AN EFFICIENT
PARALLEL
ALGORITHM FOR
EXTREME
EIGENVALUES OF
SPARSE
NONSYMMETRIC
MATRICES

S. K. Kim and
A.T. Chronopoulos

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF MINNESOTA
MINNEAPOLIS, MEINNESOTA 55455

Summary

Main memory accesses for shared-memory systems or
global communications (synchronizations) in message
passing systems decrease the computation speed. In
this paper, the standard Arnoldi algorithm for approxi-
mating a small number of eigenvalues, with largest {or
smallest) real parts for nonsymmetric large sparse ma-
trices, is restructured so that only one synchronization
point is required; that is, one global communication in
a message passing distributed-memory machine or
one giobal memory sweep in a shared-memory ma-
chine per each iteration is required. We also introduce
an s-step Arnoldi methed for finding a few eigenvalues
of nansymmetric large sparse matrices. This method
generates reduction matrices that are similar to those
generated by the standard method. One iteration of
the s-step Arnoldi aigorithm corresponds to s itera-
tions of the standard Arnoldi algorithm. The s-step
method has improved data locality, minimized global
communication, and superior parallel properties.
These algorithms are implemented on a 64-node
NCUBE/7 Hypercube and a CRAY-2, and performance
results are presented.

The International Journal of Supercomputer Applica-
tions, Volume 8, No. 1, Spring 1992, pp. 88-111.
© 1992 Massachusetts [nstitute of Technology.

Introduction

It is now feasible to achieve high performance in nu-
merical computations with parallel processing technol-
ogy. To use parallel computers in a specific application,
algorithms have to be developed and mapped onto a
parallel computer architecture (Aykanat et al., 1988;
Chronopoulos and Gear, 1989a, 1989b; Kim and Chro-
nopoulos, 1991). Parallel computers consist of many
processors communicating through an interconnection
network. Depending on the structure of the memory
system, two extremes of parallel computers are shared-
memory multiprocessors, in which all memory modules
are equally accessible to all processors, and distributed-
memory parallel processors, in which each memory
module is physically associated with each processor.
The significant difference between the two is that a dis-
tributed-memory paralle}] computer has no shared
memory. Consequently, to use data in a remote mem-
ory, it is necessary to explicitly get the data from a re-
mote memory. This and all other interprocessor com-
munication is achieved by passing messages among the
Processors.

Memory contention on shared-memory machines
constitutes a severe performance bottleneck. The same
is true for communication costs on a message passing
system. It would be desirable to have methods for spe-
cific problems that have low communication costs com-
pared to the computation costs. This is interpreted as a
small number of global memory accesses for the
shared-memory systems and a small number of global
communications for the message passing systems. Also,
we consider the design issues involved in partitioning
and mapping data parallel algorithms (Li, King, and
Prins, 1987). Data parallel algorithms are suitable for
problems with a large volume of data. Parallelism is
achieved by partitioning the dataset rather than parti-
tioning the control of the program. The algorithm must
be designed so that both computation and data can be
distributed to the processors in such a way that compu-
tations cant be run in parallel, balancing the loads of the
processors.

Many important scientific and engineering prob-
lems require the computation of a small number of
eigenvalues of nonsymmetric large sparse matrices.

The most commonly used algorithm for solving such an
eigenproblem is the Arnoldi algorithm. It has three ba-
sic types of operations: matrix-vector products, inner
products, and vector updates. The sequenual and par-
allel complexity (Chronopoulos and Gear, 1989b) of
these computations is shown in Table 1 (n; = the num-
ber of nonzero diagonals of A). For the purposes of
Table 1, the parallel system is assumed to have O(N)
processors. From Table 1 we can draw the conclusion
that for massively parallel systems the inner products
dominate the three operation types in the Arnoldi
method because of the global communication. The
same might be true for hypercube systems whose nodes
communication delay is much longer than the floating
point operation execution, Thus, grouping together for
execution the inner products of each tteration in the
Arnoldi method may lead to a speedup on this type of
computer.

On shared-memory systems with a memory hierar-
chy such as the CRAY-2 the data locality of the compu-
tations is very important in achieving high execution
speed. A good measure of the data locality of a compu-
tation is the size of the

Ratie =
(Memory References)/(Floating Point Operation).

The data locality of a computation is good if this ratio is
as low as possible. This ratio being low implies that data
can be kept for “a long time” in fast registers or local
memories and many operations can be performed on
them. Thus, restructuring the three types of operations
in the Arnoldi method may lead to a speedup on shared
memory systems with a memory hierarchy.

In past work s-step methods have been introduced
for the conjugate gradient (CG) method (Chronopoulos
and Gear, 1989a, 1989b) and the Lanczos method (Kim
and Chronopoulos, 1991). In this paper we introduce
the s-step Arnoldi method. In the s-step method, s con-
secutive steps of the standard method are performed
simultaneously. This means, for example, that the inner
products (needed for s steps of the standard method)
can be performed simultaneously and the vector up-
dates are replaced by linear combinations. In the s-step
Amoldi method, the vector updates and storage are

“Data parallel algorithms are suitable

for problems with a large volume of
data. Parallelism is achieved by
pattitioning the dataset rather than
the control of the program. The algo-
rithm must be designed so that hoth
computation and data can he dis-
tributed to the processors in such a
way that computations can be run in
parallel, balancing the loads of the

processors.”
Tabte 1
Serial and Parallel Complexity of Arnoldi Parts
Operation Sequential Parallel
Vector update o o)
Inner products o O (log,N)
Matrix-vector products O (n N} O (log,n,)

decreased slightly relative to the standard method be-
cause the s-step method generates s vectors so that these
vectors are orthogonal to all preceding s-step Arnoldi
vector sets, not all preceding vectors. Also, their parallel
properties and data locality are improved and the s-step
Arnoldi method has only one global communication for
one s-step iteration. A disadvantage of the s-step Ar-
noldi method is that one more matrix-vector multipli-
cation is required for one s-step iteration compared to s
iterations of the standard method.

