
Evaluation of a Stastical Technique to Mitigate
Malicious Control Packets in Ad Hoc Networks

Rajendra V. Boppana
Department of Computer Science

University of Texas, San Antonio, Texas
boppana@cs.utsa.edu

Saman Desilva
Department of Mathematics

St. Philips College, San Antonio, Texas
desilva.saman@gmail.com

Abstract. The on demand routing protocols for mobile ad
hoc networks use network-wide broadcasts of control packets
to learn routes. This feature can be exploited by malicious
nodes to launch highly leveraged denial of service attacks
in ad hoc networks. We use an adaptive statistical packet
dropping mechanism to mitigate such attacks and their im-
pact on throughput. The proposed mechanism does not use
any additional network bandwidth. Using experiments on a
wireless testbed, we evaluate the effectiveness of the statistical
technique for UDP and TCP traffic.

I. INTRODUCTION

The communication protocols for mobile ad hoc networks
(MANETs) are designed to work in peer-to-peer networking
mode. To facilitate communication between nodes beyond
each other’s radio range, the other nodes in the network act as
routers. Because of node mobility, network topology and hence
the routes change frequently. So designing routing protocols
for ad hoc networks is a challenging problem.

The security issues regarding the data are the same on both
wired networks and wireless networks. Secure sockets layer
and end-to-end encryption mechanisms are used to address
the same. In addition, MANETs are susceptible to attacks on
the routing protocol function itself since all or most nodes in
the network participate in route discovery and dissemination.
These attacks can be classified into (a) resource consuming
and (b) route falsifying and dropping/delaying data packets.
There has been a substantial amount of work done to address
the latter problem [8], [12], [7], [21], [1]. Though both
attacks are considered denial of service (DoS) attacks from an
application or end user perspective, we use DoS to refer to the
former attacks, which are investigated in this paper. Intrusion
detection systems [22] address DoS as part of a variety of other
security attacks, but they are rather complex programs and
often depend on dissemination to identify malicious behavior.
Owing to the use of flooding for route discovery by many on
demand routing protocols, highly leveraged DoS attacks can
be launched by malicious nodes without generating unusually
high traffic. This makes the detection and mitigation of such
attacks nontrivial.

We have shown in an earlier work using simulations that
a malicious node flooding the MANET with control packets

This research has been partially supported by NSF grant EIA-0117255 and
AIA grant F30602-02-1-0001.

related to bogus route discoveries can cause a sharp drop in
network throughput [6]. These malicious nodes behave like the
normal nodes in all aspects except that they initiate frequent
control packet floods. This type of attack is hard to detect
since any normal node with frequently broken routes could
legitimately initiate frequent route discoveries. Therefore, to
mitigate bogus control packet floods, we have proposed a
simple rate-based control packet forwarding mechanism and
have shown using simulations that it works well [6].

In this paper, we demonstrate the impact of control packet
flood attacks on an eight-node testbed consisting of Linksys
54G wireless routers. We reprogrammed these routers with
Linux kernel and freely available AODV software. We imple-
mented the statistical profiling and rate controlling mechanism
on this testbed. Using constant bit rate (CBR) traffic over
UDP and FTP traffic over TCP, we show that the rate control
mechanism is very effective in detecting and mitigating the
attack. An attacker is identified by other normal nodes in 30-
60 seconds, and the network throughput is sustained under
attack.

The rest of the paper is organized as follows. Section II
describes the route discovery mechanism used in on demand
routing protocols and a highly effective DoS attack on them.
Section III describes a statistical rate control mechanism to
mitigate the attack. Section IV describes the experimental
testbed used. Section V presents experimental evaluation of
the attack and the solution. Section VI concludes the paper.

II. BACKGROUND

Routing Protocols for Ad Hoc Networks

MANET Routing protocols can be divided into proactive
and reactive (or on demand) categories [15], [9], [2], [4],
[13] were proposed for MANETs. Both proactive and reactive
protocols can suffer from control packet floods caused by
malicious nodes. In this paper, we investigate DoS attacks
on reactive protocols using the AODV on demand routing
protocol as an example.

