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Abstract— We evaluate the capabilities of MANETs in supporting
multiple, simultaneous HTTP and multimedia streaming flows. The
HTTP traffic is produced by several Web servers, each responding to
a series of concurrent requests from multiple Web clients, and mul-
timedia traffic is modelled as a variable bit-rate stream consisting of
UDP packets. To see the impact of a routing protocol, we consider two
on-demand (AODV and DSR) and one adaptive proactive (ADV) rout-
ing protocols. We also consider the impact of a previously proposed
TCP-sender heuristic, fixed RTO, on HTTP performance. Our results
indicate that ADV performs well relative to the on-demand techniques,
providing higher throughput for variable bit rate UDP traffic and sig-
nificantly reducing the time required to complete Web client-server
transactions. Furthermore, our results show that, compared to TCP
Reno alone, the fixed RTO technique yields significant gains in the
HTTP performance of the two on-demand algorithms.

I. INTRODUCTION

The successful deployment of Web-based and multime-
dia applications in mobile ad hoc networks (MANETs) re-
quires routing and transport protocols to perform well for
the network loads such applications generate. In a MANET,
node mobility results in a dynamic network topology in
which route failures may be frequent and the available band-
width can vary dramatically over time. As a consequence,
transport-layer protocols built for the wireline Internet may
not give adequate performance when used in MANETs. For
example, TCP’s congestion control mechanisms were not
designed for the mobile wireless environment, and TCP per-
formance is known to suffer as a consequence. Poor TCP
performance in turn hinders the performance of applica-
tions, such as Web browsers, which use HTTP.

A TCP sender assumes that packet losses are caused
by network congestion. In the event a packet is not ac-
knowledged by the receiver within a certain duration, called
the retransmit timeout interval (RTO), the sender retrans-
mits the unacknowledged packet and then doubles the RTO.
This process is repeated until an ACK for the retransmitted
packet has been received. This exponential backoff of the
RTO enables TCP to handle network congestion gracefully.
However, in a MANET, when the failed retransmission is
due to a temporary route failure rather than congestion, this
approach can hurt TCP performance. To mitigate TCP per-
formance problems, we have recently proposed a heuristic,
called fixed RTO, which can be employed by a TCP sender
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to respond to network changes faster and improve overall
performance. We have shown that the fixed RTO technique
increases TCP throughput significantly for FTP file trans-
fers [6]. However, these results are not directly applicable
for HTTP traffic, which consists of interleaving quiescent
and bursty communication periods.

The network loads from Web-based and multimedia ap-
plications are typically characterized by variable-bit-rate
(VBR) traffic flowing over connections of variable dura-
tions ranging from a few seconds to several minutes. A
MANET routing protocol must therefore be able to estab-
lish routes quickly and provide high throughput and low
turnaround time over a wide range of offered traffic. For this
reason, the algorithm used to discover and maintain routes
in a routing table or route cache is of critical importance.
Based on several studies [2], [5], which considered primar-
ily UDP traffic (simulated using constant bit rate, CBR,
sources), on-demand algorithms, which do not attempt to
maintain routes by exchanging information among nodes
unless a currently used path is affected, perform better than
proactive algorithms, which refresh routes by exchanging
routing tables or neighbor connectivity information even
when active paths are unchanged. However, these results
may not hold for HTTP and multimedia flows, which tend
to generate bursty traffic.

In this paper, we evaluate the impact of Web and multi-
media traffic on each other. We also evaluate the usefulness
of fixed RTO technique for bursty TCP traffic in the pres-
ence of heavy UDP traffic. We simulate multiple HTTP
and multimedia flows with and without interfering back-
ground traffic. We believe that these traffic scenarios are
more representative of the network loads placed on a real-
world MANET.

In addition, it is important to evaluate the impact of a
routing protocol on the overall performance. So, we com-
pare two on-demand algorithms called AODV [18] and
DSR [14] and one proactive algorithm called ADV [1]. We
also investigate the performance impact of maximum packet
buffering at the routing layer for one of the routing proto-
cols.

