
Finite Difference Time Domain (FDTD) Simulations Using Graphics Processors 

Samuel Adams† and Jason Payne 
US Air Force Research Laboratory, Human 

Effectiveness Directorate (AFRL/HE), Brooks 
City-Base, TX 

{samuel.adams, jason.payne}@brooks.af.mil 

Rajendra Boppana 
The University of Texas at San Antonio, 

Department of Computer Science, San Antonio, 
TX

boppana@cs.utsa.edu

Abstract

 This paper presents a graphics processor based 
implementation of the Finite Difference Time Domain 
(FDTD), which uses a central finite differencing scheme 
for solving Maxwell’s equations for electromagnetics.  
FDTD simulations can be very computationally expensive 
and require thousands of CPU hours to solve on 
traditional general purpose processors.  Modern 
Graphics Processing Units (GPUs) found in desktop 
computers are programmable and are capable of much 
higher vector floating-point performance than general 
purpose CPUs.  

This paper shows how GPUs can be used to greatly 
speedup FDTD simulations.  The main objective is to 
leverage GPU processing power for FDTD update 
calculations and complete computationally expensive 
simulations in reasonable time.  This allows researchers 
to simulate much longer pulse lengths and larger models 
than was possible in the past.  
 A new FDTD code was developed to leverage 
graphics processors using Linux, C, OpenGL, Cg, and 
commodity GeForce 7 series GPUs.  The graphics 
hardware was accessed through standard OpenGL.  The 
FDTD model space was then transferred to the GPU 
device memory through OpenGL textures and host 
readable via frame buffer objects exposed by the OpenGL 
2.0 application programming interface (API).  GPU 
fragment processors were utilized for the FDTD update 
computations via Cg fragment programs.  
 For models that were sufficiently large, greater than 
(140)3 cells, the GPU performed FDTD update 
calculations at least 12 times faster than the execution of 
the same simulation on a contemporary multicore CPU 
from Intel or AMD.  The use of GPUs shows great 
promise for high performance computing applications like 
FDTD that have high arithmetic intensity and limited or 
no data dependencies in computation streams.  Until 
recently, to use GPUs as a co-processor, the normal 

CPU-based code needed to be rewritten extensively using 
special graphics programming language Cg and OpenGL 
APIs, which is difficult for non-graphics programmers.  
However, newer GPUs, such as NVIDIA’s G80, provide 
unified shader models for programming GPU processing 
elements and APIs that allow compiler tools to allow 
direct programming of graphics hardware without extra 
intermediate graphics programming with OpenGL and 
Cg.  Currently, a message passing interface-based 
parallel GPU FDTD code is being developed and 
benchmarked on a cluster of G80 GPUs.  

1.  Introduction

 The FDTD method has long been a popular 
computational method for solving Maxwell’s Equations 
for electromagnetics.  FDTD can solve models with 
arbitrary geometries comprised of dielectric materials.  
Additionally, FDTD can easily handle sinusoidal, 
transient and pulsed sources, making it a useful tool for 
many problems in electromagnetics.  However, 
simulations with large model spaces or long non-
sinusoidal waveforms can require a tremendous amount 
of floating point calculations and run times of several 
months or more are possible even on large HPC systems.  
Even for small models of approximately 109 cells, a 
simulation of a millisecond duration waveform could 
easily take over a month even on 1,000 processors on a 
traditional high-performance computing (HPC) cluster.  It 
is obvious that current FDTD codes running on existing 
HPC clusters are not viable for this class of problems, 
prompting a need to investigate methods of increasing 
computational speed for these simulations. In the past few 
years, GPUs have shown great promise for general 
purpose computation codes and methods, such as FDTD. 
 GPUs have high floating point performance, 
exceeding the performance of general purpose CPUs by 
many times, due to their specialized streaming 
architecture.  In the past few years, programmability of 

†General Dynamics Information Technology, Needham Heights, MA

HPCMP USERS GROUP CONFERENCE 2007 (HPCMP-UGC 2007)
0-7695-3088-5/07 $25.00  © 2007



GPUs and increased floating point precision has allowed 
GPUs to perform general purpose computations.  We 
have developed new FDTD codes leveraging these 
commodity GPUs for performing scattered field update 
computations, and for sufficiently large model space, 
achieved speedup of many times. 
 The rest of the paper is organized as follows.  First, 
an overview of using GPUs for general purpose 
computation is given.  Next, a brief description of the 
FDTD method and a commonly used algorithm for FDTD 
simulations is given.  Next, our GPU implementation of 
FDTD simulation code is described followed by 
performance comparison of CPU and GPU executions.  
Finally, conclusions and directions for further work are 
given.  