Route discovery in on demand protocols: On demand
routing protocols learn only needed routes and do not refresh
them periodically. When a node attempts to send a data packet
to a destination for which it does not already know the route, it
uses a “route discovery” process to dynamically obtain a route.
The route discovery works by flooding the network with route
request (RREQ) control packets. A node, say, x, receiving

Proceedings of the 2006 International Symposium on a World of Wireless, Mobile and Multimedia 
Networks (WoWMoM'06) 
0-7695-2593-8/06 $20.00 © 2006 IEEE 

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 4, 2008 at 17:18 from IEEE Xplore.  Restrictions apply.



 0

 50

 100

 150

 200

 250

 300

 350

 400

 100  200  300  400  500  600  700

T
hr

ou
gh

pu
t (

K
bp

s)

Offered Load (Kbps)

0/Sec
1/Sec
2/Sec
5/Sec

10/Sec

Fig. 1. Loss of throughput with bogus route discoveries by a malicious node.
The route discoveries are initiated at the rate of 1,2,5 or 10/Second.

a RREQ, rebroadcasts it, unless it has already seen it from
another neighbor or it has a route to the destination indicated
in the RREQ. If the received RREQ is a duplicate, node x
drops it. If node x has the route from another route discovery
or because it is the destination, then it replies to the RREQ
with a route reply (RREP) packet that is routed back to the
original sender of the RREQ.

A drawback of flooding based route discovery is the high
control overhead. Each RREQ initiated by a node results in
up to n broadcasts in the MANET, where n is the number of
nodes in the MANET. So at high loads, the wireless channel
usage can be completely dominated by the control packets
used for route discoveries [5]. This potential weakness of on-
demand routing protocols could be exploited by malicious
nodes.

DoS Attack on AODV

To evaluate the impact of bogus control packet floods by
malicious nodes, we simulated a 100-node MANET with
AODV routing protocol and CBR traffic over UDP [6]. One
of the nodes (that is neither a sender or receiver of CBR data)
was a malicious node flooding the network with bogus route
discoveries at a rate of 1 to 10 RREQs/s. (Normal network
performance is obtained when the specified attack rate is zero
RREQs/s.) The malicious node drops any route information
received in response to its route discoveries and continues
to initiate route discoveries at the specified rate. This node
behaves like any other node in the network in all aspects
except that it sends frequently RREQ packets, which are used
for route discovery. Figure 1 shows achieved throughput as a
function of offered load and malicious node’s route discovery
rate. For traffic loads at or beyond saturation, any RREQ
rate by the malicious node reduces the throughput rapidly. At
10 RREQs/second, the peak throughput is reduced by 84%.

This type of attack is hard to detect since any normal
node with a broken route could legitimately initiate multiple
RREQ broadcasts in a short period of time. The security
enhancements such as those used for secure AODV [21] do not
handle this type of attack since the malicious node is not forg-
ing any information. Broadcast management techniques [19],

which minimize the number of transmissions used to achieve
network-wide broadcasting, are not effective in mitigating this
attack [6]. A static limit [20] on RREQs generated by a node
can hurt the performance by restricting the route discovery
capability of genuine nodes if the limit is too low. A high
static limit is not effective.

III. STATISTICAL RATE CONTROL

In this section, we describe a distributed statistical profiling
technique to detect misbehaving nodes and mitigate their
impact on performance. We assume that all RREQs are authen-
ticated. So every node must include its ID and authentication
information, which we assume cannot be forged. So malicious
nodes are at one time trusted nodes that have the appropriate
authentication, but attack the network when the opportunity
arises.