The results of our performance analysis demonstrate that
with the use of fixed RTO, the on-demand protocols AODV



and DSR achieve significantly better performance than with
TCP Reno alone. The pro-active ADV outperforms AODV
and DSR by a large margin when the network is subjected to
interfering TCP and UDP traffic , while all three algorithms
perform about the same when only TCP traffic is simulated.
With VBR traffic competing for bandwidth, HTTP through-
put is reduced significantly. The fixed RTO heuristic proves
to be effective in the presence of heavy traffic caused by the
VBR flows.

The rest of the paper is organized as follows. Section
II presents the fixed RTO technique. Section III describes
the simulation setup. Section IV presents our performance
analysis of fixed RTO and the three routing protocols for
HTTP and VBR traffic. Section V presents related work.
Section VI concludes the paper.

II. TCP RENO-F

We denote the specific application of the fixed RTO
heuristic to TCP Reno as TCP Reno-F.

In the TCP Reno protocol, the TCP sender detects the
loss of a packet when its retransmit timer expires before
an ACK has been received for that packet. The retransmit
timeout (RTO) value is computed adaptively when pack-
ets flow normally, but doubled whenever a timeout oc-
curs. The sender responds to a timeout by retransmitting
the lost packet until it has been acknowledged by the re-
ceiver. When a route failure occurs, multiple packets may
be lost or delayed; so the sender is likely to experience mul-
tiple timeouts until the route has been repaired and data and
ACK packets start moving again. On the other hand, if a
TCP sender experiences a single timeout followed by reg-
ular flow of ACKs from receiver, then the packet loss is
likely due to network congestion or random transmission
error [16]. Hence, a TCP sender that is using a wireless in-
terface for its flow can distinguish between the two types of
packet loss by interpreting two or more consecutive retrans-
mit timeouts, i.e. timeouts which occur with no intervening
acknowledgment of the retransmitted data packet, as a sign
of route loss rather than network congestion.

In TCP Reno-F, the RTO is fixed rather than doubled
when consecutive timeouts occur. The RTO is doubled
when the first timeout occurs just as in the regular Reno
protocol, but if another timeout occurs while the sender is
in the backoff mode, the sender does not double the retrans-
mit timeout interval again. Thus the TCP sender retransmits
the lost packet at a constant rate, in effect probing the net-
work at regular intervals. The probe interval is equal to the
current RTO value, and thus is adaptive to network condi-
tions.

In an earlier work [6], we have shown that, for FTP traf-
fic, Reno-F improves TCP throughput significantly for the
on-demand protocols AODV and DSR and provides much
smaller benefit with ADV. Since HTTP traffic has quies-

cent periods interleaving short-lived, bursty communication
among nodes, it will be interesting to see if Reno-F yields
any performance improvements over Reno.

III. SIMULATION METHODS

For our simulations, we used the ns-2 network simulator
[7] with the wireless and mobility extensions by the CMU
Monarch group [4]. These extensions include the modelling
of an IEEE 802.11 wireless LAN [13]. We simulated an ad
hoc network comprised of 50 mobile nodes on a 1000m x
1000m field. The nodes move according to a mobility pat-
tern based on the random waypoint model; to avoid cluster-
ing of nodes in the middle of the field, we let a node reach-
ing an edge of the field to wraparound (instantaneously) and
continue its movement in the same direction from the oppo-
site edge of the field [12]. Since a MANET’s performance
is sensitive to movement patterns, 50 different mobility pat-
terns (scenarios) were simulated and averaged for each data
point presented in the plots. Node speeds were uniformly
distributed between 0 m/s and 20/ms, yielding a mean node
speed of 10 m/s, and only zero-length pause times were con-
sidered. We used CMU’s implementation of DSR [2]; since
DSR is shown to suffer from stale routes problem for TCP
traffic [11], [6], we turned of route replies from the route
cache. The AODV implementation is by the AODV group
[5], we implemented ADV as described in an earlier paper
[1]. The maximum size of both the TCP send and receive
windows is 8.

