

r‘nmnntp I/ min Ay A5 14,11
ety U EREE L TR s vy

Compute 2s inner products

For k£ =1 until Convergence Do

(1) Decompose Mk and solve Mkak d‘ and M, _yi_,=ci_,fori=1,...,5

5 i e AT s 5 5 s
\Jf \A—Ji‘ﬁf)litf: ﬂl’f(*‘l’ A i’ﬁ‘?‘l’ 3/{"0' 1 & wk+|, ‘A Wk+1,...,l ‘)“W§+1
‘A\ pnmﬂ“fﬂ tha 7 ¢ innar nrndnste ia (7 1)
SR L) ARARNGL PANARRENLD BEE VNJSAA LS
(5) Solve M.t} —~bk, forj=2,....5
(6) Compute v}, ,=A4'""¢i,, __[tj;], for j=2,...,5, wl =AY 'w, , —W,[t]] forj=

2,....58
EndFor
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Table 3.1

Vector operations for 5 iterations of standard method and 1 iteration of s-step methods

Operation Standard biorthogonal s-step biorthogonal
Lanczos algorithm Lanczos algorithm

Potproducts 2s 2s

Vector updates i0s 4s(s+1)

Matrix «vector 2s 28 +1

In the s-step biorthogonal Lanczos method, the Ritz values of A4 in V, are the eigenvalues
A, of T, - The right Ritz vectors are vectors V x, (=z,), where the right eigenvectors x, of T,
associated with the A, and the left Ritz vectors are vectors W, X, (=1,), where the left
eigenvectors £, of T, are associaied with the A,. The residual norms of the Ritz value A and
the right Ritz vector z can be computed by using the formula (4 — A, Dz, || =l x; 15,1, for
i=1,...,5k, where §,, is the last element of the ith right eigenvector of 7, and the residual
norms of the Ritz value A and the left Ritz vector Z can be computed by using the formula
WAT—M,D2 0 =yt 18], for i=1....,sk, where §; is the last element of the ith lefi
eigenvector of 7.

Remark 3.12. The vector operations for each iteration in the s-step method are 25(2s + 3)N +
(25 + DMv, and storage requirements are 2(s + 1)N + 1Ms. We must store v},...,0; and
wl,...,w{ to find eigenvectors after we find eigenvalues in the kth iteration. These vectors can
be kept in secondary storage until they are used.

We compare the computational work of the s-step biorthogonal Lanczos method to the
standard one. We only present the vector operations on vectors of dimensions N and neglect
the operations on vectors of dimension s (see Table 3.1).

4, Decreasing the breakdown conditions

It can be easily shown that when Algorithm 2.1 does not break down for a null inner product
(r;, 5;), then the vectors q;,, and p;,, satisty the biorthonormality property. Although there
are varlous ways of choosing B,, v, satisfying B,y; = (r;, 5;), it is of interest to notice that the
product llg;,, Il Il p;, 1l will not depend upon which choice is taken, because

lir 11 s; i _ s
ﬁj'Yj !(rW sj)l ’

where 8(r,, 5;) denotes the angle between the vectors r; and s; {11]. The angle 6(r 5)is a
function of A q,, p, apart from a normahzing factor. Thls angie can be equal to 2—rr causmg
the algorithm to stop. It is interesting to note that r; and s; can be written as r;= ¢ A)q,,
s;=¢; (AY)p,, where ¢; denotes a polynomial of degree i. D;fferent choices of the B; and v,
correspond {o different scaling of the Lanczos vectors. Hence, any resulting tridiagonal
matrices 7; have the same eigenvalues {111

iiqjq.;” f pj+}“ = ﬂqﬁ.;!l Il p;H!i =

cos 6(r;, 5;)’
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The biorthogonal Lanczos algorithm can be regarded as the two-sided Gram-Schmidt
process applied to the columns of the special matrices

R=R,;=|a,, 4q,, A%q,,..., A" 'q)], |
L=L;= [p!’ A'p,, (AT)zpv---’(AT)jﬂpl]‘
The R, L matrices are called Krylov matrices. Note that the (i, j) element of L'R is
(pjA~XAg,), s0
L'R=M=M(p,.q,), wherem ;,,=piA'"q,.
The matrix M is called the moment matrix of (p,, q,) with respect to the matrix 4. The

following proposition gives breakdown conditions of the biorthogonal Lanczos method in terms
of the nonsingularity of the moment matrices M,. This proposition is proven in [8].

Propeosition 4.1. The biorthogonal Lanczos algorithm does not break down in the jth iteration if
and only if

det(M,)#0, i=1,2,...,J.