In our design, each node monitors the route requests it
receives. Each node maintains a count of RREQs received
for each RREQ sender during a preset time period (τ ). At the
end of the time period, the node computes the rate at which
it has been receiving route requests from each sender and
smoothed average, savg, of the same using (1) and (2). The
node also computes average rate of RREQs per sender using
(3) and smoothed average, nodeavg, of the same using (4).
In addition, the node also computes the savg deviation of all
RREQ sources at the end of the time period using Equation 5
repeatedly for each RREQ sender. This is denoted as nodedev.

ratei = RREQCounti/τ (1)

deltai = ratei − savgi

savgi ← savgi + g × deltai (2)

noderate =
TotalRREQCount/τ

#ofRREQsenders
(3)

delta = noderate − nodeavg

nodeavg ← nodeavg + g × delta (4)

nodedev ← nodedev + h(|deltai| − nodedev) (5)

The nodeavg and nodedev calculations are based on the TCP
retransmission timeout (RTO) calculations [18]. As a starting
point, the value of g is set as 1

8 and h is chosen to be 1
4 . We

have experimented g values of 1
4 , 1

2 and 1
8 and found 1

8 the
best value for our network conditions.

To distinguish between malicious RREQ floods and those
by normal nodes, we calculate a cut-off rate (denoted, Cut-
OffRate) as given in (6). The RREQs from a sender whose
smoothed average rate is above the CutOffRate will be dropped
without forwarding. Dropped RREQs are counted in comput-
ing individual nodes’ smoothed averages, however.

CutOffRate = nodeavg + 2 × nodedev (6)

This technique is shown to work well for simulated net-
works [6]. However, simulations do not provide realistic
models of noise, which can impact the network behavior in
an unpredictable manner and render the solution technique
ineffective.

Proceedings of the 2006 International Symposium on a World of Wireless, Mobile and Multimedia 
Networks (WoWMoM'06) 
0-7695-2593-8/06 $20.00 © 2006 IEEE 

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 4, 2008 at 17:18 from IEEE Xplore.  Restrictions apply.



IV. EXPERIMENTAL ENVIRONMENT

In this section, we describe the hardware, software, and
operational issues regarding the testbed we set up and used
for experimental evaluation of RREQ flood attacks.

Hardware

We considered two hardware platforms. One is a small form
factor desktop with an 802.11g wireless network interface. The
other is an off-the-shelf wireless access point with an Ethernet
switch. (We did not consider laptops and PDAs since they
cannot be left unsupervised in the laboratories.) We chose
Linksys wrt54g routers [3] for the following reasons. The
wrt54g routers are self-contained Linux-friendly light-weight
boxes with small form factor. They can be easily be mounted
on a wall or placed on top a desktop monitor. The wrt54g
routers have a built-in 4-port 100 Mbps Ethernet switch, an
802.11g access point, 12 MB of usable RAM and 4 MB of
flash memory, which serves as the disk memory [17]. The
processor is a 200 MHz MIPS-compatible processor powerful
enough to run various light-weight programs simultaneously.
To improve signal reception, one can use extended antennas,
which provide a gain of +7 dBi, from Linksys.

Software

We used the openwrt distribution of Linux kernel 2.4.29
[14]. The openwrt software comes with a packaging tool
to install additional tools as needed and a crosscompiler
to compile our own C programs and kernel modifications.
Furthermore, an AODV ad hoc routing software package [10],
which facilitates setting up an ad hoc network, is available for
the openwrt software. Each of the boxes is reprogrammed with
Linux OS, and AODV is added as a loadable module.

We modified the AODV module to capture additional statis-
tics and write them to the kernel log. We developed a simple
program to read AODV messages from the kernel log using
the dmesg command and send them as UDP packets via the
Ethernet to a specified desktop machine for analysis. We also
developed a UDP load generator that can send packets from
one node to another at a specified rate. The receiver side
automatically sends throughput statistics via the Ethernet to
a specified desktop machine.

Setup

We set up an 8-node ad hoc network spanning various rooms
and laboratories in the department; see Figure 2. With default
transmission power settings and multiple transmission rates
(lower transmission rates have longer radio range), it is a
nontrivial exercise to set up the network for multiple hops
within in the space available. Instead, we placed the routers
at reasonable distances and convenient places so that they are
accessible for manual power cycle. To create multiple hops, we
reduced the transmission power levels using the wl program
that comes with the router.

To examine and gather data without disturbing the wireless
network, we set up Ethernet connections to each of the
routers. The Ethernet connections are used to start and stop

Fig. 2. Network testbed indicated by circles for wireless nodes over a
background of room layout. Node 8 in the lower right corner is the attacker
node.

experiments, examine router status, and gather data on-the-fly
from a desktop machine. This setup facilitated a rapid develop-
test-debug cycle when we were experimenting with various
software options and AODV modifications.