We considered two variants of the ADV protocol. In the
first version, denoted ADV 30s/30s in the graphs, any data
packet (TCP or UDP) may be buffered for up to 30 seconds
(denoted buffer refresh time) in the source or an interme-
diate node when there is no route. In the second version,
denoted ADV 30s/1s, the buffer refresh time is 1 second for
UDP packets and 30 seconds for TCP packets. In AODV
and DSR, a packet may be buffered for up to 30 seconds
in its source node; packets that do not have a valid route
upon reaching an intermediate node are dropped. The main
purpose of using two buffer refresh times for UDP packets
in ADV is to see the impact of buffering UDP packets in
intermediate nodes on HTTP and VBR traffic.

We simulated the steady-state conditions of a network
with a background traffic load generated by constant bit rate
(CBR) connections. The CBR packet sizes were fixed at
512 bytes. The CBR traffic injected was far below (about
1/3rd of) the maximum UDP traffic the network can han-
dle without saturation, but sufficient to cause interference to
other traffics of interest. Performance measurements were
collected for 200 seconds following an initial warm-up time
of 100 seconds. In addition to the background load, two
types of network traffic were generated: Web traffic using
the HTTP protocol, and variable bit rate (VBR) multime-
dia traffic. Both HTTP and VBR are started just after the



warmup time.
HTTP traffic. Using an HTTP traffic generator [10], we

simulated 10 Web sessions in which browsers on 10 dif-
ferent mobile nodes issue requests and receive replies from
Web servers running on 3 other nodes. Each session con-
sists of an interleaving sequence of think and transaction
modes. In the think mode, there is no traffic on the network
by the Web session. In the transaction mode, the client is-
sues a request, and the server then responds with a random
number of replies of variable length; we denote this activity
as a request-reply cycle. We modified the traffic genera-
tor so that the series of client-server exchanges were iden-
tical in every simulation run. The think times, the number
of replies, and the length of the replies that we used were
drawn from the distributions supplied with the traffic gen-
erator. However, to keep the Web sessions short enough so
that the client-server exchanges could be completed within
the duration of the simulation, we truncated the think time
distribution at 15 seconds.

VBR traffic. We modelled multimedia traffic as a stream
of UDP packets of variable size, generated at a constant rate.
Packet sizes were assigned randomly with mean packet size,
variance, and minimum and maximum sizes based on the
parameters for an actual compressed video stream reported
in [8]. Since our simulated 802.11 network cannot handle
the average bandwidth of 5.3 Mbps required for that video
stream, we scaled the packet rate and size parameters back
such that a single simulated VBR connection has an average
bandwidth requirement of 53 Kbps.

Performance metrics. We measured service time, re-
sponse time, and throughput for the HTTP connections.
The service time for a Web session is the time spent in the
request-reply transaction mode. If a Web session has not
finished at the end of simulation, then the service time for
that session is computed by adding up the time spent in all
completed request-reply cycles, and any time spent in the
request-reply cycle that is still in progress; so, for unfinished
Web sessions, the service time is (200 seconds - time spent
in think mode). For a finished Web session, the service time
is (time taken to finish the Web session - time spent in think
mode). Response time is the interval between the sending
of a client request and the receipt of the first packet of the
server’s reply in a request-reply cycle. HTTP throughput is
total number of TCP bytes delivered in all 10 Web sessions
divided by the total service time for all 10 Web sessions.
Bytes delivered in request-reply cycles that are in progress
when the end of simulation are included in calculating the
throughput. The mean service time is a simple arithmetic
mean of the service times for 10 Web sessions. The aver-
age response time is an arithmetic mean of all request-reply
cycles in the 10 Web sessions. The graphs below present
average service time for a Web session, aggregate through-
put for 10 Web sessions, and average response time for a
request-reply cycle. For VBR traffic, we measured packet
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Fig. 1. Mean service time and throughput for 10 HTTP connections with
a 100 Kbps background load from 10 CBR sources.

latency, packet jitter, throughput and packet delivery frac-
tion. For simulations with CBR traffic, we also measured
CBR packet latency and throughput.

IV. PERFORMANCE RESULTS

We first present results on HTTP traffic with background
UDP traffic simulated using constant bit rate flows. Next,
we present results on VBR traffic in the presence of back-
ground CBR flows. Finally, we present results from simu-
lations that include both HTTP and VBR traffic.

