2/8/12

Inverse of a matrix

Let A be a square matrix of size n.

If $|A| \neq 0$, then A is a non-singular matrix and there exists an n×n matrix, denoted A⁻¹, such that A.A⁻¹ = I_n.

A⁻¹ is unique.

For a 2x2 matrix, the inverse is calculated as follows.

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, \overline{A}^{\dagger} exists if $|A| = ad - bc \neq 0$.

Let us assume that $|A| \neq 0$. Then,

$$\overline{A}^{1} = \frac{1}{|A|} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} \frac{d}{ad-bc} & \frac{-b}{ad-bc} \\ \frac{-c}{ad-bc} & \frac{a}{ad-bc} \end{pmatrix}$$

Prove that $AA^{-1} = A^{-1}A = I_2$ and $(A^{-1})^{-1} = A$.

For larger square matrices, finding the inverse is significantly more complex.

Elementary row operations

Any nonsingular square matrix can be reduced to an identity matrix using elementary row operations.

Elementary column operations can be defined in a similar manner.

Gauss-Jordan elimination method to find the inverse of a matrix

Frample:
$$A = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$$
, Find $\overline{A^{1}}$, $|A| = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix} = 2 \cdot 4 - 1 \cdot 3$
 $= 5 \neq 0$
2 $3 \begin{vmatrix} 1 & 0 & R_{1} \cdot \frac{1}{2} \Rightarrow R_{1} & 1 & \frac{3}{2} \\ 1 & 4 \end{vmatrix} = 0$, $|A| = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix} = 2 \cdot 4 - 1 \cdot 3$
 $= 5 \neq 0$
2 $3 \begin{vmatrix} 1 & 0 & R_{1} \cdot \frac{1}{2} \Rightarrow R_{1} & 1 & \frac{3}{2} \\ 0 & 1 & 1 & 4 \end{vmatrix} = 0$, $|A| = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix} = 2 \cdot 4 - 1 \cdot 3$
 $= 5 \neq 0$
1 $4 \begin{vmatrix} 0 & 1 & 1 & 4 \end{vmatrix} = 0$, $|A| = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix} = 2 \cdot 4 - 1 \cdot 3$
 $= 1 + 4 \begin{pmatrix} 2 & 0 & R_{1} \cdot \frac{2}{3} \Rightarrow R_{2} & 1 & \frac{3}{2} \\ 1 & 0 & \frac{1}{2} + 2 & \frac{1}{2} & 0 \\ 1 & \frac{2}{2} & \frac{1}{2} & 0 & R_{1} \cdot \frac{2}{3} \Rightarrow R_{2} & 1 & \frac{3}{2} & \frac{1}{4} \cdot 0 & 1 & \frac{3}{4} \\ 1 & \frac{1}{2} - \begin{pmatrix} 2 & 1 \\ -\frac{1}{3} & \frac{2}{3} & 0 & 1 \\ 1 & \frac{1}{2} + \frac{2}{3} & -\frac{3}{3} & 1 & 0 \\ 1 & \frac{1}{2} + \frac{2}{3} & -\frac{3}{3} & 1 & 0 \\ 1 & \frac{1}{2} + \frac{2}{3} & -\frac{3}{3} & 1 & 0 \\ 1 & \frac{1}{2} + \frac{2}{3} & -\frac{3}{3} & 1 & 0 \\ 1 & \frac{1}{2} + \frac{2}{3} & -\frac{3}{3} & 1 & 0 \\ 1 & \frac{1}{2} + \frac{2}{3} & -\frac{3}{3} & 1 & 0 \\ 1 & \frac{1}{2} + \frac{2}{3} & -\frac{3}{3} & 1 & 0 \\ 1 & \frac{1}{2} + \frac{2}{3} & -\frac{3}{3} & 1 & 0 \\ 1 & \frac{1}{2} + \frac{2}{3} & -\frac{3}{3} & 1 & 0 \\ 1 & \frac{1}{2} + \frac{2}{3} & -\frac{3}{3} & 1 & 0 \\ 1 & \frac{1}{2} + \frac{2}{3} & -\frac{3}{3} & 1 & 0 \\ 1 & \frac{1}{2} + \frac{2}{3} & -\frac{3}{3} & 1 & 0 \\ 1 & \frac{1}{3} + \frac{2}{3} & 0 & 1 \\ 1 & \frac{1}{3} + \frac{2}{3} & 0 & 1 \\ 1 & \frac{1}{3} + \frac{2}{3} & 0 & 1 \\ 1 & \frac{1}{3} + \frac{2}{3} & \frac{1}{3} & \frac{1}{3} & \frac{2}{3} \\ 1 & \frac{1}{3} & \frac{2}{3} & 0 & 1 \\ 1 & \frac{1}{3} + \frac{2}{3} & \frac{1}{3} & \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ 1 & \frac{1}{3} & \frac{2}{3} & \frac{1}{3} & \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ 1 & \frac{1}{3} & \frac{2}{3} & \frac{1}{3} & \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ 1 & \frac{1}{3} & \frac{1}{3} & \frac{2}{3} & \frac{1}{3} & \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ 1 & \frac{1}{3} & \frac{2}{3} & \frac{2}{3} & \frac{1}{3} & \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ 1 & \frac{1}{3} & \frac{2}{3} & \frac{2}{3} & \frac{1}{3} & \frac{2}{3} & \frac{1}{3} & \frac{2}{3} & \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ 1 & \frac{2}{3} \\ 1 & \frac{2}{3} &$