Network Operation

During the day, the noise level changed unpredictably due
to external sources of noise. This frequently changed the radio
range of nodes significantly and lead to route flapping: a 3-hop
route often becomes a 2-hop route and vice versa. The network
performance suffers when the routes flap. This unpredictable
behavior is what makes the testbed different from a simulated
network or a testbed created in a single room using customized
antennas with RF multiplexing and shielding [16].

Mobility

The impact of node mobility is to change the neighbors of
a node and cause route breaks, which increases the control
overhead. A common approach to incorporate mobility in ad
hoc network testbeds is to have a several people or robots move
the wireless devices in specific patterns [11]. This approach
leads to realistic, but expensive and not readily repeatable,
experiments. This also increases the develop-test-revise cycle
time. Owing to lack of man power to physically move wireless
devices and the need for quickly repeatable experiments, we
opted for emulating node mobility by software means.

We added a timer function to AODV code to remove
routes at random intervals bounded by a specified time, tmax.
This does not change the neighbors of a node or any other
aspect of the routing protocol, except that it causes routes
to be reacquired. We experimented with various values of
values of tmax. Smaller values, which corresponds to high
node mobility, lead to significant control overhead and lower

Proceedings of the 2006 International Symposium on a World of Wireless, Mobile and Multimedia 
Networks (WoWMoM'06) 
0-7695-2593-8/06 $20.00 © 2006 IEEE 

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 4, 2008 at 17:18 from IEEE Xplore.  Restrictions apply.



 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 1  2  3  4  5  6  7

T
im

e 
(S

ec
)

Total Number of nodes Detecting Malisious node

Attack 3 RREQ/Sec
Attack 8 RREQ/Sec

Attack 15 RREQ/Sec

Fig. 3. Time taken to detect DoS attack for various attack rates.

peak throughputs while larger values lead to lower control
overhead and better network performance. This behavior is
similar to that described in many experiments on testbeds and
simulations.

V. EXPERIMENTAL EVALUATION

We conducted several experiments, each of 8-15 minutes
duration, of which the first 3 minutes were used as warmup and
no statistics were collected. Each configuration was run 10-
20 times and the results were averaged. The 95% confidence
intervals are indicated along with the averages. We used both
CBR and FTP traffic over UDP and TCP transport protocols,
respectively. We used 7 CBR connections and varied traffic
load by varying packet injection time; for TCP traffic 7, 10 or
14 connections were used. Node 8 is the attacker node in all
our experiments.

Time taken to detect an attack: Figure 3 indicates the time
taken to detect an attack is measured for various attack rates
with CBR traffic load at 1200 Kbps. Even without the attack, a
normal node averages about 2.5 RREQs/second. So 3 RREQs/s
attack by the malicious node is very close to a normal node’s
rate. But because of statistical averaging, it is still detected,
though slowly. With higher attack rates, all nodes recognize
the attack within 40 seconds. The rate control mechanism has
little impact (less than 3%) on throughput in a normal network.

CBR Traffic: Figure 4 indicates the network throughput
under RREQ flood attack without statistical rate control mech-
anism. When the rate control mechanism is invoked, the
throughput is sustained under attack as shown in Figure 5.
An attack rate of 15 RREQs/s is used. At a network load of
1400 Kbps, each connection source is sending out 50 500-byte
packets per second. So an attack rate of 15 packets/s by the
malicious node is not an excessive demand on the network
BW. Since there are only seven other nodes, the leverage is
not very high as in the networks used in simulations. Still, at
moderate loads of 1000 Kbps, the impact of the attack can be
seen. About 20% of the throughput is lost at higher loads.

