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Abstract. Recent multiprocessors such as Cray T3D
support interprocessor communication using partitioned
dimension-order routers (PDRs). In a PDR implemen-
tation, the routing logic and switching hardware is par-
titioned into multiple modules, with each module suit-
able for implementation as a chip. This paper proposes
a method to incorporate adaptivity into such routers with
simple changes to the router structure and logic. We show
that with as few as two virtual channels per physical chan-
nel, adaptivity can be provided to handle nonuniform traf-
fic in multidimensional meshes.
Keywords: adaptive routing, mesh networks, multicom-
puters, multimodule routers, wormhole routing.

1 Introduction
Many recent experimental and commercial multicomput-
ers and multiprocessors [6, 14, 18] use grid topology based
networks such as meshes and tori. Majority of these multi-
computers use the dimension-order or e-cube routing with
wormhole (WH) switching [8]. Wormhole is a form of cut-
through routing in which blocked messages hold on to the
channels they already reserved.

In practice, the e-cube routing is implemented using
multiple modules such that each module handles routing
of messages in exactly one dimension. We refer to this im-
plementation as the multimodule or partitioned dimension-
order router (PDR) implementation [6, 7, 9, 14, 18].

For example, the Cray T3D uses a 3D torus network
with each PDR implemented using three chips—one chip
for each dimension module. An alternative router im-
plementation is to use centralized crossbars to handle the
switching in each router. While crossbar implementations
can offer adaptivity and more flexibility, each crossbar chip
requires more number of pins than the module chips used
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as the building block for PDR implementations. Thus, for
the same technology, a PDR implementation yields wider
channels compared to the crossbar implementation.

The e-cube is simple to implement and provides high
throughput for uniform traffic. But it cannot handle well
nonuniform traffic such as matrix transpose and bit re-
versal that occurs in parallel computing, due to its non-
adaptive routing. Adaptive cut-through routing algorithms
has been the subject of extensive research in recent years
[1, 2, 10, 11, 12, 13, 15, 16, 17]. These results implic-
itly or explicitly assume routers with centralized cross-
bars. Therefore, such techniques are not suitable for mul-
tiprocessors with PDRs. Several other results on adaptive
routing exploit the rich interconnection structure of hyper-
cubes and are not suitable for high-radix, low-dimensional
meshes and tori.

In this paper, we propose a technique to incorporate
adaptivity into networks with PDRs implemented using
multiple chips. Our approach is to provide partial adap-
tivity with a small increase in hardware and routing com-
plexity, rather than provide full adaptivity, which is expen-
sive to implement and requires extensive redesigning of the
existing routers. The main contribution of this work is to
show that partitioned dimension-order routers can be en-
hanced for adaptive routing without using crossbars. We
show that with a small increase in the resources and sim-
ple changes to the router organization and routing logic, a
router can be made versatile enough to handle uniform and
nonuniform traffic well.

Section 2 gives an overview of dimension-order routers.
Section 3 describes the changes to the router required for
adaptive routing. Section 4 presents the proposed adaptive
routing technique and the routing logic. Section 5 con-
cludes this paper.



2 Partitioned Dimension-Order
Routers

A �k� n�-mesh has n dimensions—DIM�, . . . , DIMn��, k
nodes per dimension, and N � kn nodes. Each node
is uniquely indexed by a radix-k n-tuple. Each node is
connected via communication links to at most two other
nodes in each dimension. The neighbors of node x �
�xn��� � � � � x�� in dimension i are �xn��� � � � � xi��� xi �
�� xi��� � � � � x��, if they exist. Each link provides full-
duplex communication using two unidirectional phys-
ical channels. A �k� n�-torus is a �k� n�-mesh with
wraparound links; a link is said to be a wraparound link
if it connects nodes �xn��� � � � � xi��,0,xi��, � � � � x�� and
�xn��� � � � � xi��� k� �� xi��� � � � � x�� in dimension i, � �
i � n. In this paper, we concentrate on �k� n�-mesh net-
works. Each node is a combination of processor, memory,
and router. Since our interest in this paper is in the routing
part of a node, we use node and router synonymously.