2.  GPUs for General Purpose Computation 

 For a few years now, GPUs have been used for 
general purpose computation[1].  In terms of raw floating-
point computation capability, they are many times more 
powerful than general purpose CPUs and have much 
higher memory bandwidth.  For example, a GeForce 8800 
GTX can produce 345 peak GFLOPS and has an 
86.4GB/sec memory interface, whereas an Intel Core 2 
Extreme quad core processor at 2.66 GHz (1,066 MHz 
FSB) has a theoretical 21.3 peak GFLOPS and 10.7 
GB/sec maximum memory bandwidth.  GPUs are also 
improving their performance at a much faster rate; GPU 
performance doubles every 6 months compared to 18 
months for CPUs. 
 GPUs are able to achieve this high performance at the 
cost of generality.  GPUs are optimized for data 
parallelism, or in other words, to execute similar 
operations on large vectors or streams of data in parallel.  
Explicit data parallelism allows GPUs to largely exclude 
control logic, and data streaming with high-speed memory 
interfaces eliminates the need for large on-die caches.  
This frees up much of the GPU’s die surface for 
computational units in exchange for large caches and 
complicated control logic; in the case of the GeForce 
8800 GTX, there are 128 stream processors on the die.  
Data parallelism also requires computation streams to not 
intercommunicate or share memory, and branching logic 
is allowed only at high performance costs.  Since data is 
streamed and not maintained in cache, it is also important 
that there is sufficient arithmetic intensity, or in other 
words, enough computation per word fetched to mask the 
memory latency.  Due to these restrictions, many 
traditional algorithms cannot be directly ported to run on 
streaming architectures, but for algorithms that are data 
parallel and are arithmetically intense, great speed up can 
be achieved. 

3.  Finite Difference Time Domain 

 FDTD is used to solve Maxwell’s equations for 
arbitrary model spaces.  Indeed, FDTD allows us to solve 
models that would be difficult or impossible with 
analytical methods.  FDTD is a direct time-domain 
solution to Maxwell’s curl equations[2], which are given 
here below.  

source

source

E  1 1
H J E 

t

H  1 1
E M H 

t

 In the FDTD scheme, Maxwell’s curl equations are 
first scalarized into their x, y, and z field components.  
Then, centered finite difference expressions are used to 
approximate the spatial and time derivatives.  Below is 
the resulting x-directed H field equation; the other 5 field 
components are similar. 

n+1/2 n+1/2 n n n n
i,j,k i,j,k i,j,k+1/2 i,j,k 1/2 i,j+1/2,k i,j 1/2,k n 1/2

source i,j,k

Hx Hx Ey Ey Ez Ez1
M Hx

t z y

 This method was first introduced in the original 
FDTD paper by Kane Yee[3].  In particular, he introduced 
the next important FDTD concept known as the Yee 
Space Grid, shown in Figure 1.

Figure 1. Yee's space-grid model 

 The key features to the Yee Space Grid relate to the 
staggering of the E and H fields.  The E and H field are 
staggered to one another with respect to time by one half 
of the time step.  E and H are centered in space such that 
each E field component is surrounded by 4 H field 
components and vice versa.   

HPCMP USERS GROUP CONFERENCE 2007 (HPCMP-UGC 2007)
0-7695-3088-5/07 $25.00  © 2007



4.  Basic FDTD Algorithm 

 The FDTD algorithm solves Maxwell’s equations by 
first performing the E field update equations for each 
voxel at time step n, and then performing the H field 
update equations for each voxel at time step n+1/2[4].  The 
time resolution of the simulation is determined by the 
model’s spatial resolution, and the number of time steps is 
determined by the waveform and duration of the source 
being modeled. 
 The problem space is stored in a three dimensional 
grid.  Each cell in the grid is assigned a material type that 
has corresponding dielectric properties, and stores the x, 
y, and z components for both the E and H field initialized 
to 0.  After initializing the model space, the basic FDTD 
algorithm used is shown in Figure 2. 

for(n = 0; n < time_steps; n++){ 
  /* e field updates */ 
  for(k = 0; k < z_dim; k++){ 
    for(j = 0; j < y_dim; j++){ 
      for(i = 0; i <  x_dim; i++){ 
        update e_x[i][j][k] 
        update e_y[i][j][k] 
        update e_z[i][j][k] 
      } 
    } 
  } 
  /* h field updates */ 
  for(k = 0; k < z_dim; k++){ 
    for(j = 0; j < y_dim; j++){ 
      for(i = 0; i <  x_dim; i++){ 
        update h_x[i][j][k] 
        update h_y[i][j][k] 
        update h_z[i][j][k] 
      } 
    } 
  } 
}

Figure 2. High-level overview of FDTD algorithm 

 Most of the execution time is spent in the nested 
loops for E and H field updates.  Individual voxel updates 
(performed by the computations in the inner two loops) 
are independent and can be executed in parallel.  The 
computational complexity and memory requirements 
during execution can be estimated as follows.  
Computational Complexity  Number of time steps × Number of cells × 6× Operations/update 

 The factor 6 in the above expression represents the 
number of field components that are updated in a 3D 
implementation.  The field update calculations are as 
described in the previous section, and can be reduced to 
21 floating point operations per component per cell for an 
anisotropic three-dimensional (3D) model space.   