It is interesting to compare the overall RREQs seen by nodes
with and without rate control. Figures 6 and 7 indicate that
the rate control mechanism very effective in suppressing the
excess RREQs by the malicious node.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 800  1000  1200  1400  1600  1800

A
ch

ie
ve

d 
T

hr
ou

gh
pu

t (
K

bp
s)

Offered Load

No Attack
Attack

Fig. 4. Network throughput achieved under DoS attack without rate control.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 800  1000  1200  1400  1600  1800
A

ch
ie

ve
d 

T
hr

ou
gh

pu
t (

K
bp

s)
Offered Load

No Attack
Attack

Fig. 5. Network throughput achieved under DoS attack with rate control.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 800  1000  1200  1400  1600  1800

A
ve

ra
ge

 R
R

E
Q

 s
ee

n 
by

 a
 n

od
e/

se
c

Offered Load

No Attack
Attack

Fig. 6. RREQs seen by a node when rate control is not used.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 800  1000  1200  1400  1600  1800

A
ve

ra
ge

 R
R

E
Q

 s
ee

nd
 b

y 
a 

no
de

/s
ec

Offered Load

No Attack
Attack

Fig. 7. RREQs seen by a node when rate control is used.

Proceedings of the 2006 International Symposium on a World of Wireless, Mobile and Multimedia 
Networks (WoWMoM'06) 
0-7695-2593-8/06 $20.00 © 2006 IEEE 

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 4, 2008 at 17:18 from IEEE Xplore.  Restrictions apply.



 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 7  8  9  10  11  12  13  14

A
ch

ie
ve

d 
T

hr
ou

gh
pu

t (
K

bp
s)

Number of TCP Connections

No Attack
Attack

Fig. 8. TCP throughput without rate control.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 7  8  9  10  11  12  13  14

A
ch

ie
ve

d 
T

hr
ou

gh
pu

t (
K

bp
s)

Number of TCP Connections

No Attack
Attack

Fig. 9. TCP throughput with rate control.

TCP Throughput: Figure 8 indicates the network throughput
under DoS attack without the statistical rate control mecha-
nism. With rate control, the throughput is sustained even under
attack as shown in Figure 9.

VI. CONCLUSIONS

DoS attacks that exploit flooding of control packets cause
severe performance degradation. It makes malicious nodes
appear as normal nodes with frequent route discoveries. Over a
short period of time, route requests from normal and malicious
nodes are not easy to distinguish. Our results show that even
for a small network, the attack causes statistically significant
impact on performance. We implemented and evaluated on
a small wireless testbed, a simple statistical packet dropping
mechanism that curbs attacks from malicious nodes effectively
without hurting normal nodes. Furthermore, the rate control
mechanism has little impact on the performance of a normal
network. Another salient feature of the solution is that it causes
no additional control overhead.

There has been an extensive amount of simulation study
of security attacks on mobile ad hoc networks. Simulation
studies do not incorporate realistic models of noise, which
often causes unexpected complications. Therefore, experimen-
tal evaluation of performance and security mechanisms is
necessary to validate their effectiveness. On the other hand,
full-fledged experimental evaluation requires robots and ve-
hicles to create node mobility; this makes field experiments
very expensive. We believe, our testbed approach provides an
intermediate step between simulation study and field-testing:
actual code is developed and tested inexpensively.

REFERENCES

[1] B. Awerbuch, D. Holmer, C. Nita-Rotaru, and H. Rubens, “An on-
demand secure routing protocol resilient to byzantine failures,” in
Proceedings of ACM Workshop on Wireless Security (WiSe), 2002, pp.
21–30.

[2] R. V. Boppana and S. P. Konduru, “An adaptive distance vector rout-
ing algorithm for mobile, ad hoc networks,” in Proceedings of IEEE
INFOCOM, 2001, pp. 1753–1762.

[3] Cisco Systems, Inc., “Linksys WRT54G wirelss-g broadand router,”
2004. [Online]. Available: http://www.linksys.com

[4] T. Clausen and P. Jacquet, Optimized Link State Routing Protocol
(OLSR), October 2003, IETF RFC 3626. [Online]. Available:
http://www.ietf.org/rfc/rfc3626.txt

[5] S. Desilva and R. V. Boppana, “Sustaining performance under traffic
overload,” in Proceedings of Int’l Conference on Wireless Networks,
vol. 1, 2004, pp. 3–8.