In the s-step method the subspace spanned by V, = {V,, V,,...,V,} is the same as the Krylov
subspace spanned by the vectors {v], Av], A%v},..., A% 'v]}, and the subspace spannend by
W.={W,W,,....,W] is the same as the Krylov subspace spanned by the wvectors
fw, A'wy,....(AD)*="w]}

Proposition 4.2. The s-step biorthogonal Lanczos algorithm does not break down in the kth
iteration if and only if

det(M,;)#0, fori=s,2s,...,ks.
Proof. Let v; and w; be the s-step biorthogonal Lanczos vectors. For each &, 2f, 1 <I<s,isa

linear combination of the first (k — 1)s +/ columns of R while w} is the same linear

combination of the columns of L, up to a scaling. This can be expressed compactly in matrix
notation as

Vi=RK", W,=LKT, (4.1)

where K is the lower triangular whose diagonal elements are 1.
Using (4.1) we can rewrite M as

M=L'R=(KWT)YVKT),
that is,
M=K(WTV)KT.
By Lemma 3.8 the matrix W'V equals to diag{¥"V,,...,W,'V,}). By a sequence of row

sperations including exchanging rows, we can reduce W,'V, to an upper triangular matrix U,
with nonzero diagonal elements and

det{ W7V, ) = +dei(T, ).
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Let U = diag{U,,...,U,}; then
det(WTV) = +det(U),

det(M) = det(WV') = det( WV, ) det(W,17,) - - - det( W77, ).

This proves the proposition. I

The standard biorthogonal Lanczos algorithm produces a tridiagonal matrix 7; by the end of
step j (= ks) and the s-step method produces a block tridiagonal matrix T,.

5. Numerical experiments

We implemented the standard biorthogonal Lanczos algorithm and s-step methods. Firstly,
we show the reduced breakdown effect of the s-step biorthogonal method compared to the
standard one. We borrow an example from [11}:

COm OO O
e DD
e e i e e Qe i i

- 2D e O
Lo e T e B i e R o]
Lo Qe R e B ow B

The eigenvalues of A are the roots of unity, i.e., A; = e /iforj=0,...,n~1 where nis the
dimension of A. The biorthogonai Lanczos memoa starts with initial vectors r] =s] =
[123456]T on the CRAY-2 machine. At step 4, the standard biorthogonal Lanczos method

narmalivacs ¢ and » hu factnre of 1f‘¥ﬂ_33 mradncins elamente in the w.'-dnr-ad trl'hannnsﬂ
BONNHaNZSs 5, ahG ry 0¥ 1adions O ProGUaing C:xomonis 1in i 1d ago

matrix T of size 10'* on a CRAY-2. The 3—%@9 biorthogonal Lanczos method avoids the large
element growth in reduced matrix and can generate a 3 X 3 block tridiagonal matrix which has
the sixth root of unity. At the second iteration of the 2-step method we have to solve a linear
system with smgular 2 X 2 matrix. This can be explained by Proposition 4.2. The eigenvalues of
ihe above mairix A by ihe QR algorithm and 3-siep biorihogonal Lanczos algorithin are exacily
the same.

Secondly we show the s-step method has better performance on vector and parallel
computers. The test problem was derived from the five-point discretization of the following

partial differential equation:
”(bux)x - (Cu.r)x + (du)x + (eu)}’ +ﬁ‘ =8,

on the square, where
| N s} Xy ~l +1 Al v vl o B v 4o v}
vRvr» Y} ¥ “irr JJ ’ bl Sl B [ Sl s
1
e(x =y{x + and x - —
(x, y)=v(x+y) =14y

subject to the Dirichlet boundary conditions u = 0 on the boundary. The right-hand side g was
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chosen so that the solution was known to be e*” sin(wx) sin{wx). The parameters B8 and y are
useful for changing the degree of nonsymmetry of the resulting coefficient matrlx of the linear
oxrobarvao Ninda 2thnt tha miofee A racuitin Fen tho Adicorntimatin mocitis  wanl
aya‘.cllibu IR iV 14t LLi%W ML A Fe l\-i’ullilis IIUIII (97 4v Uli’\rlbllbﬂtnuli lbllialllb BINFORMEV A, l\;ﬂl
independent of these parameters. We denote by n, the aumber of interior nodes on each side
of the square and by 2 =1/(n, + 1) the mesh size.

In the test we took y =150.0, 8= 1.0, which yielded a nonsymmetric matrix of dimension
n =n?. We used the CRAY-2 multiprocessor at the Minnesota Supercomputer Institute. The

CRAY-2 is a four-processor machine, each of whose processors can execute independent tasks

nnnarrantiy Al nrarecenre have annal neecace ta o cantral moamare nf 812 hﬁnnnutnrrle Rach
CORCUBITONWY. A ProCessors nave Cquds aCloss 16 a CORTa: memory O 512 WMaCEaWOrGs, —ach

CRAY-2 processor has 8 vector registers (ea~h 64 words long) and has data access through a
single path between its vector registers and main memory. Each processor has 16 Kwords of
local memory with no direct path to central memory but with a separate data path between
local memory and its vector registers.

The maximum performance of the CRAY-2 for specific applications comes from data

movement minimization, eood vectorization and division into muﬁfsnrnr‘nemnn tasks. Because of
AARRS ¥ W RARWERAYL ARAEZEEERAZELAA R EVLFLE. b AALELWS W AEFAL BRI LF ;ilulb{l.’ IS LE BT WFA

single paths between vector register and central or local memory on the CRAY-2 system,
memory transfers constitute a severe bottieneck for achieving maximum performance. There-
fore, minimization of data movement results in faster execution times. Algorithms must provide
good data locality, that is, the organization of the algorithm should be such that the data can be
kept as long as possible in fast registers or local memories and have many operations
performed on them.