A. HTTP Traffic

We evaluated the impact of Reno-F and compared the
performance of the three routing protocols for HTTP traffic
with a low, 100-Kbps, CBR background traffic. We also in-
vestigated the impact of Reno-F and buffering UDP packets
on CBR traffic. The observed mean service time and HTTP
throughput for each routing protocol are shown in Figure 1.

TCP Reno-F improved, though not significantly, the per-
formance of the on-demand protocols AODV and DSR.
Mean service time was reduced by less than 10% for AODV
and DSR. HTTP throughput gains of 22% and 14% were
observed for AODV and DSR, respectively. DSR with
cache turned off performed as well as AODV for both ver-
sions of the TCP protocol. Reno-F has no significant im-



pact on ADV. For both 30s/30s and 30s/1s cases, the service
times and throughputs were improved by less than 4%, and
12%, respectively. Of the two, the 30s/1s was marginally
better.

Comparing AODV, DSR, and ADV 30s/30s, we note that
ADV gave 61% more throughput when TCP Reno was used
as the transport protocol. With Reno-F, ADV still outper-
formed AODV and DSR by about 47%. Furthermore, ADV
completed HTTP sessions, as measured by the mean service
times, 20% faster, for both TCP protocols.

Since the above analysis was based on averages of 10
HTTP flows, we calculated the mean service and response
times of each flow to ensure that there is no random worst-
case that is skewing the results and making AODV and DSR
look worse than they appear. In Figures 2 and 3, we present
the service and response times observed for each of the 10
client-server pairs with background CBR traffic. AODV and
DSR performed about the same. ADV maintained its ad-
vantage in service times in every case. As in the case of
service times and HTTP throughput, Reno-F lessened the
differences in response times for the three protocols. ADV
yielded shorter response times for every client-server pair,
although with Reno-F the advantage over AODV and DSR
was lessened. The shorter buffering time for UDP packets
had little effect on ADV response times.

In an earlier work [6], we reported that for FTP traffic,
AODV and DSR perform as well or better than ADV, and
that Reno-F improves performances of AODV and DSR sig-
nificantly. Also, it is noteworthy that with 10 FTP flows,
all three routing protocols achieved an aggregate through-
put of over 1 Mbps, while for 10 HTTP flows, even the
best-performing ADV achieved only 60% of it. To under-
stand why the results for HTTP traffic differ, let us take a
look at the TCP traffic patterns. While FTP flows were
simulated with infinite backlog, with no idling once the
connection is established, HTTP flows consist of several
finite-sized request-reply transactions interleaved by think-
ing times. The time spent in think mode is comparable
to the time spent in transaction mode. Even without ex-
periencing packet losses, an HTTP client (or server) needs
go through slow start several times during the simulation.
Because of the finite-sized transactions, the time spent on
slow start is a significant portion of the overall transaction
time. Also, the response time, during which typically small
amounts of data are sent by a client, reduce the throughput
calculated. A routing protocol has to be ready with routes
to handle such short-lived TCP transactions. The results in-
dicate that ADV excelled in this situation. Also, given the
short amounts of data transacted, the fixed RTO heuristic
was probably not invoked as frequently as in the FTP traffic
simulations.
CBR Flows. Though CBR traffic was considered a back-
ground traffic interfering with the main (HTTP) traffic in
these simulations, we evaluated the impact of Reno-F on
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Fig. 2. Service times for 10 HTTP server-client connections using TCP
Reno and TCP Reno-F.

CBR traffic. Figure 4 shows the packet latency and through-
put observed for the background CBR flows. CBR through-
put was comparable for the three routing protocols, with
almost no impact from the use of Reno-F. The packet loss
was low, 5% for ADV and 10% for AODV and DSR. Let us
consider the packet latencies. AODV gave the lowest CBR
packet latencies and is not impacted by Reno-F. For DSR
and ADV, however, the CBR packet latencies were lower
when Reno-F was used. This is counter intuitive, since
Reno-F is a more aggressive protocol than Reno, we ex-
pected the latencies to increase or remain the same at best.
Indeed, our earlier FTP simulations [6], which simulated
TCP traffic with infinite backlog, showed that Reno-F in-
creased CBR packet latencies measurably. Upon analyzing
the data further, we observed the following. Depending on
the mobility pattern and interfering traffic from other Web
sessions and CBR traffic, a Web session could or could not
finish within the 200 seconds simulation period. If a Web
session finished with Reno, then applying Reno-F almost
always resulted in quicker completion time. If a Web ses-
sion did not finish with Reno, then applying Reno-F gen-
erally resulted in (a) completion of more request-reply cy-
cles for that session, or (b) higher number of retransmis-
sions, which is likely for sessions with pathologically bad
routes. So, given that each Web session has only a finite
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Fig. 3. Response times for 10 HTTP server-client connections using TCP
Reno and TCP Reno-F.