In the following sections we discuss the standard
Arnoldi algorithm, describe the NCUBE and the
CRAY-2 in detail, and discuss how to implement effi-
ciently the Arnoldi algorithm. We then restructure the
Arnoldi algorithm to gain better performance, develop
the s-step method, which is the new version of the Ar-
noldi method, and give numerical examples and exper-
imental results on the NCUBE/7 Hypercube and
CRAY-2.

Results and Discussion

1. THE ARNOLDI METHOD

The method of Arnoldi can be used successtully for
computing a small number of eigenvalues with largest
(or smallest) real part for large nonsymmetric matrices
(Saad, 1980, 1984, 1985). The Arnoldi algorithm is
based on the Arnoldi recursion for reducing to upper
Hessenberg matrices of a real nonsymmetric matrix A.
The basic Arnoldi procedure can be viewed as the
Gram-Schmidt orthogonalization of the Krylov sub-
space basis {g,,Aq,, . .., A’ ~'q,}. Furthermore, for
each j,

H; = QAQ, M

7

is the orthogonal projection of A onto the subspace
spanned by the Arnoldi vectors Q; = {g,, ..., ¢;} such

that Q, Q, = I, where I; is the identity matrix of order
7. The engenvalues of the upper Hessenberg matrices H;
are called Ritz values of A in ;. For many matrices and
for relatively small j, several of the extreme eigenvalues
of A—that is, several of the algebraically-largest or al-
gebraically-smallest of the eigenvalues of A—are well
approximated by eigenvalues of the matrices /. The

Ritz vector Q9(= z) obtained from an eigenvector y of
a given H; is an approximation to a corresponding
eigenvector of A. The standard Arnoldi algorithm is as

follows:

Algorithm 1: The Arnoldi Algorithm
Choose ¢, with [lgll; = 1
For j = 1 until Convergence Do

. Compute and store Ag;

Compute h, = (Agugd, t = 1,...,]
= Ag; — Zi_, b4,

. Compule (r;7)

chiiyy = Vi)

-G T rifhl*‘l-l

EndFor

o -4>-_L>a{\0.—-

This algorithm generates a set of vectors Q; and
each new Arnoldi vector generated is orthogonal to all
preceding Arnoldi vectors. Therefore computational
time and storage increase proportionally to the number
of steps. The storage of orthogonal basis Q; requires N
X j memory locations. When N is large, the number of
steps, j, is limited by the available main memory. This
difficulty may be overcome by using the incomplete or-
thogonalization process and iterative Arnoldi algorithm
(Saad, 1980). Step (3) of this algorithm is usually re-
placed by the more stable modified Gram-Schmidt
(MGS) scheme, But the MGS scheme in step (3) re-
quires many more synchronization points on parallel
computers. In this paper we have not used the MGS
scheme for the Arnoldi algorithm. If the matrix A is
symmetric, then H; reduces to a symmetric tridiagonal
matrix and this algorlthm reduces to the symmetric
Lanczos method (Golub and Van Loan, 1989). The
upper Hessenberg matrices H; explicitly satisfy the
equation

AQ] = QIH + rle,T, (2}

where e,-T = (0,0,...,0,1) is a s-dimensional vector.
The simplest posteriori bound on the accuracy of a Ritz
value A is obtained from the residual norm of the asso-
ciated Ritz vector z, |[Az — zA|. The residual norm of

the Ritz pair A, z can be computed by using the formula
A — Nzl = |1+Ue,)| fori =1,...,7, (8

where y; is the ith eigenvector of ;. This is used as a
stopping criterion. The following step is added after

kO
gl

e

3

TR S T

step (5) n algorithm 1 to test the accuracy of computed
approximate eigenvatues:

5. Compute h ., y. If A "y < € then

stop.

i+ 1.5

‘The quantity A, | ; is calculated by the algorithm. Since
71s usually very small compared to N the calculation of
¥ (via a dense matrix eigenvector method applied on
the matrix H) is relatively inexpensive. Also, y, can be
calculated in parallel with hj .y j Thus, step (5) does
not add an extra synchronization point. In practice, the
Arnoldi method is used iteratively together with various
acceleration techniques (Saad, 1984, 1985).

2. PARALLELISM ON THE NCUBE
HYPERCUBE SYSTEM

2.1 A HYPERCUBE COMPUTER

A hypercube model is a particular example of a distrib-
uted-memory message passing parallel computer. In a
hypercube of dimension d, there are 2¢ processors. As-
sume that these are labeled 0,1,...,2¢ — 1. Two pro-
cessors 7 and j are directly connected if the binary rep-
resentation of 7 and j differ in exactly one bit. Each edge
of Figure 1 represents a direct connection of a dimen-
sion 4 hypercube (lines and dotted lines are communi-
cation links). Thus, in a hypercube of dimension d, each
processor is connected to d others, and 29 processors
may be interconnected such that the maximum distance
between any two is d.