Gauss-Jordan Elimination Method

1. Augment the given square matrix
$$A_{nm}$$
 with In .
 $A \mid I$
2. Replace Rows by $\frac{1}{a_{11}}$. Rows .
3. Make all other entries in cold geros by
using the row op.
 $R_2 - a_{21} \cdot R_1 \rightarrow R_2$ for rows .
 $R_3 - a_{31} \cdot R_1 \rightarrow R_3$ for rows .
The augmented matrix is now of the fam
 $I = a_{11}' - a_{12}' - a_{12}' + a_{12}' - a_{13}' + a_{13}' + a_{13}' - a_{13}' + a$

This switching of rows to ensure the diagonal element is nonzero is called **pivoting**.

Solution to system of Linear equations

 $\chi_1 + 2\chi_2 + \chi_3 = 4$ $3x_1 - 4x_2 + 2x_3 = 2$ 5×1+3×2+5×2 =-1 $\begin{array}{c|c} 1 & 2 & 1 \\ \hline 3 & -4 & 2 \\ & - & - & 2 \\ \hline x_2 \end{array}$ 1.x,+2.x2+1.x3=4 > 2 A3x3 x_{3x1} Ax = bIf A is non-singular, IAIto, then A' exists. A'Ax = A'b> $T \cdot \chi = \chi'_{b} \longrightarrow \chi = \chi'_{b}$

Note: If the equations are independent, that is, none of the equations can be obtained by a linear combination of the other two equations, then the corresponding matrix is nonsingular.

 $a_1 + k_1 + a_2 + \dots + a_n + x_n = b_1$ a2, x, + a22 k2 + ··· + a2n kn = b2 $a_{n_1}x_1 + a_{n_2}x_2 + \dots + a_{n_n}x_n = b_n$ $\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_{1} \\ \vdots \\ \vdots \\ x_{n} \end{pmatrix} = \begin{pmatrix} b_{1} \\ \vdots \\ b_{n} \end{pmatrix}$ A AX = 5 AAX=AB W X=AB Augmented matrix AL