amount of data to transact, Reno-F, in general, minimized
the duration for which TCP packets use the network. Over-
all, CBR packets saw less interference from TCP packets.
Furthermore, with Reno, DSR and ADV had significantly
higher CBR packet latencies than AODV. For these reasons,
ADV and DSR benefited from Reno-F’s efficient handling
of TCP traffic, while AODV did not. In contrast, the CBR
throughput was not improved by the reduced interference
from HTTP traffic for any of the protocols, since the net-
work was not congested and the packet delivery rates were
nearly as high as they could be even without the HTTP traf-
fic [5], [1].

Owing to shorter buffering times for UDP packets,
ADV 30s/1s provided significantly lower latencies and only
slightly lower throughputs compared to ADV 30s/30s.

B. VBR Traffic

We simulated 2 53-Kbps VBR flows along with 8 10-
Kbps CBR flows for background traffic. The total back-
ground traffic of 80 Kbps was slightly less, but the amount
of per flow is the same in the HTTP simulations and is well
within the network capacity. A VBR flow, however, injects
five times as much traffic, which is likely to overwhelm the
network and congest the paths taken by the VBR packets.

Figure 5 presents the results of our simulations. Let us
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Fig. 4. CBR packet latency and throughput for 10 HTTP connections with
a 100 Kbps background load from 10 CBR sources.

look at the packet latencies. The CBR packet latencies for
the routing protocols were about the same as those observed
in the HTTP-traffic simulations (see Figure 4). For the VBR
traffic, AODV yielded the lowest latencies, about 57% less
than DSR and ADV 30s/30s.

Now, let us look at packet delivery fractions. AODV and
DSR drop more than half of VBR packets, but only about
a fifth of CBR packets. On the other hand, ADV 30s/30s
delivers 75% of VBR packets and over 90% of CBR pack-
ets. Overall, ADV delivered 58-65% more VBR packets
than DSR and AODV. The low VBR packet delivery rates
for AODV and DSR are due to the high volume of traffic
produced by each VBR connection. Referring to Figure 1,
even with the performance boost of Reno-F for HTTP traf-
fic, neither on-demand protocol achieved an average per-
connection throughput as high as 40 Kbps. The 53-Kbps of
traffic produced by each VBR connection is a higher load
than these protocols can sustain. To verify this, we reran
the simulations with each VBR producing traffic at an av-
erage rate of 10.6 Kbps (about the same as the traffic load
produced by a CBR flow). Figure 6 shows that, at this lower
load, all three routing protocols yielded high packet deliv-
ery fractions. DSR gave packet latencies similar to ADV
and throughput similar to AODV. Given that DSR is fairly
competitive with AODV in CBR traffic simulations [2], [5],
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Fig. 5. Packet latency and delivery fraction for 2 53-Kbps VBR connec-
tions, and a 80-Kbps background load from 8 CBR sources.

[1], we suspect that turning off the route cache hurt its per-
formance when the network was congested.

Comparing ADV 30s/30s and 30s/1s cases, we note the
following. In situations where a connection produces ex-
tremely high traffic, for example, VBR connections in Fig-
ure 5, using shorter buffering time provides lower latencies
with no measurable impact on throughput. In fact it can
be argued that it is advantageous to not to buffer packets in
such situations, since there are enough packets injected to
use any available bandwidth. For connections that produce
a low volume of traffic and do not congest the network, for
example, CBR connections in Figure 5 and VBR and CBR
connections in Figure 6, shorter buffering times can reduce
packet latencies significantly with lower, about 10% in the
results above, throughputs. A histogram analysis of packet
latencies for ADV 30s/30s indicated that about 10% of de-
livered packets with the largest latencies increased the over-
all average packet latencies by a factor of 2 or more. This
indicates that packet buffering time may be used as a tun-
able parameter to trade latency for throughput.