Table 2 represents a summary of an experimental
study of interprocessor communication time and time
to perform arithmetic operations on the NCUBE
(Ranka, Won, and Sahni, 1988). We see that an 8 byte
message transfer between two directly connected pro-
cessors takes 42 times as long as an 8 byte real addition
and 32 times as long as an 8 byte real multiplication.
Furthermore, longer messages are transferred at a
higher rate (i.e., bytes/sec) than shorter ones going the
same distance. In a linear time model of nearest neigh-
bor communication a message of length M bytes re-
quires approximately 446.7 + 2.4M usec (Ranka, Won,
and Sahni, 1988) where the constant term is a startup
time that consists of the software overhead at each end
and the time to set up the circuit and the second term is

001055

Fig. 1 Dimension 4 Hypercube

Table 2

Computation and Communication Time on
NCUBE/7 Hypercube

Operation Time Comm./Comp.
8 byte transfer 470 psec

8 byte real addition 11.2 psec 42 times

8 byte real multiplication 14.7 psec 32 times

matrix
A

PED DI BI
PE3 | C, D, B,

b evorsssrnsaaTeose

PE2 C; D,

R R

bsescosssasscsrvnaeys

PES Cs Ds Bs..........}

Cs Ds Bs.....|

gﬁ. D7.87]

brssversrososerasns

PE7
PES
PEA

b rerrcresrrrrnsnans

b rsnersososrssnscas

vessese

srenies

sesesesrsenans

Cy1 Dy

b seotosatessassusseseresusecsnsnnrsassrah

R O I XA T A T R A R TR RN 3

vectors
P 4
L.

Fig. 2 Distribution of matrix and vectors to each

processor

100101
000 Lapdi
T N T

o101l ol

Fig. 3 Inner product process on Hypercube

the actual transmission time. The startup time for short
messages is the dominating factor in the communica-
tion cost on the NCUBE.

In a hypercube with a high communication latency,
the algorithm designer must structure the algorithm so
that large amounts of computation are performed be-
tween communication steps; an algorithm requiring
frequent and random exchange of messages will not
perform well.

The two main issues in programming this machine
are load balancing and reduction of communication
overhead. A program is load balanced if all the proces-
sors are busy all the time. If one processor has most of
the work, then the others will end up being idle most of
the time and the program will run inefficiently. To ar-
rive at an efficient algorithm for a hypercube, one must
consider that both computations and data can be dis-
tributed to the processors in such a way that computa-
tional tasks can be run in parallel, balancing the com-
putational loads of the processors as much as possible.

2.2 MAPPING THE ARNOLDI ALGORITHMS ON
THE NCUBE

The Arnoldi algorithm has three basic types of opera-
tions: matrix-vector product, inner products, and vec-
tor updates. We only consider A to have the structured
nonzero pattern of a sparse banded matrix. This is the
class of matrices that are used in our numerical tests.
Parallelization for matrices with irregular sparsity pat-
terns is more problematic, and global communication
may be required. The matrix-vector multiplication can
be performed concurrently by distributing the rows of
A, and the corresponding elements of vectors among
processors of the NCUBE (Fig. 2). We divide the vector
length N by the number of processors P. Each proces-
sor gets a subvector. When P does not divide N exactly,
one processor gets a shorter vector. The simplest rep-
resentations of an N X N matrix are row or column
oriented (McBryan and van de Velde, 1987). In the
contiguous-row representation, each row is stored en-
tirely in one processor. During a distributed matrix-
vector product computation, processors need the most
recently updated values of the vector elements which
are mapped to neighbor processors. In Figure 2, we

demonstrate this for a block tridiagonal matrix 4,
where D; is a tridiagonal matrix and B,,C; are diagonal
matrices. Hence, only nearest neighbor communication
(ie., local interprocessor communication) is required.
The distributed vector updates can be performed con-
currently without interprocessor communication, only
after each processor computes the updated global
scalar values 4, in step (2), step (5) of the Arnoldi
algorithm 1.

For uniprocessors or multiprocessors with a small
number of processors (e.g., four or eight processors)
the matrix-vector products dominate the computation,
whereas on parallel computer systems having the hy-
percube interconnection network, the inner products
dominate because they require global communication
(synchronization of all processors) of the system. An
inner product is computed by assigning an equal part of
the vector (if possible) to each node. This allows each
processor to work on local segments independently of
other processors for most operations. Each node com-
putes in parallel the sum of squares of its part of the
vector. Then we used the exchange-add algorithm (Ay-
kanat et al., 1988). Processors P, . o o (=
0,...,d — 1) concurrently exchange their most recent
partial sum with their neighbor P, .
and then concurrently form their new partial sum. At
the end of 2d concurrent nearest neighbor communi-
cation steps, each processor has its own copy of the in-
ner product. The exchange-add algorithm is illustrated
in Figure 3 (d = 3).

3. PARALLELISM ON THE CRAY-2

The CRAY-2 is an example of a shared-memory four-
processor computer with memory hierarchy. All pro-
cessors have equal access to a very large central memory
of 256 megawords, and each processor has its own local
memory. Each CRAY-2 processor has eight vector reg-
isters (each 64 words long) and has data access through
a single path between its vector registers and main
memory. Each processor has 16 Kwords of local mem-
ory with no direct path to central memory but with a
separate data path between local memory and its vector
registers, and the six parallel vector pipelines: common
memory to vector register, vector register to local mem-

ory, floating additive/subtractive, floating multiplica-
tive/divisible, integer additive/subtractive, and logical
pipelines. It is possible to design assembly language ker-
nels that exhibit a performance commensurate with the
4.2 nsec cycle time of the CRAY-2 if the computations
allow it. This means that a rate of 459 MFLOPS is pos-
sible on one processor if all arithmetic pipes can be kept
busy (Dongarra and Sorensen, 1986). The combination
of fast cycle time, a local memory, and a large central
memory make the CRAY-2 an exciting choice of com-
puter for use in large-scale scientific computation.