Macrotasking (often called multitasking) on a data parallel algorithm [6] is most often
applied to parallel work found in the independent iterations of DO loops. i the loop has N
iterations, we map the N iterations onto P processors or tasks so that each task has the same
amount of work to do. The extremely large memory of the CRAY-2 means that many jobs ¢an

nc“q““ he rocidont in tho cfnrqnn at tho o f1mo lanading tn vory affiaont mnltinenorans
AILREIIRY ETW XM INAWREL .I.!l E1ELY n.:(.un JLLL G L LA Jﬂll!\a l-l.lil.\/ l\/ﬁ\llllﬁ LLF VL Y \rill\al\lill’ uiuaupxu&',i LiL”

ming. To achieve load balancing, we must consider static and dynamic partitioning. We use
static partitioning when the times for each of the loop iterations are approximately equal.

Example of contiguous static partitioning with P=4:

Processor Assigned iterations

PEO I=1,1n
PE1 I=3%n+1,2%1n
PE2 [=2xin+1,3%in
PE3 I=3«in+1,n
We must minimize calls ta the muliitacking librarv because muititackine infroduces an

2FLOE AATIERRANELLAL =LA Amaasmterianianassry EAncaiad e S ----— = Shiiapn AArAlSaenewoawdr  daxd

overhead that increases CPU-time. The distribution of matrix and vectors with 4 processors is
as shown in Fig. 5.1.

In the accuracy test, Table 5.1 shows that matrices generated by the standard and restruc-
tured and s-step biorthogonal Lanczos methods have the same largest eigenvaiues, but for
5> 35 in the s-step method loss of accuracy for eigenvalues has been observed. We tested the
methods on the problem of ci7e » = 4096, We also compared to the largest eigenvalues

computed by the standard, the modified and the s-step methods with those by Saad’s program
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matrix vectors
A
T
PED
PE1
PE2
PE3

Fig. 5.1. Distribution of matrix and vectors to each processor.

code* wusing the Arnoldi method. Szad’s code uses reorthogonalization and deflated iferation
{12} to compute ecigenvalues. The stopping criterion is € =107¢ in Saad’s program. in the
standard, restructured and s-step biorthogonal Lanczos methods, we find the largest cigenval-
ues after a reduced matrix of a certain size is generated, so these miethods require minimal
storage and time.

We reduced the different size matrices A4 of the model problem to 20 X 20 tridiagonal or
block tridiagonal matrices using the standard, and 5-step biorthogonal Lanczos algorithms. In
the s-step method the synchronization poinis arc less as the size s is bigger, but we cannot
choose s> 5 because the =rrors in the Riiz values are increased. So we choose the 5-step
method in the performance test to compare with the standard biorthogonal Lanczos method
(sce Table 5.2). Figure 52 shows the time these methods took to make 20 x 20 reduced
matrices for different size test problems in the CRAY-2 with 4 processors. Figure 5.3 shows the
speedup (P1/P4) when 1 processor and 4 processors are used in CRAY-2 for the standard and

% . standard x : standard
o 5-step o S-step
f
150 % . 3l -

time{msec) time{msec)

5 . 1

e [} ] 1 0 ] ] I
647 1282 1922 2567 64% 128 1922 2567
the vectorsize ~— the vector size
Fig. 5.2. CRAY-2 performance {mszc) using 4 proces- Fig. 5.3. Specdup performance (P1/P4) for the

sors for the biorthogonal Lanczos methods. biorthogonal Lanczos methods on 2a CRAY-2.
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Table 5.2
CRAY-2 computation time {msec) of the 5-step and standard biorthogonal Lanczos methods
\fect{}r Standard biorthogonal Lanczos algorithm 5-step bierthogonal Lanczos algorithm
s 1
e p=1 p=4 p=1 p=4
642 18.8% 55.03 22.13 30.82
1282 74.74 69.68 8372 4228
1922 167.98 96.04 184.19 71.52
2562 294,95 147.30 321.85 129.05
3207 467.72 192.33 501.93 172.94

S-step methods. In the s-step method, memory reference time and calls to the macrotasking
library are decreased by making possible grain size large and by decreasing synchronization
points. This accounts for the superior performance of the 5-step method over the standard
biorthogonal Lanczos method on the CRAY-2,

6. Conclusions

We have introduced an s-step biorthogonal method and proved that s-step methods
generate reduction matrices which are similar to reduction matrices generated by the standard
biorthogonal Lanczos method. Serious breakdown conditions are decreased in the resulting
algorithm. Also, the s-step method has better data locality and parallel properties than
standard ones. In the s-step methods, the inner products needed for s steps of the standard
methods can be performed simultancously and the vector updates are replaced by linear
combinations. The s-step Lanczos method has additional operations (compared to that of the
standard Lanczos method). The design of a stable s-step Lanczos method with no additional
vector operations compared to the standard method remains an open question. For large s > 5
loss of accuracy for eigenvalues has been observed.
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