A MANET subjected to heavy loads from VBR flows is
exactly the type of situation in which ADV excels, while the
on demand algorithms AODV and DSR falter. This simula-
tion clearly shows the detrimental impact of not maintaining
routes pro-actively for high rate flows.
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Fig. 6. Packet latency and delivery fraction for 10.6-Kbps VBR connec-
tions, and a 80-Kbps background load from 8 CBR sources.

C. Mixed HTTP and VBR Traffic

In this set of simulations, we added the 10 HTTP flows
used earlier to the 2 53-Kbps VBR and 8 10-Kbps CBR
flows used above. The purpose of these simulations was
to investigate the impact of TCP and VBR traffic on each
other. Compared to the background traffic used in earlier
HTTP simulations, the two VBR flows can cause severe dis-
ruptions to TCP traffic.

Figure 7 shows the HTTP service times and throughputs
observed for each routing protocol. Compared to the results
shown in Figure 1, service times were about 35% higher
and throughputs were about 45-55% lower. The relative
rankings of the protocols in terms of performance were un-
changed, as was the effect of Reno-F. Compared to AODV
and DSR, each variant of ADV provided 16-27% lower ser-
vice time and 80-100% higher throughput.

Figure 8 shows the VBR packet latency and jitter ob-
served for each routing protocol. Jitter is defined here as
the standard deviation of the packet latency. Packet laten-
cies have skewed distributions with long tails, so the stan-
dard deviation can be larger than the mean. VBR packet la-
tencies were higher in combination with HTTP traffic than
without (see Figure 5). The increase in VBR latency was
as little as 40% for DSR and as much as 100% for ADV
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Fig. 7. Mean service time and HTTP throughput for the traffic consisting
of 10 HTTP, 2 53-Kbps VBR connections, and a 80-Kbps background load
from 8 CBR sources.

and AODV. AODV had the lowest packet latencies, about
55-75% lower than those given by DSR and ADV. Also,
AODV provided significantly lower packet jitter than DSR
and ADV. ADV 30s/30s had the worst packet latencies and
jitter, while the 30s/1s version had lower latencies with
about the same VBR throughput.

Figure 9 shows the VBR packet delivery fraction and
throughput observed for each routing protocol. Compared
to the results shown in Figure 5, all three protocols deliv-
ered 1/4th to 1/3rd fewer VBR packets. Once again, ADV
outperformed the other two by at giving 33-50% higher
throughput. ADV delivers more packets, even those taking
4 or more hops, while AODV and DSR drop most of those
packets. Combining the VBR throughputs in Figure 5 with
the HTTP throughputs in Figure 7, we find that the total
throughput is significantly less than the throughput achieved
by 10 HTTP connections alone in Figure 1. For ADV, the
reduction in total throughput is around 200 Kbps.

It is interesting to examine the impact of Reno-F on VBR
traffic. For AODV and DSR, VBR packet latencies and
throughput were adversely impacted, while for ADV, they
were improved, much the same way CBR traffic perfor-
mance was improved by Reno-F in HTTP simulations (see
Figure 4). With AODV and DSR, 53-Kbps VBR flows
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Fig. 8. VBR packet latency and jitter for the traffic consisting of 10 HTTP,
2 53-Kbps VBR connections, and a 80-Kbps background load from 8 CBR
sources.

caused network congestion, and Reno-F improved through-
put of HTTP traffic at the expense of VBR traffic. ADV,
however, did not suffer as much from the heavy traffic flows.
So reducing the duration for which HTTP transactions ap-
pear on the network still seems to be beneficial to VBR traf-
fic.

Additional simulations involving 4 VBR and 10 HTTP
flows with no background CBR flows are given in Figures
10 through 12. HTTP flows suffer significantly from VBR
flows. Reno-F helps AODV and DSR’s performances sig-
nificantly. Among the three routing algorithms, AODV and
DSR perform much worse than ADV for both HTTP and
VBR flows.