The maximum performance of the CRAY-2 for
specific applications comes from data movement mini-
mization, good vectorization, and division into multi-
processing tasks. Because of single paths between vector
register and central or local memory on the CRAY-2
system, memory transfers constitute a severe bottleneck
for achieving maximum performance. Therefore, min-
imization of data movement results in faster execution
times. Algorithms must provide good data locality: that
is, the organization of the algorithm should be such that
the data can be kept as long as possible in fast registers
or local memories and have many operations per-
formed on them. The key to optimal performance on
Cray supercomputers is to ensure that arithmetic pipes
are busy almost all of the time. All access to memory
must be performed concurrently with the arithmetic.

Macrotasking (often called multitasking) on a data
parallel algorithm is most often applied to parallel work
found in the independent iterations of DO-loops. If the
loop has N iterations, we map the N iterations onto P
processors or tasks so that each task has the same
amount of work to do. To achieve load balancing, we
must consider static and dynamic partitioning. We use
static partitioning when the times for each of the loop
iterations are approximately equal. Example of contig-
uous static partitioning with P = 4:

Processor Assigned iterations

PO I =1N/4

Pl I = (N/4) + 1,2«N/4
P2 1 = 2%(N/M) + 1,3«N/4
P3 I =3+(N4) + 1N

The distribution of matrix and vectors is similar to
that in Figure 2 with four processors. The extremely

large memory of the CRAY-2 means that many jobs can
usually be resident in the main storage at the same time,
leading to very efficient multiprogramming. We must
minimize calls to the multitasking library because multi-
tasking introduces an overhead that increases CPU
time.

4. THE MODIFIED ARNOLDI METHOD

In the standard Arnoldi algorithm iteration, the inner
products cannot be performed in parallel. Algorithms
based on restructuring the standard Arnoldi algorithm
to decrease the global communication cost and to get
better performance in distributed-memory message
passing systems are introduced here.

For shared-memory systems with few processors,
processor synchronization is fast but accessing data
from the main memory may be slow. Thus, the data
localities of the three basic operation parts of the Ar-
noldi algorithm determine the actual time complexity
of the algorithm. The data locality of the modified Ar-
noldi algorithm is better than that of the standard al-
gorithm. The Lanczos algorithm for finding a few
eigenvalues of symmetric large sparse matrices has the
same shortcomings for parallel processing as the Ar-
noldi algorithm. Examples of parallel Lanczos algo-
rithms are discussed in Kim and Chronopoulos (1991}

In algorithm 1, step (2), or step (5), must be com-
pleted before the rest of the computations in the same
step start. This forces double access of vectors g,7,4¢
from the main memory at each iteration.

Algorithm 2: The Modified Arnoldi Algorithm

Choose r, with r, # 0
Forj = 0 until Convergence Do

1. Compute and store Ar,

2. Compute {r,r)), (Ar,7)), (Ar.q) ¢ =
Lioooog

3. h.1+1-r = '()’ J)
i o1 = (Ar,r (T, »
hoyjor = Arpgdlh ;0 8 = L,...,]

4. 9,4, :Tj/h_]+l.[.
5]+l = Arj/h/+l‘_f - 2}[:1 hqul
EndFor

Algorithm 2 is a variant of algorithm 1, and the or-
thonormal vectors ¢; are generated in the same way as

the standard Arnoldi method. Computationally the dif-
ference between algorithms 2 and 1 is the computation
of 7; and the elements of upper Hessenberg matrix H
We need one more vector operation to compute 7;
algorithm 2. Algorithm 2 is better for parallel process-
ing because the j + 1 (at jth iteration) inner products
can be executed simultaneously. Also, one memory
sweep through the data is required to complete each
iteration, allowing better management of slower
memories.

In algorithm 2 we must add a step similar to step
(5") of algorithm 1 to check the stopping criterion. The
stopping criterion requires the computation of 4;,
and eigenvectors of the reduced matrix H;. Each pro-
cessor in parallel computers has H; and computes the
stopping criterion after step (5) of algorithm 1 or step
(3) of algorithm 2. Therefore another synchronization
point is not required to check convergence in algo-
rithms 1 and 2.

In the next section we propose an s-step Arnoldi
algorithm, which executes simultanecusly in a certain
sense s consecutive steps of algorithm 1.

5. THE s-STEP ARNOLDI ALGORITHM

Let us denote by & the iteration number in the s-step
Arnoldi method. Given the vectors vkl,vk‘z,. Cy U We
will use V, (each of dimension N) to denote the matrix
v,}. Initially we start with a vector v,
v,'. One way to

of {v,) w2, ...,
and form v,? = Av;%,. .., v = A7
obtain an s-step Arnoldi algorithm is to use these s lin-
early independent vectors. We next form V, from v,
= Av/’, v22 = Av21, ce, U = AS"‘UQI. Then we or-
thogonalize V, against V,. Inductively we form V, for &
> 1. The subspaces V,Vs, . . . V, are mutually orthog-
onal, but the vectors {v,',v,%, . .., v’} are not orthogo-
nal; that is, V,” V, is not a diagonal matrix.