[6] S. Desilva and R. V. Boppana, “Mitigating malicious control packet
floods in ad hoc networks,” in Proceedings of IEEE Wireless Commu-
nications and Networking Conference (WCNC), 2005, pp. 2112–2117.

[7] Y.-C. Hu, A. Perrig, and D. B. Johnson., “Ariadne: A secure on-demand
routing protocol for ad hoc networks,” in Proceedings of ACM Int’l
Conference on Mobile Computing and Networking (MobiCom), 2002,
pp. 12–23.

[8] Y.-C. Hu, A. Perrig, and D. Johnson, “Rushing attacks and defense in
wireless ad hoc network routing protocols,” in Proceedings of ACM
Workshop on Wireless Security (WiSe), 2003, pp. 30–40.

[9] D. B. Johnson, D. A. Maltz, and Y.-C. Hu, The Dynamic Source Routing
Protocol for Mobile Ad Hoc Netowrks (DSR), 2004, IETF Internet
Draft. [Online]. Available: http://www.ietf.org/internet-drafts/draft-ietf-
manet-dsr-10.txt

[10] L. Klein-Berndt, “Kernel aodv v2.2.2,” Apr. 2004. [Online]. Available:
http://w3.antd.nist.gov/wctg/aodv kernel

[11] H. Lundgren et al., “A large-scale testbed for reproducible ad hoc
protocol evaluations,” in Proceedings of IEEE Wireless Communications
and Networking Conference (WCNC), 2002, pp. 412–418.

[12] S. Marti, T. J. Giuli, K. Lai, and M. Baker, “Mitigating routing
misbehavior in mobile ad hoc networks,” in Proceedings of ACM Int’l
Conference on Mobile Computing and Networking (MobiCom), 2000,
pp. 255–265.

[13] R. Ogier, F. Templin, and M. Lewis, Topology Dissemination Based on
Reverse-Path Forwarding (TBRPF), 2004, IETF RFC 3684. [Online].
Available: http://www.ietf.org/rfc/rfc3684.txt

[14] OpenWRT Team, “OpenWRT: Experimental release,” Sept. 2004.
[Online]. Available: http://downloads.openwrt.org

[15] C. E. Perkins, E. M. Belding-Royer, and S. R. Das, Ad Hoc On
Demand Distance Vector (AODV) Routing, July 2003, IETF RFC 3561.
[Online]. Available: http://www.ietf.org/rfc/rfc3561.txt?number=3561

[16] S. Sanghani et al., “EWANT: The emulated wireless ad hoc network
testbed,” in Proceedings of IEEE Wireless Communications and Net-
working Conference (WCNC), 2003, pp. 1844–1849.

[17] Seattle Wireless Group, “Seattle Wireless Project.” [Online]. Available:
http://www.seattlewireless.net

[18] W. R. Stevens, TCP/IP Illustrated, Volume 1: The Protocols. Addison-
Wesley, 1994.

[19] B. Williams and T. Camp, “Comparison of broadcasting techniques for
mobile ad hoc networks,” in Proceedings of ACM Int’l Symp. on Mobile
Ad Hoc Networking and Computing (MobiHoc), 2002, pp. 194–205.

[20] P. Yi, Z. Dai, Y. Zhong, and S. Zhang, “Resisting flooding attacks in
ad hoc networks,” in Information Technology: Coding and Computing
(ITCC), vol. 2, Apr 2005.

[21] M. Zapata and N. Asokan, “Securing ad-hoc routing protocols,” in
Proceedings of ACM Workshop on Wireless Security (WiSe), 2002, pp.
1–10.

[22] Y. Zhang and W. Lee, “Intrusion detection in wireless ad-hoc networks,”
in Proceedings of ACM Int’l Conference on Mobile Computing and
Networking (MobiCom), 2000, pp. 275–283.

Proceedings of the 2006 International Symposium on a World of Wireless, Mobile and Multimedia 
Networks (WoWMoM'06) 
0-7695-2593-8/06 $20.00 © 2006 IEEE 

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 4, 2008 at 17:18 from IEEE Xplore.  Restrictions apply.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