These simulations indicate clearly that MANETs may not
be able to support interactive video and audio flows satisfac-
torily, when there is competing HTTP and other background
traffic. However, adaptive transport protocols (for example,
a datagram protocol with rate control) for MANETs should
be able to support non-realtime streaming flows with buffer-
ing successfully.

V. RELATED WORK

Several mechanisms have been proposed for improving
TCP performance in MANETs. Each of the studies cited
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Fig. 9. VBR packet delivery fraction and throughput for the traffic consist-
ing of 10 HTTP, 2 53-Kbps VBR connections, and a 80-Kbps background
load from 8 CBR sources.

below utilizes simulation or emulation to demonstrate the
performance benefits of the proposed technique. In each
case, only a single TCP connection is considered, TCP traf-
fic is limited to file transfers, and no background network
load is included.

TCP-F [3] uses a feedback scheme in which an interme-
diate node, upon detecting the disruption of a route due to
the mobility of the next host along that route, sends a Route
Failure Notification (RFN) to the TCP sender. When it re-
ceives the RFN, the sender stops transmitting packets and
freezes its state, including the retransmission timeout inter-
val and the congestion window. Eventually, an intermediate
node will learn of a new route to the destination and send
a Route Re-establishment Notification (RRN) to the source.
After receiving the RRN, the sender restores its previous
state and resumes transmission. TCP’s congestion control
mechanism is not invoked and the consequent performance
penalty is avoided.

A similar scheme has been proposed in which an interme-
diate node sends an explicit link failure notification (ELFN)
to the TCP sender when a route failure is detected [11]. As
in TCP-F, the sender freezes its state upon receipt of the
ELFN. However, instead of relying on the receipt of a fur-
ther route re-establishment message, the TCP sender trans-
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Fig. 10. Mean service time and throughput for the traffic consisting of
10 HTTP and 4 53-Kbps VBR connections with no background load from
CBR sources.

mits packets at a regular interval to probe the network until
the availability of a new route is detected. This mechanism
is similar to the Reno-F proposal in that probing is used to
learn that the route has been repaired as opposed to waiting
for a notification that might get lost in the network. How-
ever, Reno-F has the advantage that its probe interval is not
fixed, but rather is tied to the current estimate of the RTT
and is thus adaptive to network conditions.

In the TCP-BuS proposal [15], an explicit route discon-
nection message (ERDN) is generated at an intermediate
node upon detection of a route failure. This message is
propagated to the source which then stops transmission.
Packet transmission is resumed after a partial path has been
re-established from the node which detected the route fail-
ure to the destination and that information is relayed to
the TCP sender in an explicit route successful notification
(ERSN). During the course of a TCP connection, packets
are buffered at the intermediate nodes along the path from
sender to receiver. Nodes upstream from the failed link are
able to forward these packets on to the destination once the
route has been repaired, relieving the sender from having to
retransmit these packets. This scheme is somewhat complex
and would seem likely to have trouble with multiple route
failures in quick succession, as in a high mobility network.
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Fig. 11. VBR packet latency and jitter for the traffic consisting of 10
HTTP and 4 53-Kbps VBR connections with no background load from
CBR sources.

An advantage of Reno-F is its simplicity; to the extent that
comparable performance can be attained, a simple scheme
is preferable to a more complicated mechanism.

In ATCP [17], a layer between TCP and the routing agent
is proposed which, among other things, shields TCP from
packet loss that is perceived to be non-congestion related.
Upon learning of a route failure (by means of an ICMP
Destination Unreachable message), ATCP places the TCP
sender into persist mode, thus avoiding the invocation of
congestion control measures. While in persist mode, TCP
generates probe packets at exponentially increasing inter-
vals up to a maximum of 60 seconds. Once the route is
re-established and an ACK is received for one of the probe
packets, TCP moves out of persist mode and resumes packet
transmission. Since exponential backoff is a problem in
MANETs, the fixed RTO technique may be used by ATCP
in determining a more suitable probe interval.