Each subspace V; can be decomposed into Qk * R,
where Q, is an orthonormal basis of V, and Risans
X s upper triangular matrix.

Remark 1. Let V; be orthogonal to V fori; # ¢,.
Then V, = {V,, VQ, ..., V,} can be decomposed into
Q, * _R,, where Qk = {0, Qs ..., Q,,} and R, =
dlag(Rl, Ry, ..., Ry).

ProposiTiON 1. Let H ; be a upper Hessenbery matrix
and H, = R~ IHkafbrj = sk. Then H, is similar to the
matrix H;and H, is a block upper Hessenberg matrix whose
each block H,‘J-, Jor ! =, <k, iss X s matrices und the
subdiagonal block H,, , ; has only nonzero element ai lo-
cation (1,s5). We further assume that the degree of the min-
imal pohymomial of v, is greater than s * k.

Proof. By remark I, R, is nonsingular if all R,, for

i = 1,...,k are nonsingular, which is the case if
v, ..., v are linearly independent. So H, is similar to
the matrix HJ-. Since R, = diag(R|, Ry, ..., R;) and
R, fori = 1,...,kis an s X s upper triangular

matrix, R, ~! has the same structure as R,. Thus, the
product R, 'H R, for j = sk is a block upper Hes-
senberg matrix with lower diagonal blocks in a special
form; that is, the main subdiagonal blocks have only
one nonzero entry in the upper right corner. We will
demonstrate this for the special case s = 3, 4 = 3. The
general case is shown similarly, but the description is
more complicated.

F‘***] r*****
* ok * ok ok kK
* ok %
* %k % koE ok
Ra_]HQR;J,: EES * ¥
* *
® Kk
*
L * L
% k%] [# % % % %
* LIE I
¥ ok k%
* ok * ok K
- * % * %
* *
* k%
*
L * _| L

We use H, as a block upper Hessenberg matrix,
even though the structure is the same as a upper Hes-
senberg matrix. W

We will use the following s-dimensional column no-
tations for the blocks H, , of the block upper Hessen-
berg matrix H,:

H,, = [, fori=1,...5,

H* X X X %K KK
LI R I

L U I B 3

¥ ¥ ¥ K A K K ¥
L . B B R
¥ O¥ K K X K ¥ X ¥

A 2 A 2

*®

*
* XK X X X ¥

“In the standard Arngldi algorithm

¥ K

iteration, the inner products cannot
be perfermed in parallel. Aigorithms
hased on restructuring the standard
Arnoldi algerithm to decrease the
glebal communication cost and to
get better performance in distrib-
ated-memory message passing sys-
tems are introduced here.”

[T % % %
* %
*
*
*
* &
— L —
- ™ % % o ok o ok ko kT
¥ %k ok ok koK koA kK
N EEEE
kok ok ok kR ok Kk
= WOk ok R
* ok ok ok ok
% % kK
* ok ok
] L * ok _

1" and &y, is the el-
ement in position (z,j) of each block H .

where hy;' = Thixs oo,

THEOREM 1. Let A be an N X N nonsymmetric matrix and
V, ={V, V...,V }for N = sm. Let

Vv, 'AV, = H, or 4)
AV, =V _H,_, 5)

then H, = R, ‘HyR, where Hy is the
Arnoldi upper Hessenberg matrix and R,, is the
block upper triangular matrix defined in remark I.

i

Proof. From remark 1 we have
(@QnR) ' AQR,) = RN QT AQR,, =
From remark 1 @, is an orthogonal matrix and
Q,."AQ,, is a upper Hessenberg matrix. By the implicit
Q theorem (Golub and Van Loan, 1989), Q,,7AQ,, is
(up to a sign) the same as the Arnoldi upper Hessen-
berg matrix Hy and Q,, is the same sequence of vec-
tors as the standard Arnoldi vectors Qy if the initial
vector v, is the same. Also H,, is a block upper Hessen-
berg matrix form in proposition 1.
COROLLARY 1. The block upper Hessenberg matrix H,, for
k=1,. .,m — I has the same eigenvalues as the {al-
gorithim 1) upper Hessenberg matrix H ., for j = sk.
Proof. By theorem 1 and proposition 1, the matri-
ces Hy and H, for j = sk are similar. W
If k < m then by equating column blocks in Eq. (5)
we obtain the following equation:

AV, = V,H, + we,” fork=1,....,m — 1 (6

where the vector u, is called the residual vector after %
iterations of s-step method and the vector ¢ is
[0,...,0,1] of dimension s * k. From Eq. (6) we derive
the following block equations:

k
AV, = E ViHp + uew” (N
=1
Equations (5), (6), and (7) motivate the derivation of an
s-step Arnoldi algorithm. Initially we can form V, =
[v,', Av,, ..., A" 'u,'], then we select the new Krylov
vector from Eq. (7).

— s s
u; = Av, Vih,

h, , is selected to orthogonallze the residual vector u,

against V,. We choose ve' = u, (i.e., normalization is
not apphed) Then we form the vectors {vs%, . . ., vy'}
in V4 from the vectors {Av2 ,...,A* Tv,'} by orthog-

onalizing them against V. Thus, v/, for 2 <j <5, are
determined by the linear combinations:

5
vel = ATyt — E vty forj=2,...,5,

< sand 2 < j =< s, are param-

where {¢; ,"/}, for 1 <
S,j]T’

eters to be determined. Let t;,/ = T Y
for 1 < < k, denote the parameters defining v, , /.
We now give the defining equations of the s-step Ar-
noldi method in the form of an algorithm.

