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Abstract

In this paper we describe an algorithm to route
the class of linear
complement permutations on Hy

percube SIMD computers� The class of linear

complement permutations are extremely useful in de

vising storage schemes for parallel array access� The
proposed algorithm is self
routing and minimal� that
is� the path established by the algorithm between each
pair of source and destination processors is via a min

imal path using only the destination processor ad

dress� Furthermore� the algorithm requires only the
optimal number of routing steps to realize any linear

complement permutation� The best known previous
routing algorithms for the Hypercubes are for the class
of bit
permute
complement permutations� a subset of
the class of linear
complement permutations� Those
algorithms are either non
optimal or not self
routing�
The algorithm presented is self
routing� optimal� and
it routes a larger class of permutations� Also� this algo

rithm can route the class of linear
complement permu

tations in multi
dimensional meshes in optimal num

ber of routing steps�

Key words� hypercube� interconnection network� lin

ear permutations� minimal routing� self
routing�

� Introduction

A parallel computer consists of a large number of pro

cessors and an interconnection network to exchange
information among them� For parallel computers� ef

�cient schemes to move data among the processors
are necessary to obtain fast and e�cient parallel al

gorithms� The problem of moving data among pro

cessors is called the data routing problem�� Nassimi
and Sahni ��� have developed communication schemes
for the general case of the data routing problem� how

ever� these schemes take too much time� E�cient and
even optimal �in terms of number of routing steps�
schemes can be developed when the data movement
is regular and systematic� for example� one
one com

munication in which each processor sends data to a
processor and each processor receives data from a pro

cessor� This can be e�ectively modeled as a permu
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tation from the set of processors to itself� Important
problems like FFT� matrix transposition� polynomial
evaluation� etc� can e�ectively be solved in parallel
computers which have an interconnection network to
support the permutation type of communication� In
such cases� the problem of moving data between pairs
of source and destination processors can be treated
as the problem of realizing the corresponding permu

tation using the interconnection network among the
processors�

In this paper� we are interested in developing e�

cient schemes to realize some important classes of per

mutations on SIMD� multicomputers with static inter

connection networks� speci�cally the hypercube com

puter �	�� 	��� In a static �also called� direct� intercon

nection network� each processor is directly connected
via physical communication links to other processors
which are termed adjacent processors� Communica

tion between non
adjacent processors requires routing
data through intermediary processors�

In a hypercube computer� there are N � �n� n � ��
processors� Each processor is given a unique index
�also called� address� from the set f�� 	� � � �� N � 	g�
Processor i �that is� processor with index i� is con

nected to processor j� if and only if the binary repre

sentations of the indices i and j di�er in exactly one
bit� hence� each processor has n adjacent processors
�neighbors�� A hypercube of � nodes is shown in �g

ure 	�

�The acronym SIMD stands for �Single Instruction stream
and Multiple Data streams�� See Flynn ��� for more details�
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Figure 	� An � processor Hypercube�
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An e�cient method to realize arbitrary permu

tations in hypercubes is to use Stone�s adaptation
of Batcher�s sorting technique �	� 	��� this takes
O�log�N � time� An important feature of this tech

nique is� at any time during routing� there are no
more than two messages in a processor� messages can
be routed using only their destination addresses� and
each processor uses only the destination addresses of
the messages� it has� to make routing decisions� This
routing technique is termed as self
routing� the impor

tant advantage of self
routing algorithms is� control
overheads are greatly minimized� Thus it is desirable
to develop self
routing schemes that have smaller de

lay� Another important consideration in routing is to
send each message via a shortest path� Any routing
scheme that achieves this is called a minimal routing
scheme�

The previous known work on fast realization of per

mutations consists of adapting the self
routing algo

rithms developed for multistage interconnection net

works such as the Bene�s network to the hypercube
���� However this routing is not minimal� since data
paths will be of length � logN � 	� in the worst case�
�The length of a data path in a minimal routing is the
hamming distance of the source and destination pro

cessors� addresses� which is� at most� n�� Also� Nassimi
and Sahni �	�� developed a non
self
routing algorithm
for minimal routing of bit
permute
complement per

mutations in hypercubes� Valiant and Brebner �	��
gave a randomized algorithm to route arbitrary per

mutations with distributed control� Their algorithm
typically guarantees that routing will be completed in
O�logN � time with very high probability� however�
it is noteworthy that with a small probability their
algorithm might take up to O�

p
N � time or lead to

deadlock� In this paper� we are interested in obtaining
routing algorithms that are deterministic with respect
to completion time�

In this paper� we present a minimal self
routing
algorithm to route the class of linear
complement
permutations� In a linear
complement permutation�
destination
processor
address bits are linear combina

tions of the source
processor
address bits� An impor

tant application of linear
complement permutations is
in the skewed matrix storage schemes ��� 	��� The set
of bit
permute
complement permutations is contained
in the set of linear
complement permutations� The al

gorithm presented is the �rst such e�ort to self
route
some of the most frequently used permutations� Fur

thermore� the algorithm requires only n routing steps�
each step requiring a constant amount of time to pro

cess�

In the next section� we give the algorithm and dis

cuss its working� Also� we prove that the algorithm

does minimal routing of linear
complement permuta

tions� Later� we use the minimal routing property of
the algorithm to realize linear
complement permuta

tions for circuit switched hypercube� We show that
the algorithm developed for the hypercube can be used
to realize linear
complement permutations on multi

dimensional meshes� We also show that the algorithm
realizes many more permutations other than linear

complement permutations�

� A self�routing algorithm

In a hypercube �Qn� of N � �n processors� there are n
dimensions� �� 	� � � � � n�	� If i is the index of a proces

sor� then i � �in��� � � � � i��� an n
bit vector� such that
i � �n��

p���
pip� If two processors i and j are connected

in dimension p� then the binary representations of i
and j di�er in bit p only�

��� Model of execution

We assume that each communication link can oper

ate in full duplex mode and one word of data can be
sent at a time� Each processor has a processing unit
capable of computing simple arithmetic functions and
make simple logic decisions� constant number of regis

ters� and some local memory� Data movement is done
by message passing� that is� data to be moved between
any pair of processors are formatted into a message
with header consisting of the destination processor�s
address� this message is routed through intermediary
processors �if necessary� to the destination processor�
Furthermore� a processor can receive at most one mes

sage at a time from any of its n neighbors� and send
at most one message at a time to any of its neighbors�
This model of execution accurately re�ects some of the
existing hypercube computers�

��� Preliminaries

In what follows� we de�ne the class of linear

complement permutations �LCn� of N � �n numbers�
Let V � f�� 	� � � �� N � 	g� Also� let x be any number
and y be its image under some mapping� Exclusive
or
operation �� is used for boolean addition�

De�nition � A permutation on V is said to be a lin�
ear permutation �		�� if there exists a non singular bi�
nary matrix Qn�n such that� for every x � V � its im�
age is given by the equation� yT � QxT �

So� a linear permutation on V is the permutation
that maps each x � V to a number such that each bit
in the binary form of this number is a linear combina

tion of the bits of x� If complement of bits is allowed�
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then the permutation is a linear
complement permu

tation�

De�nition � Let x
�

� �xn�� � � � x�	�� A permutation
on V is a linear�complement permutation �LC� if there
exists a binary matrix P � �Q j k�� where Q is as
de�ned above and k is an n�bit binary vector� such that�
for every x � V � its image is given by the equation�

yT � P �x
�

�T �	�

A bit
permute
complement permutation is a linear

complement permutation with a permutation matrix
�each row and column of the matrix has exactly one
	� as Q� A linear
complement permutation with ma

trix P � �Q j k�� Q an n � n boolean matrix and
k some n
bit vector� has the same properties as the
linear permutation corresponding to Q has�
In the literature ��� �� 	��� the linear permutations

are termed as the non
singular linear transformations
of the n
dimensional vector space over the �eld GF ���
� the �eld consisting of two elements� �� and 	�
�There are exactly �n elements in this vector space�
and each element corresponds to a processor index in
binary form�� There is one
one correspondence be