Gauss-Jordan Elimination to Solve System of Linear Equations

$$\begin{aligned} \| \mathbf{L}_{\mathbf{r}} \cdot \begin{pmatrix} \mathbf{A}_{11} \mid \mathbf{0} \cdots = \mathbf{0} \\ \mathbf{0} \mid \mathbf{a}_{12} \cdots \mathbf{0} \\ \mathbf{0} \mid \mathbf{c}_{\mathbf{n}} \mid \mathbf{0} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{b}_{11} \\ \mathbf{b}_{12} \\ \mathbf{b}_{11} \end{pmatrix} = \begin{pmatrix} \mathbf{a}_{11} \mathbf{b}_{11} \\ \mathbf{a}_{21} \mathbf{b}_{22} \\ \mathbf{c}_{11} \mathbf{b}_{11} \end{pmatrix} \\ \begin{pmatrix} \mathbf{a}_{11} \mid \mathbf{0} \mid \mathbf{0} \mid \mathbf{c}_{11} \\ \mathbf{c}_{11} \mid \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{c}_{11} \mid \mathbf{c}_{11} \\ \mathbf{c}_{11} \mid \mathbf{c}_{11} \end{pmatrix} \\ \begin{pmatrix} \mathbf{c}_{11} \mid \mathbf{c}_{11} \\ \mathbf{c}_{11} \mid \mathbf{c}_{11} \end{pmatrix} \\ \mathbf{c}_{11} \mid \mathbf{c}_{11} \mid \mathbf{c}_{11} \end{pmatrix} \\ \begin{pmatrix} \mathbf{c}_{11} \mid \mathbf{c}_{11} \\ \mathbf{c}_{11} \mid \mathbf{c}_{11} \end{pmatrix} \\ \mathbf{c}_{11} \mid \mathbf{c}_{11} \mid \mathbf{c}_{11} \end{pmatrix} \\ \mathbf{c}_{11} \mid \mathbf{c}_{11} \mid \mathbf{c}_{11} \end{pmatrix} \\ \mathbf{c}_{11} \mid \mathbf{c}_{11} \mid \mathbf{c}_{11} \mid \mathbf{c}_{11} \end{pmatrix} \\ \mathbf{c}_{11} \mid \mathbf{c}_{11} \mid \mathbf{c}_{11} \end{pmatrix} \\ \mathbf{c}_{11} \mid \mathbf{c}_{11} \mid \mathbf{c}_{11} \end{pmatrix} \\ \mathbf{c}_{11} \mid \mathbf{c}_{11} \mid \mathbf{c}_{11} \mid \mathbf{c}_{11} \end{pmatrix} \\ \mathbf{c}_{11} \mid \mathbf{c}_{11} \mid \mathbf{c}_{11} \mid \mathbf{c}_{11} \end{pmatrix} \\ \mathbf{c}_{11} \mid \mathbf{c}_{11} \mid \mathbf{c}_{11} \end{pmatrix} \\ \mathbf{c}_{11} \mid \mathbf{c}_{11} \mid \mathbf{c}_{11} \end{pmatrix} \\ \mathbf{c}_{11} \mid \mathbf{c}_{11} \mid \mathbf{c}_{11} \mid \mathbf{c}_{11} \end{pmatrix} \\ \mathbf{c}_{11} \mid \mathbf{c}_{11} \mid \mathbf{c}_{11} \mid \mathbf{c}_{11} \end{pmatrix} \\ \mathbf{c}_{11} \mid \mathbf{c}_{11} \mid \mathbf{c}_{11} \mid \mathbf{c}_{11} \end{pmatrix} \\ \mathbf{c}_{11} \mid \mathbf{c}_{11} \mid \mathbf{c}_{11} \mid \mathbf{c}_{11} \end{pmatrix} \\ \mathbf{c}_{11} \mid \mathbf{c}_{11} \mid \mathbf{c}_{11} \mid \mathbf{c}_{11} \end{pmatrix} \\ \mathbf{c}_{11} \mid \mathbf{c}_{11} \mid \mathbf{c}_{11} \mid \mathbf{c}_{11} \end{pmatrix} \\ \mathbf{c}_{11} \mid \mathbf{c}_{11} \mid \mathbf{c}_{11} \mid \mathbf{c}_{11} \end{pmatrix} \\ \mathbf{c}_{11} \mid \mathbf{c}_{11} \end{pmatrix} \\ \mathbf{c}_{11} \mid \mathbf{c}_$$

Show that $(AB)^{-1} = B^{-1}A^{-1}$, where A and B are nonsingular n×n matrices.

21. Show that $(A^n)^{-1} = (A^{-1})^n$, where A is a nonsingular nxn matrix.

$$(A^{n})^{T} = (A \ A^{n-1})^{T} = (A^{n-1})^{T} \cdot A^{T}$$

= $(A \ A^{n-2})^{T} \ A^{-1}$
= $(A^{n-2})^{T} \ A^{-1}$
= $(A^{n-2})^{T} \ A^{T} \ A^{-1}$
= $(A^{n-2})^{T} \ A^{T} \ A^{-1}$
= $(A^{n-2})^{T} \ A^{T} \ A^{-1}$
= $(A^{n-2})^{T} \ A^{-1} = (A^{-1})^{n}$
ntimes

22. Show that $(AA^t)^t = AA^t$, where A is an n×n matrix. [We will use the result from Problem 17b, $(AB)^t = B^t A^t$]

$$(A A^{t})^{t} = (AB)^{t} = B^{t} A^{t} = (A^{t})^{t} A^{t} = AA^{t}$$