Random Variables

A random variable (RV) is a real-valued function defined on the sample space Ω of a RE.

Let X be a RV defined on the sample space Ω . If $\omega \in \Omega$, then $X(\omega)$ is a real number.

Example: Consider the RE of 3 fair coin flips.

 $P(X \ge 0) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 1/8 + 3/8 + 3/8 + 1/8 = 1$

Example:

Two players play a game by flipping a fair coin one or two times. If the first flip results in a head, then the game stops. Otherwise, the coin is flipped just one more time, and the game stops regardless of the outcome. If the game ends in a head, then player 1 loses \$1 to player 2. Otherwise, player 1 wins \$3 from player 2.

Give the sample space. If X is a RV denoting the winnings by player 1, give the values X takes.

 $\Lambda = \{H, TH, TT\}$ X(H) = -1 $X(T_{4}) = -1$ X(TT) = 3 $P(H) = \frac{1}{2}$ $P(TH) = P(T \cap H)$ $p(TT) = p(T) \cdot p(T)$ = -12 . -12 $= P(\tau) \cdot P(H|\tau)$ = 1 4 = P(T) · P(H) $= \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$

Bernoulli trials
 Success with

 A R.E. That has exactly two outcomes
 pole P

 is a Bernoulli trial.
 pole
$$P$$

 1. Coin flip - head (Ancient) with prof. p
 pole P

 2. if (B) then {} else {}
 pole P

 P(success) + P(failure) = p + (1-p) = 1
 pole P

 Pair coin: P(heads) = p = 1/2.
 pole P

 Discrete uniform probability distribution
 Consider a RE with finite sample space, Ω , such that $|\Omega| = n$.

 If each sample point is equally likely, then the probability distribution is uniform.
 pack sample point occurs with probability $1/n$.

Binomial probability distribution

Consider a sequence of **n** independent Bernoulli trials, each with **p** as the probability of success.

Let \mathbf{X} = the number of heads observed in \mathbf{n} coin flips Hways k heads can occur in a flips Then, P(exactly k out of n flips resulted in heads) = $P(X=k) = C(n,k) p^{k} (1-p)^{n-k}$ Prob. of one such scenario $\frac{k}{H} + \frac{h}{r} + \frac{h}{r} + \frac{T}{r} - \frac{T}{r} = \frac{T}{r} = \frac{T}{r} = \frac{p(H_1 \cap H_2 \cap \dots \cap H_k \cap T_k \cap \dots \cap T_n)}{p(H_1 \cap H_2 \cap \dots \cap H_k \cap T_k \cap \dots \cap T_n)}$ = $P(H_1) \cdot P(H_2) \cdot - P(H_k) \cdot P(T_{k+1}) \cdots P(T_n)$ $= p^{k} (1-p)^{n-k}$ - pk (1-p)n-k A coin flip I-p (tail) p+v=1. $(p+q), (p+q), \cdots (p+q) = (p+q)^n$ n times B.T. $(x+y)^n = \binom{n}{2} x^0 y^{n+1} (m) x^1$ $(p+q_{1})^{n} = \binom{n}{2}p^{n}q^{n}+\binom{n}{2}p^{n}q^{n-1}$ $+\binom{n}{i} \times^2 y^{n-2} + \cdots$ $\frac{1}{1^n} + \binom{n}{2}p^2 q^{n-2} + \dots + \binom{n}{n}p^n q^{n-n} + \binom{n}{n}x^n Y^{n-n}$ $\frac{1}{1} = \binom{n}{0} q^{n} + \binom{n}{1} p q^{n-1} + \cdots + \binom{n}{k} p^{k} q^{n-k} + \cdots + \binom{n}{n} p^{n}$ $P(x=k) \qquad P(x=k) \qquad P(x=n)$

Discrete Random Variables

Let x defined on a
$$\Omega$$
 take values $x_1, x_2, ..., x_N$
 $x_1 \le x_2 \in \dots \le x_n$.
 $P(x \ge x_1) \ge p(x_1)$ is the prob that X takes value x_1 .
 Ω point prob.
 $p(x_1), p(x_2), ..., p(x_n)$ define a prob mand function
 (pmf) for $\mathbb{R}^n \times X$.
 $P(x \le x_i) = Prob.$ that x takes values $x_1, x_2, ..., or x_i$.
 $(s \le n.)$
 $P(x_i) = p(x_i) = p(x_{i-1}) + p(x_{i-1}) + \dots + p(x_{i-1})$
 $= p(x_i) + p(x_2) + \dots + p(x_i) + \dots + p(x_{i-1})$
 $= p(x_i) + p(x_2) + \dots + p(x_i) = \sum_{k=1}^{i} p(x_k) + \dots + p(x_{k-1})$
 $P(x_i) = p(x_{i-1}) + p(x_1) = p(x_1) + p(x_2)$
 $P(x_1) = p(x_{i-1}) + p(x_2) = p(x_1) + p(x_2)$
 $P(x_1) = p(x_{i-1}) + p(x_2) = p(x_1) + p(x_2)$
 $P(x_1) = p(x_{i-1}) + p(x_2) = p(x_1) + p(x_2)$
 $P(x_1) = P(x_{i-1}) + p(x_2) = p(x_1) + p(x_2)$
 $P(x_2) = p(x_{2}) + p(x_{2}) = p(x_{2}) + p(x_{2}) = 1$
 $P(x \le d) = p(x \le x_1) + p(x \le x_2)$
 $P(x_1) = p(x_2 \le x_1) + p(x_2 x_2)$
 $P(x_2) = p(x_2 \le x_1) + p(x_2 x_2)$

Example: Consider the RE of 3 fair coin flips.

Properties of pmf, p()

Let T = image of X = { x, , x2, ---- } (i) p(x;) > 0 4 all x; (ii) T is finite or countably infinite $(iii) \sum p(z_i) = 1$ X:ET **Properties of CDF, F()** (1) Fis a nondecreasing function. > If x < y, then F(x) < F(y) (ii) $\lim_{x \to 1} F(x) = 1$ X->+a $\begin{array}{c} (iii) \quad \lim_{x \to -\infty} F(x) = 0 \\ x \to -\infty \end{array}$ Let a < b. $P(a < x \leq b) = F(b) - F(a)$ $F(b) = P(a < x \leq b) + P(x \leq a)$ F(a) :. $F(b) - F(c) = P(a < x \le b)$ $\frac{F(b)}{F(b)} + F(b) - F(c)$

Expectation and Variance

The pmf and CDF describe a RV completely. The expectation and variance describe the RV concisely.

Expectation is denoted E(X) or μ . Variance is denoted V(X) or σ^2 .

Let RV X take values $x_1, x_2, ..., x_n$ with nonzero probability.

$$\sigma = \sqrt{0.75}$$
 $CV = \frac{1}{\mu} = \frac{\sqrt{0.75}}{1.5}$