Algorlthm 3: The s-step Arnoldi Algorithm

V, = [v,L A, . AT Y]

For & = 1 until Convergence Do

Select [hy, '], for I <{<kand | Si<y, toor-
thogonalize V, against Ve Vl in Eq. (7).
This gives also:
k p—
vher! = Avg = 2 Vily® (8)
i=1

Select [tl_kj], 2=j=5s5t0 or[hogonahze

{Av, ., .. A T o ") against V..V
which gives
B
vpet! = A oy 2 tlki
forj = 2, , § 9)
EndFor

Next, we demonstrate how to determine the pa-
rameters_h,,ki, t,)kj in algorithm 3. Equation (7) multi-
plied by V7, for 1 <! < k from the left yields

VT AV, = V/VH, (10)
Equation (9) multiplied by V" from the left yields
0=VT A o, ' =V Vi, d forj=2 .5 (1D

Equations (10} and (11) determine (hy,'], 1 Si<s
and [t;)J], 2 <j < s as solutions of linear systems of size

Table 3

Vector Operations for s Iterations from the s(k — 1)th Iteration of the
Standard Method and the kth Iteration of the s-Step Method

Operation

Standard
Arnoldi Algorithm

s-Step Amoldi
Algorithm

Inner products

Vector updates
Matrix*vector
Vector-storage

(k—1)52+§(s+1)+s

(2k -~ 1)52
s
ks + 1

(k71J52+§(s+1)+s

20k — 1)s?
s+ 1
ks + 1

s. We will introduce some notations in order to describe
these linear systems.

REMARK 2. Let W, = V,"V, = {(v,,v/)}, 1 <ijj <
s, then Wy is symmetric and it is nonsingular if and only
if v, !, ..., v, are linearly independent.

REMARK 3. From Eqgs. (10) and (11) and remark 2 it
follows that the following linear systems must be solved
to determine [hl,ki}, I<is<sand[t,J], 2 <)<

Wh,' = Cii'y where ¢’

= [Avy) ..o, (0, Ay, (12)
W,tl,kj = bl,kj where bl,kj ,
= [(vzl: A lvk+ 1 l), B (Y lvk+11)]T (13)

The following corollary reduces the matrix W, to the
computed scalars in previous iterations and the follow-
ing inner products

(Avtuf) fori=1,...,5 j=1,...,5
! =1,...k - land (14)
(A, Av,") fori=0,...,5 — 1
J=d..,s (15)

CoroLLary 2. The computation of matrix W, = (v}, vJ),
I <1< scan be reduced to the inner products in Egs. (14)
and (15) and the computed scalars in previous iterations.

Proof. We use the block orthogonality of V, and
Egs. (8) and (9). The matrix of inner products W, can be
formed from the inner products in Eqgs. (14) and (15)
and the s-dimensional vectors bl,k_lj as follows:

i, wl) = (A7 !, A ly)

k=1 s
- 2 2 tp—1" " Yoy, ATy, for

=1 r=1

2=ij=s

Also, the vectors ¢/, by J can be reduced to computing
the inner products in Egs. (14) and (15) and previous
scalar work using a proof similar to corollary 2. Thus,
the inner products (on vectors of size N) which are re-
quired in forming H, V,.,in algorithm 3 equals (¢ —
D+ 2+ ...+ + 1. W

We now reformulate the s-step Arnoldi algorithm
taking into account the theory developed above.

Algorithm 4: The s-step Amoldi Algorithm
Select v, !
Compute ¥, = [v,", Av,', ..., A" 0]
Compute inner products in Eq. (15)
For £ = 1 until Convergence Do
1. Call Scalarl

2. Compute vy, ,' = Av,® — Tf, Vhy,*
3. Compute Avy, 5, A%v, oo Ay
4. Compute the inner products in Egs. (14) and

(13)

5. Call Scalar2
6. Compute v,, / = A’ ~'v, " — ., Vi, d)
forj=2,...,s
EndFor
Scalarl: Decomposes W, and solves W,El‘ki = ¢y
fori = 1,...,s as explained in Eq. (12).
Scalar2: Solves Wt J = by J, forj = 2,.. . s as

explained in Eq. (13).

From Eq. (6) it follows that in the s-step Arnoldi
method, the Ritz values of A4 in V, are the eigenvalues A,
of Hy, and the Ritz vectors are vectors V,x,(= z,), where
x; are eigenvectors of H, associated with A,. The resid-
ual norms of the Ritz value N and Ritz vector z can be
computed by using the formula [(A — M)zl = lu, [54
where 3, is the last element of eigenvectors of H,. This
can be used as a stopping criterion.

We next compare the computational work and stor-
age of the s-step Arnoldi method to the standard Ar-
noldi method (Table 3). We present only the vector
operations on vectors of dimension N and neglect the

operations on vectors of dimension s. If the matrix A is
symmetric then H, reduces to a block tridiagonal matrix

T, and this algorithm reduces to the s-step Lanczos
method (Kim and Chronopoulos, 1991). Approxima-
tions to the eigenvalues of A are obtained by computing
eigenvalues of the block upper Hessenberg matrices H,.