VI. CONCLUSIONS

Since the capacity of a mobile ad hoc network (MANET)
changes rapidly due to node movements and random wire-
less link errors, both TCP and UDP protocols perform
poorly, albeit for different reasons. In this paper, we have
analyzed the impact of a simple transport layer mechanism,
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Fig. 12. VBR packet delivery fraction and throughput for the traffic con-
sisting of 10 HTTP and 4 53-Kbps VBR connections with no background
load from CBR sources.

called fixed RTO, on the performance of TCP traffic and
the impact of buffering packets at intermediate nodes when
routes are lost on UDP packets. We simulated a variety of
traffic loads, involving HTTP and VBR multimedia traffic
with an interfering background CBR traffic.

For a more complete understanding of the modifications
to transport protocols, we used representative on-demand
and proactive routing algorithms. Of the three routing pro-
tocols we have simulated, ADV (proactive type) performs
as well or better than AODV and DSR (on-demand type)
when TCP Reno is used as the transport protocol. With
the fixed RTO heuristic, which prevents doubling of the re-
transmit time out interval for consecutive timeouts, we have
shown that AODV and DSR perform much better, while
ADV, though does not improve, still outperforms them.

The primary benefit of the fixed RTO heuristic is to let
TCP probe the network much more frequently than it would
otherwise. The frequency at which a TCP sender probes
the network while in backoff mode is based on the current
RTO, and thus is adaptive to the existing network condi-
tions. Since AODV and DSR can discover routes on de-
mand, more frequent probing results in shorter route repair
times and overall higher performance. ADV’s performance
does not improve significantly with the fixed RTO tech-



nique for the following reasons: (a) broken routes are re-
paired only through routing updates among neighbor nodes
and more frequent retransmissions by TCP with the fixed
RTO heuristic do not have any significant impact on the
route repair time, (b) ADV buffers packets at intermedi-
ate nodes and delivers packets to destinations in reasonably
short enough time that more frequent retransmissions by
TCP sender are ineffective, and (c) ADV exhibits relatively
good performance with TCP Reno, which means there is
less room for improvement.

Comparing the Reno-F results for FTP traffic in [6] and
those for HTTP traffic in this paper, we note that while
AODV and DSR outperform ADV multiple for FTP flows,
ADV is markedly superior to the other two for multi-
ple HTTP connections when there is interfering non-TCP
friendly traffic. The primary reason is that the FTP traf-
fic has infinite backlog with no idling once the connection
is setup, while the HTTP flows have a finite amount of data
transacted with several slow start periods. This sort of situa-
tion favors a routing protocol that can supply routes quickly.
So maintaining routes pro-actively like ADV does is ben-
eficial in such situations. Our results show that handling
finite-sized TCP transactions efficiently using the fixed RTO
heuristic can lead to better performance for UDP traffic, as
long as the UDP traffic does not congest the network.

Another major result of our study is that current
MANETs may have difficulty in sustaining interactive au-
dio and video flows. We evaluated the capability of
MANETs to support congestion-causing UDP traffic using
2-4 53-Kbps VBR flows. The traffic rates of 53-Kbps per
VBR is at the low-end of low quality video and high-fidelity
audio rates. This is the type of traffic that favors routing
protocols that maintain active routes efficiently. Once again
we show that on-demand routing protocols that depend on
elaborate route request and reply mechanisms do not per-
form well. On the other hand, the proactive ADV performs
well, though it has high packet latencies.

Among the three routing protocols, ADV offers superior
performance for HTTP traffic both in terms of service times
and throughputs. For VBR traffic, AODV offers the best la-
tencies at the expense of very low delivery rates, while ADV
offers very high delivery rates, but also high latencies. Our
results show that reducing buffering of packets at interme-
diate nodes improves ADV latencies significantly, but also
lowers delivery rates by about 10%. DSR with route replies
from cache turned off seems to perform as well as AODV
for HTTP traffic, but not for VBR traffic.

Our simulations involving mixed HTTP and VBR traffic
show that the impact of VBR on TCP traffic quite signifi-
cant. So it is necessary to use more TCP-friendly datagram
protocols for multimedia flows.
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