tween the boolean matrices of size n � n and lin

ear transformations on n
dimensional boolean vector
space ���� A linear transformation is invertible� if and
only if the corresponding boolean matrix is invertible�
A linear transformation can also be viewed as a homo

morphism on the group underlying the vector space�
In the context of a hypercube� a permutation is

called a linear
complement permutation� if there ex

ists a boolean matrix P satisfying equation �	� for ev

ery pair of source and destination processor indices�
Hence� if a given permutation is a linear
complement
permutation� each bit of the destination processor in

dex is described by a linear combination of the bits of
the source processor index� and a constant term that
could be either � or 	�
We use the word tag to indicate the packet contain


ing the destination processor index and the message�
For the purpose of the routing algorithm the message
is unimportant� Hence� we assume that the tags con

tain only the the destination processor index� an n
bit
vector� If processor x has tag y� then it is called the
host processor of the tag y� The goal of the algorithm
is to route tags� so that� at the end of the routing
process� each tag matches with the address of its host
processor�
During routing� the number of tags in a processor

may vary� However� the algorithm assures that there
are only two cases� one tag per processor� and two tags
per processor for N�� processors and no tags for the
remaining processors� We say that the hypercube is

in state A� when each processor has one tag� Before
routing the hypercube is in state A� When there are
� tags for each of N�� processors and no tags for the
remaining N�� processors� then the hypercube is said
to be in state B� At any time during the routing pro

cess� the hypercube is� as proved later� in one of the
two states�

During routing� the e�ect of sending a tag from a
processor to another processor with index di�ering in
bit position i is succinctly stated that the tag is routed
along the dimension i� We use the expression a tag
is routed to correct bit i� to mean that the processor
having that tag routes the same along the dimension
i� if the tag�s bit i di�ers from that of processors index
in binary form� Note that it makes sense to say that a
tag is routed to correct bit i even when bit i of the tag
and that of the processor address match� however� in
this case the tag remains in the processor itself during
that routing step� In each routing step� all the tags
are examined and all of them are routed to correct a
particular bit� say i� an alternate way of saying this is
bit i is corrected�� After a bit is corrected� all the tags
are in the correct processors with respect to that bit�

��� Statement and discussion of the al�
gorithm

Algorithm HL�
If the hypercube Qn is in state A� each processor routes
its tag to correct the least signi�cant bit that has not
been used in earlier routing steps� If the hypercube
is in state B� processors with no tags do nothing� and
processors with two tags compare the two tags and
route one of them to correct the least signi�cant bit in
which they di�er� This is repeated n times�

An example showing the routing of a linear

complement permutation in Q� is shown in �gure ��
the following set of linear equations specify the linear

complement permutation used�

y� � x� � x��

y� � x� � x� � 	�

y� � x� � 	�

The index of each processor and its initial tag �in
parenthesis�� in binary form� are shown in �gure ��a��
this indicates the allocation of tags to processors in the
hypercube� The e�ect of correcting bit � in the �rst
routing step is shown in �gure ��b�� Here processors
with indices ���� �		� 	��� and 			 send their tags the
processors adjacent to them in dimension �� It can be
seen that the tags in these processors di�er from their
respective host processor indices in the least signi�cant
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(d) After correcting bit 3
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Figure �� Routing a linear
complement permutation
in Q��

bit� The paths traced by the tags are shown by arrows�
and the tags in a processor �if present� are given in
parenthesis�
After the �rst routing step� half the processors of

Q� have two tags each� and the remaining processors
have none� From �gure ��b�� we can see that in each
of the four processors with two tags� the tags di�er in
both bit positions� Each of these four processors picks
to correct bit 	� as speci�ed by the algorithm� inde

pendently� Figure ��c� shows the e�ect of correcting
bit 	 in the second routing step� The path traced by
the tags that are routed are shown by arrows�
After correcting bits � and 	� each processor again

has one tag� So� each processor picks to correct bit
�� as required by the algorithm� independently� In
this routing step� processors ��	 and �	� exchange
tags with processors 	�	 and 		� respectively� This
is shown by two parallel lines� pointing in opposite
directions arrow heads� between the exchanging pro

cessors to indicate the path traced by each tag� After
the third routing step� all the tags are at their correct
destinations�

��� Proof of correctness

We use the well known concepts in linear algebra to
prove the correctness of the algorithm� When the hy

percube is in state B� half the processors have two tags
each and the remaining processors have none� so� the
relation from the set of processors to the set of tags
is not a mapping� To avoid this� we use the mapping
from tags to processors so that the results of linear
algebra are applicable regardless of the state of the
hypercube�
Let y � �yn��� � � � � y�� represent a tag and x �

�xn��� � � � � x�� represent its host processor address�
Also� let the tags be distributed among processors
according to some a�ne linear transform f � that is�
the mapping from tags to processors is of the form�
f � y � x� x � f�y� � T �y� � k� where� T is some
linear transformation and k an n
bit vector� In other
words� for each tag� the address of its host processor
can be speci�ed by the following bit equations�

xn�� � ����yn�� � � � � � ���n��y� � kn��
���

xp � �n���p��yn�� � � � �
��n���p�n��y� � kp

���
x� � �n����yn�� � � � � � �n���n��y� � k�

����������
���������

���

Here� the n� n matrix ��i�j� � �ij � f�� 	g� represents
the transformation matrix of the linear transform T �
It is clear that if the matrix ��i�j� is non
singular� the
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linear transform T is invertible� and T is a linear per

mutation� A non
zero vector for k indicates transla

tion of the linear transform� and it does not a�ect the
invertibility of T � The a�ne linear transform f is de

noted by Tk� note that T � T��
Now� suppose that the tags are moved among the

processors using the following rule�  Each processor
moves the tags that do not agree with its index bit p
to its neighbor processor in the dimension p�! Then�
we claim the following�

Claim � When tags are moved as speci�ed above� the
mapping between tags and their host processor ad�
dresses is still an a�ne linear transform�

Proof� After the routing step� each tag agrees with
its host processor in bit p� Hence� for all the tags the
equation for bit p is� simply� xp � yp�
Now� if a tag is moved during the routing step� then

it is moved to a new host processor that di�ers from
the old host processor only in the bit p� Hence� irre

spective of whether the tag is moved or not� the other
bit equations are unchanged�
If the mapping of tags to processors is an a�ne linear

transform of the form� x � T �y� � k� Then� x � k �
T �y� is a linear transform� That is� if each processor
address is translated by k� then the tag distribution
is simply a linear transform T � Now� ker T � fy j
T �y� � �g� that is� ker T is the set of all tags assigned
to processor with address �� under the linear transform
T �
From the property of linear transforms� T ��� � ��

so� j ker T j � 	� Also� T can be treated as a homo

morphism from the group underlying the vector space
of processor indices to itself� From the �rst isomor

phism theorem �	��� we get that each processor with
at least one tag will have the same number of tags that
processor � has under the linear transform T � There

fore� we have the following lemma�

Lemma � If the tags are distributed among the pro�
cessors such that some processors have one tag� some
other processors have two tags� while the remaining
processors have none� then the mapping between tags
and processor addresses is not an a�ne linear trans�
form�

Lemma � Suppose the tags are distributed among
processors� according to some a�ne linear transform
Tk� such that half of the processors have two tags each
and the remaining processors have no tags� Then� the
two tags in a processor� if present� di	er in the same
bit positions�

Proof� The linear transform T represents the mapping
between tags and processors after translating the pro

cessors addresses by k� Under T � processor � has two

tags� namely� � and a� for some a 	� �� Now� take any
processor x that has two tags b and c� To prove the
lemma� it is su�cient to show that b� c � a� which is
true in view of the following�

T ��� � T �a� � �
T �b� � T �c� � x


 T �b � c� � T �b�� T �c� � x� x � �

 �b � c� � �� or a

 b� c � a� since b 	� c

Lemma � The algorithm HL routes tags such that the
following are always true
 in any routing step� �a� any
processor moves at most one tag� and� after each rout�
ing step� �b� the tag distribution is given by some a�ne
linear transformation� and �c� the hypercube is in ei�
ther state A or state B�

Proof� We prove this by induction on the number of
routing steps�
Whenever the hypercube is in state A� and the tag

distribution is according to some linear
complement
permutation� the tag movement speci�ed by the al

gorithm HL and the rule used in the claim 	 is the
same� So� �a���b� are true� Since� the tag distribution
should be according to some a�ne linear transform�
by lemma �� either each processor has one tag �state
A�� or half the processors have two tags �state B�� So
�c� is also true after the routing step�
Since the hypercube is state A before routing the

linear
complement permutation under question� the
lemma holds for the routing step 	�
Now� let us assume that the lemma is true for the

�rst m � 	 routing steps� We need to show that the
lemma holds after the routing step �m " 	��

After routing step m� if the hypercube is in state A�
then� by the above argument� the condition �a� is true
during the routing step �m"	� and the conditions �b�
and �c� are true after the routing step �m " 	��
However� if the hypercube is in state B� then

lemma �� tells that the two tags in a processor �if
present� di�er in the same bits� But� in that case�
using the algorithm HL� each processor with two tags
chooses one dimension unambiguously� Hence� for each
processor with two tags� exactly one tag matches with
its index in the bit chosen for correction in the next
routing step� So� in the routing step �m"	�� each pro

cessor with two tags routes exactly one tag� so that the
tags that di�ered from the host processor index in the
routing bit will now match with the new host processor
index� This shows that �a� is true for the routing step
�m"	�� From the above argument and claim 	� �b� is
true after the routing step �m" 	�� Since� a processor
with two tags moves one tag in the �m " 	� routing
step� after the routing step� it has 	 or � tags� Using
lemma � and the fact that �b� holds after the routing
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step �m " 	�� we conclude either each processor has
one tag or half the processors have two tags each and
the rest have none� therefore� �c� also is true after the
routing step �m " 	��

Corollary � Any routing step given by the algorithm
HL� and the rule given for the claim � are equivalent�
provided each time the bit chosen for the rule is same
as the routing bit chosen by the algorithm�

Proof� This follows directly from the above lemma�

Corollary � The algorithm HL routes tags such that
each bit is chosen for routing exactly once� And� after
correcting a bit� each tag matches with its host proces�
sor index in that bit�

proof� The above corollary says that when a bit
is used in a routing step� all the tags match with
the host processor index� after completing the rout

ing step� The fact that each bit is chosen as routing
bit exactly once� is easy to see�

Theorem � The algorithm� HL� routes any linear�
complement permutation in a hypercube� Qn� in n
routing steps� Furthermore� each processor needs to
route at most one tag in a routing step�

Proof� The proof follows from the lemma �� and the
corollaries following the lemma�

� Scope and use of the algo�

rithm HL

In this section� we describe other aspects of the al

gorithm HL in routing permutations in various types
of hypercubes� First� we describe how to use this al

gorithm to route linear
complement permutations in
multi
dimensional meshes in optimal number of steps�
Next� we describe how the algorithm HL can be used
to route messages in a circuit switched mode of trans

mission� Then� we characterize a larger class of per

mutations that are routed by the algorithm HL in hy

percubes with the constraint of choosing of same di

mension links by all processors� in a routing step� is
relaxed�

��� Routing linear�complement per�

mutations in a q�mesh

The algorithm HL can be used for routing the linear

complement permutations in multi
dimensional mesh
connected computers by direct simulation of the hy

percube connections�

In a � dimensional mesh connected computer ��

mesh�� the processors are arranged in a rectangular
array of size N� � N� �� N �� Each processor is de

noted by a �
tuple �x�� x��� which means that the pro

cessor in row x� and column x�� Each processor is
connected to the other processors in the neighbor rows
and columns� if they exist� An � � � �
mesh has the
same structure of a �� processor ILLIAC
� machine
with wrap around connections missing� In a simi

lar manner� a q
mesh can be de�ned� In a q
mesh�
each processor is denoted by a q
tuple �xq��� � � � � x���

� � xa � Na� � � a � q� and N � #q��
a��Na�

Processor �xq��� � � � � x�� is connected the processors
�xq��� � � � � xa � 	� � � � � x��� � � a � q� provided they
exist� Processor �xq��� � � � � x�� is given the index

�q��
a��xa�Na�� � � � � � N��� N�� � 	�
Let us consider a �
mesh with N � �n� n even� pro


cessors� Also let the number of processors in a row
or column is �n��� Dimension i� � � i � n� connec

tion of n
cube can be simulated on the �
mesh� in �x

routing steps� where x � i or i � n�� depending on
i � n�� or � n��� Hence� the time required to route
linear
complement permutations on a �
mesh is�

���� " �� " � � �" �
n
���� � ���

n
� � 	��

This is the optimal number of steps to route the class
of linear
complement permutations in a square �
mesh
����
In general� we can show that for a q
mesh with

Na � �na� � � a � q� such that N � �n �

#q��
a��Na � ��

q��
a��na the algorithm routes the class

of linear
complement permutations in �q��
a����

na � 	�
steps� which is optimal�

Theorem � The algorithm HL can route the class
of linear�complement permutations in a multi�
dimensional mesh in optimal number of steps�

��� Routing linear�complement per�
mutations in a circuit switched hy�
percube

So far� we have assumed that a message is attached to
the tag and moved with it to the destination� However�
when the message is long� it is faster to send it using
the circuit switching scheme� In this scheme� a physi

cal path is established between each pair of source and
destination processors� and then messages are trans

ferred at high rates� At the end of transmission of the
messages� the paths are released� To transfer messages
in circuit switching mode in a hypercube� we will as

sume that each processor has necessary hardware to
establish temporary physical paths between the input
and output links used by the tags that passed through
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the processor� Furthermore� in the circuit switching
scheme� the link between any two adjacent processors
can be used by each of these two processors at most
once� Hence� the self
routing algorithms developed for
the Bene�s network �	�� �� are not useful to route linear

complement permutations in a circuit switched hyper

cube�

Lemma � When the algorithm HL is used to realize
linear�complement permutations in a hypercube� any
two adjacent processors communicate at most once�

Proof� Any two adjacent processors have their indices
di�er in only one bit� say p� So if at all they commu

nicate� they do so only in the routing step to correct
bit p�

In the previous section� we have shown that a pro

cessor needs to move at most one tag in a routing step�
Hence� it immediately follows from the above lemma
that the link between any two adjacent processors is
used by each of the two processors to route at most one
tag� Thus the algorithm HL can be used to move data
among processors by circuit switched scheme� To send
messages by circuit switching scheme� �rst the tags
�without messages� are routed using the algorithmHL�
Then� each processor uses the path traced by its tag to
send message to the destination processor� Since each
processor need to send and receive at most one tag in a
routing step� this algorithm can be implemented with
very little overhead�

��� On routing a larger set of permu�
tations

So far� a hypercube is assumed to be operating in
SIMD mode� and it was proved that the algorithm HL
can route linear
complement permutations� In the fol

lowing discussion� we use a stronger mode of operation
for hypercube� and show that the algorithm HL routes
a larger set of permutations�
An n
cube can be partitioned into �k� 	 � k � n�

�n � k�
cubes� In a routing step� if all the processors
in a subcube choose the same dimension for routing�
but processors in di�erent subcubes may choose dif

ferent dimensions� then it is clear that each subcube
is operating in SIMD mode but the n
cube consist

ing of these subcubes is not operating in SIMD mode�
Such a mode of operation is called Multiple
SIMD or
M
SIMD� In general� each subcube can again be parti

tioned and partitioning of one subcube may be di�er

ent from the partitioning of another subcube� etc� For
the following� we assume that a hypercube can operate
in M
SIMD mode when partitioning of processors� as
discussed above� is considered�

After the �rst routing step� for routing purposes� the
Qn can be viewed as two subcubes� Qn��� with each
subcube having �n�� tags� In the remaining steps of
the algorithm� each subcube routes tags among its pro

cessors� and does not send any tag to the other sub

cube� This observation can be applied for the remain

ing routing steps too� This gives us the motivation
to relax the constraint of SIMD mode of operation to
route a larger class of permutations by the algorithm
HL� For the following discussion� we assume that af

ter each routing step� the subcubes may choose dif

ferent dimensions for the next routing step� We call
this mode of operation as Multiple
SIMD or M
SIMD
mode�
Let the set A � fn � 	� � � � � �g be partitioned into

two subsets B � fn � 	� � � � � n � kg and C � fn �
k � 	� n� k � 	� � � � � �g� where 	 � k � n� B can be
used to partition the set of numbers f�� 	� � � �� �n � 	g
such that if i� j are in the same partition� then ix � jx�
 n � k � x � n� This idea can be used to partition
the processors in a hypercube such that there are �k

partitions� �n�k processors in each subcube�
Suppose processors in a hypercube are partitioned

as given above� De�ne a permutation � that permutes
partitions of processors by some permutation in LCk�
and processors in each partition by some permutation
in LCn�k �permutations of processors in di�erent par

titions can be di�erent��

Lemma 	 The algorithm HL routes the set of permu�
tations as discussed above in a hypercube operating in
M�SIMD mode with partitions as described above�

Proof� In the �rst n� k routing steps� in each sub

cube a linear
complement permutation is realized by
the algorithm HL� This preserves the SIMD mode of
operation for each subcube� Once the processors in
each partition are permuted� the permutation of par

titions is achieved as follows� Partitions are rearranged
so that� bits n�k�	� � � � � � are used in partitioning the
hypercube� So each subcube will have �k processors
and there are �n�k such subcubes� Now each subcube
has to route a permutation in LCk� the permutation
that is de�ned on the bits n � 	� � � � � n � k of the n

cube� to complete the original routing task� Since this
can be done by the algorithm HL� the lemma holds�

This idea of partitioned permutations can be used
recursively on each partition� and on the permutation
of partitions itself� We call such permutations as par

titioned linear
complement permutations �PLC��

De�nition � For n � f�� 	� �g� PLCn�LCn� For
n � �� PLCn is de�ned as follows� A permutation is
in the set PLCn� if it permutes the partitions of pro�
cessors by a permutation in PLCk� and processors in

���



each partition are permuted by some permutation in
the set PLCn�k� where 	 � k � n and the partitioning
of processors is as given above�

Lemma 
 The algorithm HL can route any PLC per�
mutation in a hypercube operating in M�SIMD mode�

Proof� By considering the partitioning of the hy

percube to be the same as the partitioning of the PLC
permutation being realized� it can be shown that proof
for this lemma is a simple generalization of that of the
previous lemma�

����� The set PLC
In what follows� we give an estimate on the size of the
the set of partitioned linear
complement permutations�
A decomposable linear permutation ��� is a linear

permutation whose matrixQ can be partitioned as fol

lows�

Q �

�
Q� �
� Q�

�

Q� and Q� are square boolean matrices� and de�ne
linear permutations on smaller size set of numbers� Let
us de�ne a subset of LCk� that contains the permuta

tions that can not be decomposed such that rows �
and k�	 of the original Q matrix are in di�erent par

titions� With complement of bits considered� this set
is denoted as LCk � �
We now give an alternate de�nition of partitioned

linear
complement permutations� It can be shown that
this de�nition is equivalent to the one given earlier�

De�nition � A permutation is in the set of parti�
tioned linear�complement permutations� if there is a
partition of most signi�cant k bits� for some 	 � k �
n� such that partitions of the processors are permuted
by some permutation in LCk� � and the processors in
each partition are permuted by some permutation in
PLCn�k�

From this� we get

jPLCnj �
nX

k��

jLCk
� j � jPLCn�kj�k ���

Since� jLCk
� j � jLCkj� and jLCkj � �k�jLIN kj� where

LINk is the set of linear permutations� jLINkj �

�
k�k���

� ��k � 	���k��� 	� � � � ��� 	�� Hence� the upper
bound given below can be used to approximate the size
of PLCn�

jPLCnj �
nX

k��

jLCkj � jPLCn�kj�k

Since� PLCk � LCk � �
k�

� � the size of the set PLCn is

at least $
�
N
p
N logN��

�
� which is the lower bound on

the term with k � n��� in the summation of the right
side of the identity �� Thus the size of the set grows
exponentially with N �
The idea of operating a hypercube in M
SIMD mode

gives a method to construct exponential number of re

arrangeable Bene�s
like networks� A link between two
processors in the hypercube is assumed to be replaced
by a switch such that tag routing between the two pro

cessors is simulated by the switch� Each routing step in
the hypercube is equivalent to the operation of a stage
of switches in a corresponding multistage interconnec

tion network constructed as below� Consider routing
a partitioned linear
complement permutation in a M

SIMD hypercube� In the �rst routing step� all proces

sors in the cube use dimension 	 links� So� switches in
the �rst stage have inputs lines with addresses that dif

fer only in bit 	� In the next routing step� each subcube
chooses dimension links depending on the partitioned
linear
complement permutation being realized� For
di�erent partitioned linear
complement permutations�
di�erent dimensions are chosen in each subcube� The
switches simulating the links used in the second rout

ing step form the second stage of switches� The inter

connection pattern between the �rst and second stage
of switches is such that the top half of the switches will
have input lines with even addresses� and the lower half
of switches will have input lines with odd addresses� or
vice versa� Furthermore� input lines to a switch will
di�er in only the bit that is the dimension of the link
simulated by the switch� Now� top half of switches are
considered to form a sub
network� and bottom half of
switches are considered to form another sub
network�
This is repeated recursively in each routing step� The
next routing steps can be used in this manner to ob

tain the �rst n stages of a network� After n routing
steps� the �rst n stages� of a Bene�s
like multistage net

work� are formed� The complete network of ��n � 	�
stages is such that stages n" 	� � � � � �n� 	 are mirror
images of stages n � 	� � � � � 	 respectively� The Bene�s
network is obtained when dimensions f�� � � � � n�	g are
chosen in consecutive routing steps in each subcube�
For M
SIMD mode of operation� di�erent partitioned
linear
complement permutations give di�erent Bene�s
like networks� which by construction are rearrange

able� The algorithm given in �	�� with appropriate
modi�cations can be used to route the class of linear

complement permutations in these networks�

� Conclusions
In this paper� we have presented an algorithm to re

alize the class of linear
complement permutations in a
hypercube� The algorithm is simple� self
routing� and
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optimal� It routes any linear
complement permuta

tion in �logN � routing steps� with each step requiring
a constant time� In message passing scheme� time re

quired for a routing step is proportional to the length
of the message�
Since� this algorithm picks to correct bit 	 in routing

step 	� and whenever the hypercube is in state A� the
least signi�cant bit that is not yet corrected is picked in
the next routing step� this routes inverse omega �$���
permutations trivially� If the algorithm picks to cor

rect the most signi�cant bit� whenever there is a choice
of bits that can be picked to correct in a routing step�
then it is clear that it still routes linear
complement
permutations and also the class of omega �$� permu

tations�
All the permutations of order � are routed by this

algorithm� since they all are in LC�� It is shown that
the class of permutations realizable by this algorithm
on a hypercube M
SIMD computer is larger than the
class of permutations realizable on a hypercube SIMD
computer� When the hypercube is allowed to operate
in the MIMD mode� an even larger class of permuta

tions can be routed by the algorithmHL� For example�
in an � processor hypercube �Q��� any arbitrary per

mutation can be realized if the mode of operation is
MIMD� the same is not true even if M
SIMD mode of
operation is used� We note that the algorithm HL not
only shows the rearrangeability of a circuit switched
Q�� but also shows how to route arbitrary permuta

tions�
The algorithm routes many permutations that are

not in the linear
complement permutation class� An
interesting and useful problem would be the charac

terization of the class of permutations realizable by
the algorithm� Knowing this characterization� one can
perform a pre
processing step to convert an arbitrary
permutation to a permutation realizable by this algo

rithm�
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