6. NUMERICAL EXPERIMENTS

Large, sparse problems arise frequently in the numer-
ical integration of partial differential equations (PDEs).
Thus, we borrow our model problem from this area.
Elliptic PDEs are often steady state equations for time-
dependent PDEs describing physical models. The larg-
est (or smallest) in real part eigenvalues of the steady
state operators are computed in order to determine the
dynamical system stability of the approximated physical
model.

The test problems were derived from the five-point
discretization of the following partial differential oper-
ator. Problem:

- (b, — (ewy), + (du), + (eu), + fu
on the unit square, where
blx,y) = e77, clx,y) = €7, dix,y) = Blx + y)
e(x,3) = y(x + y)and f(x,3) = LAl + x + y)

subject to the Dirichlet boundary conditions z = 0 on
the boundary. The parameters and vy are useful for
changing the degree of symmetry of the resulting co-
efficient matrix of the linear systems. Note that the ma-
trix A resulting from the discretization remains positive
real independent of these parameters. We denote by n
the number of interior nodes on each side of the square
and by £ = 1/(n + 1) the mesh size. In this paper we set
v = 50and B = I and obtain a nonsymmetric matrix of
size N = n®.

We use the following programs: (1) Saad’s program
(Code), which implements the standard Arnoldi method
with reorthogonalization and with iterative deflation;
an Arnoldi procedure is said to be iterative if within the
Arnoldi procedure a sequence of upper Hessenberg
matrices is generated, each of which corresponds to a
different starting vector; (2) the standard Arnoldi
method implementing algorithm 1; (3) the modified
Arnoldi method implementing algorithm 2; (4) the
s-step Arnoldi method implementing algorithm 4.

First, we conduct accuracy tests. We choose € =
107° for the stopping criterion in Saad’s program. The
matrix A has dimension N = 4,096 in our accuracy
tests. In the standard, modified, and s-step Arnoldi
method we computed the largest eigenvalues after up-
per Hessenberg matrices H; of size j are generated. We
used EISPACK on the matrix H;. In Table 4, as the size
of upper Hessenberg matrices of standard method in-
crease, the largest eigenvalue of the upper Hessenberg
matrix is very close to actual eigenvalue by Saad’s pro-
gram with 10~® accuracy. Tables 4 and 5 show that
upper Hessenberg matrices generated by the modified
and s-step methods have the same largest eigenvalues in
real parts as the standard method. These tests were run
on the single-processor CRAY-2 with single precision.
For large s > 5 loss of accuracy for eigenvalues has been

Table 4
Largest Eigenvalues of Matrix A on CRAY-2
Code Standard Arnoldi Method
: Matrix-Vecter Matrix-Vector
Size of A, Largest Eigenvalue Products Largest Eigenvalue Products
10 0.10204000E + 02 81 0.9575713E+01 10
20 0.10204000E + 02 81 0.10199149E + 02 20
30 0.10203999E +02 91 0.10204783E + 02 30
40 0.10203866E + 02 81 0.10204008E + 02 40
Table 5
Largest Eigenvalues Using the Modified and s-Step Arnoldi Metheds
on CRAY-2
H; Modified 2-Step 3-Step
10x10 0.9575713E + 01 0.8575713E + 01 -
20x 20 0.10199149E + 02 0.10199149E + 02 -
30 x 30 0.10204783E + 02 0.10204783E + 02 0.10204783E + 02
40 x 40 0.10204008E + 02 0.10204008E + 02 -
H; 4-Step 5-Step 6-Step
10 x 10 - 0.9575713E+ M1 -
20 x 20 0.10199149E + 02 0.10199149E + 02
30 x 30 - 0.10204783E + 02 0.10204782E + 02
40 x 40 0.10204008E + 02 0.10204008E -+ 02

o : standard
% : modified
O: 5-step
180} -
120+ _
time{msec
60 -
0 1 [i i

64 100 128 200 256
the vector size YN =

Fig. 4 CRAY-2 performance (msec) using four
processors for the Arnoldi methods

o : standard
x : modified
[3: 5-step
24+ .
161 _
time(sec)
LS .
O 1 i 1
64 128 192 256

the vector size N/I—V—

Fig. 5 NCUBE/? performance (sec) using 64 nodes for
the Arnoidi methods

observed. Loss of accuracy comes from solving s X s
linear systems in algorithm 4 for large s, because these
linear systems are not welt conditioned.

Second, we run performance tests on the 64-node
NCUBE/7 and four-processor CRAY-2 of the Univer-
sity of Minnesota. We used explicit multitasking on the
CRAY-2. In these performance tests we compare the
execution times for programs (2), (3), and {4). In these
tests we varied the dimension of A from N = 64° o N
= 256%. We obtained 20 X 20 upper Hessenberg ma-
trices. Figure 4 shows the execution times of these
methods for different size test problems on the CRAY-2
with four processors. Memory reference time and calls
to the Multitasking Library are decreased by making
possible grain size large and by decreasing synchroni-
zation points in the modified and s-step methods, so
those methods have better performance than the stan-
dard one on CRAY-2.

Figure 5 shows the execution times of the standard,
modified, and s-step methods for different sizes of test
problems with 64 on the NCUBE/7. The s-step method
is faster than the modified and the modified is faster
than the standard method. This can be explained as
follows. The speed of the matrix-vector products and
linear combinations is the same for all three methods.
However, performing individual inner products is
much slower than performing them simultaneously in
groups (because of high global communication costs,
see Table 3). The s-step method has an overhead in
matrix-vector products, it has fewer vector updates (see
Table 3), and it performs 2s inner products simulta-
neously. The modified method performs two inner
products simultaneously.