A DIMi channel is one that connects two nodes whose
addresses differ (by 1) only in DIMi. We use NETi to denote
dimension i crosssection of the network, which consists of
all nodes and DIMi channels. Also, NETi� is a subnetwork
of the mesh consisting of all nodes and unidirectional DIMi

channels that start from a lower numbered node and end
at a higher numbered node in dimension i. In addition,
NETi�j even indicates the subnetwork consisting of all the
nodes and DIMi links among nodes with jth component of
their addresses even. Similarly, NETi� and NETi�j odd sub-
networks are defined. Finally, MODULEi denotes the mod-
ule responsible for switching messages traveling in DIMi.

To illustrate our technique, we use a 3D mesh as a typi-
cal network. However, our results can be extended to mul-
tidimensional tori and meshes in a straight forward man-
ner. As per dimension order routing, each message com-
pletes the required hops in dimension DIMi before taking
any hops in DIMj , � � i � j � n, where n is the number
of dimensions in the network. The router given in Figure
1(a), without the dashed lines, is a typcial 3D PDR.

The Cray T3D implements such a partitioned
dimension-order router in each node using three identical
router chips. A pair of 24-bit unidirectional lines (16-bit
data + 8-bit control) interconnect appropriate dimension
chips in adjacent nodes in the Cray T3D router. In
addition, each chip has an input from the network interface
(for injection of messages) or from previous dimension
router chip and an output to the next dimension router
chip or to the network interface (for delivery of messages).
So, each router chip has three incoming 24-bit channels
and three outgoing 24-bit channels. Not counting pins for
power supply, ground, etc., each router chip requires at
least 144 pins for data and control of virtual channels.

For a crossbar based router implementation, one chip
is used per router. Such a chip requires at least 336
pins—2*6*24 � ��� pins for internode-connections and
� � �� � �� pins for injection and consumption channels.
Thus PDR implementations have lower pin requirements
per router chip. For the same number of pins per chip,
PDRs can provide wider channels. The main disadvan-
tages of PDRs are increased chip count and additional bot-
tlenecks in the form of intermodule links used by messages
that need to change their dimensions.

Since channels are the resources for which messages
compete in wormhole routing, cyclic dependencies that
arise in adaptive routing are avoided by simulating two or
more virtual channels on each physical channel [8].

3 Modifications to Partitioned
Dimension-Order Routers

To provide adaptive routing, the router design has to be
modified. Two types of modifications to the router are
needed: modifications to the router organization, and mod-
ifications to the routing logic. We discuss modifications
to the router organization below, and modifications to the
routing logic in the next section.

Since channels in a dimension other than the current
dimension of travel are used for adaptive routing, there
should be a mechanism for a message to travel from a
higher dimension routing module to a lower dimension
module. A simplest way to achieve this is to make the
existing channel between MODULEi and MODULEi��, � �
i � n � �, bidirectional. Even more flexibility can be
provided by adding a new bidirectional channel between
MODULEn�� and MODULE�. Both possibilities are shown
for a 3D mesh router in Figure 1.

If the suggested connections are made, the chip pin
count increases by the number of data and control lines re-
quired per channel. In the case of a Cray T3D type router,
it is about 24 extra pins for each added connection. Ad-
ditional buffers are needed to store flits at each new in-
coming channel. Alternatively, the pin count can be re-
duced by using multiplexers, as shown in Figure 2 for a 3D
router. At the input of MODULEi, a MUX is used to mul-
tiplex between the outputs from MODULEi��� mod n� and
MODULEi��� mod n�. At the input of MODULE�, however,
the multiplexer also has to include the injection channel as
the input.

When multiplexers are used, a message sees an ex-
tra multiplexer delay at its injection into the network and
whenever it changes its dimension of travel. However, we
expect this delay to be not too significant compared to the
queueing delay at moderate to high traffic loads. This ad-
ditional delay may not affect the network throughput, since
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Figure 1: Modifications to the 3D PDR to support adap-
tive routing. The added connections are given by dashed
lines. Part (a) shows making existing intermodule connec-
tions bidirectional, and part (b) adding a new connection
between the highest and lowest numbered modules.

.

Figure 2: Example of implementing the required intranode
connections using multiplexers.

router chips are designed to operate in a pipelined fashion
[3, 4].