Memory required  × Number of cells × 6 × Constant 

 The factor 6 in the above expression refers to number 
of field components, and the constant value includes the 

bytes used to represent a floating-point number, and 1 
byte used to indicate the material type of the cell. 

5.  GPU Implementation

 FDTD update calculations are both data parallel, and 
arithmetically intense, thus making them a good candidate 
for execution on a GPU.  The same E and H update 
computations occurs for every cell in the model space 
satisfying the required data parallelism, and each update 
is at least 18 FLoating-point Operations per Second 
(FLOPS), enough to mask memory latency on most 
GPUs.   
 The initial GPU FDTD code was implemented in C 
and Cg for GeForce 7 series based GPUs, which have 
distinct vertex and fragment processors.  E and H fields 
were stored on device memory as 32 bit floating point 
red-green-blue (RGB) two-dimensional (2D) textures.  
The RGB color channels were used to store the X, Y, and 
Z field components.  A half precision luminance texture 
was stored as a pointer stream to store the material types 
in the model space.  In both of these cases, the 3D volume 
was flattened into a 2D textures and is accessed via a dot 
product based 3D to 2D address translation[1].  This 
allows the entire 3D space to be updated in one render 
pass, and also avoids potential read after write data 
corruption.  The material type pointer stream was used for 
dielectric material property lookups stored in textures[1].
E and H scattered field update calculations were 
converted to fragment programs written in Cg.  The 
update shader programs took the E and H fields stored in 
textures as inputs and Frame Buffer Objects (FBOs) are 
used as render target outputs.  The computation for each 
update shader program is initiated by rendering a quad.  
Between each time step, input memory and output 
memory on the device is swapped providing a feedback 
loop and avoiding the performance penalty of pushing 
data across the system bus[5].  The basic GPU FDTD 
implementation is as follows: 

5.  Results 

 For our performance testing, we benchmarked a 
variety of GPUs and CPUs.  All tests were run with a 
Linux 2.6 kernel, compiled with GCC 4.1 with “-O3” and 
architecture specific flags, and Cg 1.5.  The CPU and 
GPU specifications are as listed in Table 1. 
 We used execution time and overall rate of floating 
point operations per second as the performance metrics.  
For our tests, FLOPS are calculated by multiplying the 63 
floating point operations per cell per time step by the 
number of cells in the model and by the number of total 
time steps, and then dividing by the total execution time 

HPCMP USERS GROUP CONFERENCE 2007 (HPCMP-UGC 2007)
0-7695-3088-5/07 $25.00  © 2007



of the program including initialization.  Steady state 
performance is achieved when the initialization cost is 

amortized over many iterations (>1,000) and approaches 
zero per iteration (as is shown in Table 2). 

Table 1. GPU and CPU Specifications

GPUs CPUs

GeForce 

8800 GTX 

GeForce 7800 

GS

GeForce Go 

7400 

Core 2 Duo 

T7600 

Opteron 

890

Opteron 

270

Clock Speed 575 MHz 440 MHz 400 MHz 2.33 GHz 2.8 GHz 2.0 GHz 
Processing 
Elements

128 Stream 
Processors

22 (6 Vertex, 
12 Fragment) 
Processors

8 (4 Vertex, 4 
Fragment) 
Processors

2 Cores 2 Cores 2 Cores 

Memory 
Bandwidth 

86.4 GB/s 38.4 GB/s 7.2 GB/s 3.8 GB/s 6.4 GB/s 6.4 GB/s 

Street Price $550 $170 $65 $650 $1500 $230 

Table 2. GPU and CPU FDTD Performance

GPUs CPUs

GeForce 

8800 GTX 
(0.575 GHz)

GeForce 

7800 GS 
(0.44 GHz)

GeForce 

Go 7400 
(0.4 GHz)

Core 2 Duo 

T7600 
(2.33 GHz)

Opteron 890 
(2.8 GHz)

Opteron 270 
(2.0 GHz)

Steady-state 
performance 
(MFLOPs)

33,959.76 5,365.90 980.84 170.95 173.74 79.12

Initialization penalty for 
1403 model(s) 