7. CONCLUSION

The Arnoldi algorithm was restructured in this paper.
The modified algorithm decreases the global commu-
nication bottleneck of the standard Arnoldi algorithm
by restructuring computations in such a way as to in-
crease the number of inner products that are accumu-
lated during one iteration. The modified algorithm im-
proves data locality by decreasing the memory conten-
tion bottleneck.

We have also introduced an s-step Arnoldi method

and proved that s-step methods generate block upper
Hessenberg matrices that are similar to reduction ma-
trices generated by the standard Arnoldi method. The
resulting algorithm has better data locality and parallel
properties than the standard one. In the s-step method,
the inner products needed for s steps of the standard
method can be performed simultaneously and the vec-
tor updates are replaced by linear combinations. The
s-step Arnoldi method requires less computational work

than the standard one.

ACKNOWLEDGMENT

We thank the anonymous
referees and editor whose
comments helped en-
hance significantly the
quality of presentation of
this article.

The research was par-
tially supported by Uni-
versity of Minnesota
Graduate School grant
0350-2104-07, and Na-
tional Science Foundation
grants CER
DCR-8420935 and CCR-
8722260. The Minnesota
Supercomputing Institute
provided time on CRAY-
2.

BIOGRAPHIES

S. K. Kim obtained a B.S.
in mathematics (in 1979)
from Ehwa Womans Uni-
versity {Korea) and an
M.S. in computer science
from the Korea Advanced
Institute of Science and
Technology (in 1982).
She received a Ph.D. in
computer science from
the University of Minne-
sota (in 1991). Her re-
search interests include
parallel numerical algo-

rithms and mathematical
software.

A. T. Chronopoulos ob-
tained a B.S. in mathe-
matics {in 1979) from the
University of Athens
(Greece) and an M.S. in
applied mathematics from
the University of Minne-
sota (in 1981). He re-
ceived a Ph.D. in com-
puter science from the
University of Illinois at
Urbana-Champaign {in
1986). Since 1987 he has
been an assistant profes-
sor of computer science at
the University of Minne-
sota in Minneapolis. His
research interests include
numerical analysis and
parallel processing.

SUBJECT
AREA EDITOR

lain Duft

REFERENCES

Aykanat, C., Ozguner, F.,
Ercal, F., and
Sadayappan, P. 1988, It-
erative algorithms for so-
lution of large sparse sys-
tems of linear equations

on Hypercubes. IEEE
Trans. Comput. 37
(12):1554—-1568.

Chronopoulos, A. T., and
Gear, C. W. 1989a. S-step
iterative methods for sym-
metric linear systems. J.
Comprut. Appl. Math.
25:153-168.

Chronopoulos, A. 1", and
Gear, C. W. 1989b. On
the efficient implementa-
tion of preconditioned
s-step conjugate gradient
methads on multiproces-
sors with memory hierar-
chy. Parallel Comput.
11:37-52.

Dave, A. K., and Duff,

L. S. 1987. Sparse matrix
calculations on the
CRAY-2. Parallel Comput.
h:55-64.

Dongarra,]. J., and
Sorensen, D. C. 1986.
Linear algebra on high-
performance computer.
Conf. Parallel Computing
1985 proceed. M.
Feilmeier et al. eds.
Elsevier Pub. 1986.

Golub, G. H,, and Van
Loan, C. F. 1989. MA-
TRIX Computations. Balti-
more: Johns Hopkins
University Press, pp. 219~
295.

Gustafson, J. L., Montry,
G. R, and Benner, R. E.
1988. Development of
parallel methods for a
1024-processor hyper-
cube. STAM]. Sci. Statist.
Comprut. 9(4).

Kim, S. K., and
Chronopoulos, A. T.
1991. A class of Lanczos
algorithms implemented
on parallel computers.
Parailel Comput. 17.

Meurant, G. 1987. Mult-
tasking the conjugate gra-
dient method on the

CRAY X-MP/48. Parallel
Comput. 5:267-280.

McBryan, O. A., and van
de Velde, E. F. 1987. Ma-
trix and vector operations
on hypercube parallel
processors. Parallel Com-
put. 5:117-125.

Ni, L. M., King, C. T,
and Prins, P. 1987, Paral-
lel algorithm design con-
siderations for hypercube
multiprocessors. Proc. of
the 1987 International Conf.
on Parallel Processing.

Ranka, S., Won, Y, and
Sahni, 8. 1988. Program-
ming the NCUBE Hyper-
cube. Tech. Rep. CSci
No. 88-13. Minneapolis:
University of Minnesota.

Ruhe, A. 1982, The two
sided Arnoldi algorithm
for nonsymmetric eigen-
value problems. Springer-
Verlag Lecture Notes in
Math. 973:104-120.

Saad, Y. 1980. Variation
on the Arnoldi’s method
for computing eigenele-
ments of large unsymmet-
ric matrices. Linear Algebra
Appl. 34:269-295.

Saad, Y. 1984. Chebyshev
acceleration techniques
for solving nonsymmetric
eigenvalue problems.
Math. Comp. 42:567-588.

Saad, Y. 1985. Partial
eigensolutions of large
nonsyminetric matrices.
Research Report YALUE/
DCS/RR-397.

Saylor, P. E. 1988. Leap-
frog variants of iterative
methods for linear alge-
braic equations. J. Comput.
Appl. Math. 24:169-193.

Wilkinson, J. H. 1965. The
algebraic eigenvalue problem.
New York: Oxford Uni-
versity Press.