4 Adaptive Routing
We describe our technique for nD meshes with PDRs. First
we define a few terms to facilitate the discussion. A prof-
itable hop is one that takes a message closer to its destina-
tion. The e-cube hop of a message is the hop specified by
the e-cube or dimension-order routing algorithm. It is the
profitable hop in the lowest dimension in which the current
node’s address does not match that of the message desti-
nation. Our techniques can be classified as partially adap-
tive routing methods, since in general, they use a subset of
available shortest paths to route messages. We consider
only profitable internode hops, though our routing tech-
nique can handle nonprofitable hops taken by a message
in the adaptive subnetwork.

Adaptive Routing Algorithm, Version 1. The first ver-
sion of our adaptive algorithm is for PDRs that do not have
channels between MODULEn�� and MODULE�.

First, let us describe the base dimension-order routing.
In dimension-order routing, a message is always routed in
the lowest dimension with a profitable hop. We use c� class

of virtual channels for internode and intranode (on links
between modules within a node) hops.

We enhance the basic dimension-order routing by let-
ting a message have adaptivity while routing in DIM�

through DIMn��. Messages route nonadaptively in the
highest dimension, DIMn��. When a message is routed
adaptively, it is routed so in two dimensions: the dimension
of its e-cube hop, and the next dimension. More specif-
ically a message routing in DIMi, � � i � n � �, uses
the combination of two subnetworks. If the message’s e-
cube hop is to a higher numbered node in DIMi, then it uses
NETi� and NETi���i even subnetworks; otherwise, it uses
NETi� and NETi���i odd subnetworks. In adaptive routing,
the sets of channels used by a message are internode chan-
nels in its lower dimension (for dimension-order routing),
intranode channels to move from one dimension routing
module to another (for changing dimension of travel), and
internode channels in the higher dimension (for adaptive
routing). All non-e-cube hops are taken using the c� class
of virtual channels.

Table 1 indicates the subnetwork and the virtual chan-
nels used by various messages. An example of the subnet-
works used by DIM� messages in a 2D mesh is given in
Figure 3.

As an example, consider a message that needs to be
routed from node (0,0) to node (1,3), middle node in the
right-most column, in Figure 3. The available paths are as
follows. The arrows indicate internode hops. The first path
is due to e-cube routing.

(0,0)� (0,1)� (0,2)� (0,3)� (1,3)
(0,0) �

� (1,0)� (1,1)� (1,2)� (1,3)
(0,0)� (0,1)� (0,2) �

� (1,2)� (1,3)

All internode hops given above are on c� virtual channels
unless otherwise indicated by a 1 on the corresponding ar-
row, in which case c� channels are used. Intranode tran-
sitions take place in the nodes indicated in bold. The in-
ternode hop is on c� if the intranode hops are due to e-cube
routing—a message finished its hops in a given dimension
and is going to the next dimension of routing. The intran-
ode hops due to adaptive routing can be identified by look-
ing at the channel used for internode hops prior to and af-
ter the intranode hop. Figure 4 shows the use of intranode
channels for the second path given above. A fully-adaptive
routing provides four shortest paths for routing this mes-
sage.

Adaptive Routing Algorithm, Version 2. By noting
that the c� channels in DIM� are unused, the algorithm
can be improvised to provide even more adaptivity if
MODULEn�� and MODULE� of a router are connected.
This is the second version of our algorithm. A message
may forego routing completely in DIM� at any time and
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Table 1: Adaptivity and channel allocation for messages in the first version of the routing algorithm

Msg. Type Subnetworks Internode Chs. Intranode Chs.
DIM�� NET��, NET���even c0 in DIM�, c1 in DIM� c0 for e-cube, c1 for adaptive
DIM�� NET��, NET���odd c0 in DIM�, c1 in DIM� c0 for e-cube, c1 for adaptive

...
DIMi� NETi�, NETi���i even c0 in DIMi, c1 in DIMi�� c0 for e-cube, c1 for adaptive

...
...

...
...

DIM�n���� NET�n���� c0 N/A
DIM�n���� NET�n���� c0 N/A

0,0 0,3

2,32,0

(a) (b)

Dim 0+

Dim 1+

Figure 3: Subnetworks used by DIM�� (part a) and DIM�� (part b) messages in a 	�� mesh network. c� virtual channelsare
used on NET�� and c� virtual channelson NET��� even.