7.41 12.31 1.77 negligible negligible negligible 

Minimum model size 
required for maximum 
performance 

1003 1503 1403 103 103 103

Largest possible model 
size

2203 150^3 1403 420^3 1760^3 6903

Speedup vs. Opteron 
270 (times faster) 

429.20 67.82 12.40 2.16 2.20 1.00

 The initial GPU accelerated FDTD written in C and 
Cg showed speedup many times faster than the traditional 
FDTD algorithm executed on the CPU in almost all cases.  
Generally if the model space was large enough to keep the 
fragment processors busy, the GPU version was always 
several times faster, even for the slowest seven series 
GPU tested, the GeForce Go 7400.  For models that are 
not big enough to saturate the GPUs fragment processors, 
the GPUs would run slower than on the CPU.  Therefore, 
using the GPU results in a faster execution time, if the 
FDTD model is large enough; however, due to the 
efficient scheme of packing a 3D model space into a 2D 
texture, speedup greater than one was observed at model 
spaces of only 83 given 1,000 iterations or more on the 
GeForce 8800 GTX.  Another interesting observation is 
that with a small number of iterations, one can clearly see 
the performance penalty in initializing the streams on a 

GPU, but as the number of iterations increase, this 
initialization cost is amortized.  Since typical FDTD 
simulations require tens of thousands of iterations to 
produce results, our GPU implementation produces 
significant speedup over the CPU implementation in 
almost all cases except very small model sizes.  Our 
experimental results, given in Figure 4, shows that the 
GeForce 8800 GTX is 429 times faster than the base 
CPU, the Opteron 270, once steady state is achieved, and 
is faster in almost all cases except for very small models 
and iterations.  

6.  Ongoing Research 

 In the past few months, great strides have been made 
to allow the GPU to be used as a general purpose 

HPCMP USERS GROUP CONFERENCE 2007 (HPCMP-UGC 2007)
0-7695-3088-5/07 $25.00  © 2007



streaming processor architecture.  Current GPU FDTD 
efforts are aimed at leveraging these new technologies. 
 NVIDIA’s new GPU architecture debuted in G80 
GPUs was a radical departure from previous GPU 
architectures making it much easier to program for 
general purpose applications.  Gone were the specific 
vertex and fragment processors in favor of general 
purposed stream processors that could be tasked for either 
purpose or even set to a general purpose computation 
mode.  GPU memory was also drastically changed, 
allowing it to be read in a general way, and new memory 
was added to allow scatter.  
 The Compute Unified Device Architecture (CUDA) 
API allows programming of new G80-based GPUs, to be 
accomplished without the need of graphics APIs.  CUDA 
was designed as an extension to the C programming 
language using C style idioms to program the GPU.  This 
eliminates graphics programming in GPU accelerated 
codes in favor of extensions to standard C thus greatly 
simplifying the learning curve for non-graphics 
programmers.  CUDA also allows much finer grained 
control of device memory and how computation is 
executed on the GPU’s stream processors[6].
 Currently a production quality parallel GPU-based 
FDTD code that leverages both the new G80-based GPU 
architecture and the CUDA API is being completed.  
These new technologies provide flexibility to implement 

robust boundary conditions like Perfectly Matching 
Layers and more complex sources.  Greater memory 
flexibility provides more robust memory management 
permitting GPU computation overlapped with MPI 
communication.  Extensive experimental evaluations of 
the new code will be conducted on a GPU cluster. 

References 

1. Pharr, Matt, Ed., GPU Gems 2, Upper Saddle River, Addison-
Wesley, 2005. 

2. Jackson, John David, Classical Electrodynamics, New York:, 
John Wiley & Sons, Inc., 1999. 

3. Kane Yee, “Numerical Solution of Initial Boundary Value 
Problems Involving Maxwell’s Equations in Isotropic Media.” 
IEEE Transactions on Antennas and Propagation, vol. AP-14, 
No. 3, pp. 802–807, May 1966. 

4. Kunz, Karl S. and Raymond J. Luebbers, The Finite 
Difference Time Domain Method for Electromagnetics, Boca 
Raton, CRC Press, 1993. 

5. Göddeke, Dominik, “GPGPU--Basic Math Tutorial,”
November 2005, http://www.mathematik.uni-dortmund.de/
~goeddeke/.

6. NVIDIA Corporation Technical Staff, NVIDIA CUDA 
Compute Unified Device Architecture - Programming Guide,
NVIDIA Corporation, 2007. 

HPCMP USERS GROUP CONFERENCE 2007 (HPCMP-UGC 2007)
0-7695-3088-5/07 $25.00  © 2007