B

Dim1

c1

c1 c0

Dim0 Dim2

A

c0

c1

Dim0 Dim2Dim1

c1

Dim 0+

Dim 1+

A

B

Figure 4: Use of intranode channels in routing a message
from node (0,0) to node (1,3). The intranode paths are in-
dicated in bold.

revisit it after completing the routing in DIM� through
DIMn�� adaptively as in the original version. To apply the
above discussion, it is helpful to assume that such mes-
sages need to take hops in DIMn rather than DIM� after
finishing routing in DIMn��. After completing its routing
in DIM� through DIMn�� adaptively, the message is routed
nonadaptively in NETn�� using c� channels and in NET� (a
revisit of DIM� subnetwork) using c� channels.

Adaptive Routing Algorithm, Version 3. Even more
adaptivity can be provided by considering DIMn�� and
DIM� planes. However, the routing logic becomes slightly
more complicated. Now a DIM�n���� message that
needs to revisit NET� routes adaptively in NET�n���� and
NET���n���even using c� for DIMn�� hops and c� for in-
tranode and DIM� hops. If a message that skipped DIM�

has DIM�n���� hops to take when it becomes a DIMn��

message, then it should be routed such that it can com-
plete all of its DIM� hops on NET���n���even. Similarly,
a DIM�n���� messages travels adaptively in NET�n����
and NET���n���odd using c� and c� channels adaptively.
If a message that skipped DIM� does not need to travel in
DIMn�� after completing its routing in DIMn��, then it can
directly go through intranode channels from MODULEn��
to MODULEn�� and from MODULEn�� to MODULE� and
route to its destination using c� channels in NET�.

Comparisons with other adaptive routing algorithms.
There are no previous results on adaptive routing meth-
ods that work with multimodule routers. So, we compare
the routing algorithms with some of the previously known
crossbar based adaptive algorithms. Version 1 of our al-
gorithm is similar to the planar-adaptive routing (PAR) al-
gorithm proposed by Chien and Kim [15]. Our algorithm
uses only 2 virtual channels per physical channel instead
of 3 by PAR, which also requires a crossbar for router im-
plementation. Versions 2 and 3 of the proposed routing al-
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gorithms are more versatile than the PAR algorithm, since
with these algorithms messages can skip routing in DIM�

when the network is congested in DIM�. In fact, Chien and
Kim [15] report that PAR does not work very well for 3 or
higher dimension meshes with nonuniform traffic such as
bit reversal.

As an example take the bit reversal traffic in an �����
mesh. Here, node (0,0,1) wants to communicate with node
(4,0,0), node (0,0,2) with node (2,0,0), node (0,0,3) with
node (6,0,0), and so on. (The destination of a node in bit
reversal communication is obtained by taking the node ad-
dress in binary, in this case a 9-bit address, and reversing
the bits. For example node (0,0,1) has the bit address 000
000 001, and its destination will have the bit address 100
000 000.) With PAR, also with version 1 of our algorithm,
all these messages have to go to node (0,0,0) before trav-
eling in DIM�. Since they do not need to travel in DIM�,
they have no adaptivity, unless the shortest path constraint
is relaxed. With version 2 of our algorithm, however, such
messages have the option of directly going to DIM�, com-
pleting routing in DIM� and then coming back to DIM� and
complete the routing. With version 3, such messages travel
adaptively in the DIM�-DIM� plane. This sort of adaptivity
leads to better performance for nonuniform traffic.

Another point worth noting is that versions 2 and 3 of
the proposed algorithm use all available virtual channels
for routing even for messages that do not have adaptivity—
those that need to travel in one dimension only. As an
example consider routing of a message between nodes in
a row of a 2D mesh, see Figure 5. This message travels
only on DIM� links and does not have adaptivity. If it is
routed using DIM� routing, then it uses c� channels. If it
skips DIM� to comeback to it later, then it revisits DIM�

(immediately, since there are no DIM� hops to take) and
completes its routing using c� channels. This illustrates the
versatility of the proposed routing technique in providing
additional paths and additional virtual channels for adap-
tive routing. Furthermore, a DIMi, i � �, message can
always use c� virtual channels on DIMi links without cre-
ating deadlocks. In contrast, the PAR utilizes only one of
the three classes of virtual channels used in DIM�. The pre-
viously known adaptive wormhole routing schemes with
such flexible channel allocation are crossbar based adap-
tive schemes [10, 17].

4.1 Proof of deadlock-free routing

The above routing algorithm works for routers imple-
mented using a full crossbar, which can connect any in-
put channel of a node to any output channel. The previ-
ous results on adaptive routing assume that the router in a
node is implemented using a crossbar, which provides full
switching capability among multiple dimensions. In a mul-

A
A

c0

Dim1Dim0

c1

c1

c1

Figure 5: Using adaptive channels for routing messages
with no adaptivity. The message finding that c� channel
busy at node A, can skip DIM� and go to DIM� and back
to DIM�, since there are no DIM� hops to take, all in one
node. After this it can use c� channels to reach its desti-
nation. The unneeded intranode transitions can easily be
eliminated for such messages.

timodule dimension-order router, changing dimensions of
travel by messages is complicated, since intermodule chan-
nels will be shared among different types of messages in
adaptive routing. We prove below that these additional de-
pendencies are carefully controlled such that deadlocks are
avoided.

Proof sketch to show that version 1 is deadlock free:
There are �n types of messages: DIMi� and DIMi�, i �
�� � � � � n � � and n is the number of dimensions of the
mesh. We simply show that a each message type uses a
specific acyclic virtual network made up of virtual chan-
nels not used by other message types, and that these acyclic
virtual networks are used by messages according to some
partial order. Our key argument for first part is to show that
when a message of type, say, DIMi� uses the same physi-
cal channels as other message types, then it uses different
virtual channels, and it never has common physical chan-
nels with other message types that use the same class of
virtual channels. The argument for the second part follows
directly from the dimension-order routing.

It is easy to show that the proposed algorithm is free of
livelocks. We use only shortest paths, and a message can
choose and hold for a virtual channel indefinitely without
creating deadlocks. When a fair queueing policy such as
FIFO is used, a message gets its channel in finite time.

The proof for version 1 of the algorithm can be extended
to show that versions 2 and 3 of the algorithm are also
deadlock free. Versions 2 and 3 are different from version
1 in that they use c� channels in DIM�, and c� channels on
links between DIMn�� and DIM� modules while (or after,
depending on the version) routing in DIMn��.

5 Concluding Remarks
We have presented a technique to enhance the dimension-
order routers for adaptive routing in multicomputer net-
works. Particular attention has been paid to the applica-
bility of the proposed techniques for current multicomput-
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ers which use partitioned dimension-order routers (PDRs).
The proposed technique guarantees deadlock free routing
with only a modest increase in the number of virtual chan-
nels used. The changes to the router increase the pins on
each router chip by a small constant. Alternatively, mul-
tiplexers may be used to reduce the chip pin count. This
increases the chip count and transit delays for messages
cutting-through intermediate nodes are higher. Neither is a
severe disadvantage, however. Multiplexers are simple and
inexpensive. With extensive pipelining for the router chip,
increased transit delays do not affect the network through-
put.

Since PDRs do not have centralized crossbars, the pre-
viously known adaptive routing techniques, which im-
plicitly assume crossbars for switching, cannot be imple-
mented without redesigning the existing routers. Indeed,
the crossbar-based adaptive router used in Cray T3E is a
complete redesign of the PDR used in the earlier generation
machine, Cray T3D. Studies have shown that large cross-
bars adversely impact the speed of a router [5]. Also for
the same technology, multichip implementations provide
wider internode channels. Therefore, the proposed tech-
nique is attractive for implementing faster adaptive routers
in future.

Another advantage is that the proposed technique uses
only two virtual channels to provide adaptivity. Also, it al-
lows message skip DIM� initially and revisit it later. This
type of advantage is most beneficial in handling nonuni-
form traffic higher dimension networks, more so for 3D
networks.

In our earlier work, we have shown that PDRs can be
enhanced for fault-tolerant routing in the presence of block
faults [4]. The technique presented here can be combined
with our earlier work to provide adaptive, fault-tolerant
routing in multicomputers with partitioned dimension-
order router routers. We are currently evaluating the per-
formance of the algorithm with the dimension-order and
other adaptive routing algorithms.
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