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1 Introduction

In an ATM network, cells belonging to a connection can possibly go through several switches. At each

switch, cells of a connection are routed to the desired output by the switches using the VCI information.

For traffic switching, many types of switching fabrics have been proposed for use in ATM networks [13,

16, 17]. These include crossbar switches, input buffered switch, output buffered shared memory switch,

and multi-stage switching fabrics. Larger switches are built using smaller switching elements. In this

paper, we are interested in cell selection and routing at an input-buffered ATM switch.

The simplest non-blocking input-buffered switch is the crossbar switch. In anN�N crossbar switch,

cells arriving at each input are queued at the respective input-buffers. The queues can be served by the

switch in sending cells from an input to a desired output. However, in each cycle, an output can only

receive one input cell. If the input queues are served in FIFO order, then among all the Head-of-Line

(HOL) cells, we can choose those cells that are going to distinct outputs. However, it is shown in [6]

that a crossbar serving HOL cells only can achieve a maximum throughput of about 58%.

On the other hand, output buffering will queue up the arrived cells into N separate queues, one for

each output. In a cycle the switch can deliver one cell from each of these queues to the output links. It

has been shown that this approach can achieve high throughput and has been implemented in several

ATM switches with the output queues implemented in shared memory. Although output queueing can

achieve high throughput, there are some drawbacks. Since cells from inputs going to the same output

get queued in one queue, cell loss could occur if there is no room in the buffer due to bursty arrival of

cells to that output. This is alleviated to some extent by using shared buffer memory rather than par-

titioning the memory among the queues. In such output-buffered switches, the memory bandwidth

must be high as N reads and N writes to memory need to be performed in each cycle. Another draw-

back is providing fairness to the users. Since the output queues are served in FIFO order it is possible

for some inputs to experience long delays due to bursty arrivals at other inputs.

For these reasons and to support rate based services for inputs, there is significant interest in using

input-buffered switches in ATM networks [1, 7, 12, 10]. In order to increase the throughput of input-

buffered switches, one can search for cells in each input buffer to avoid output conflicts, thereby in-

creasing the number of cells that can be routed in each cycle. Note that we will still be able to main-

tain the ordering of cells belonging to the same VCI. It has been shown, theoretically, that arbitrarily

close to 100% throughput can be achieved with input-buffered switch if we search all the cells in input
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buffers. One can also maintain separate queues for cells going to different outputs at each input link,

and then we only need to select from HOL cells of these N queues for all the input links. Therefore, we

may be searching a total of at most N2 cells to select a possible maximum of N cells to route in a cycle.

The procedure for searching in input buffers must be very efficient as the time for each cycle is small.

Some of the previous works on searching k-deep in input buffers employ approximate and sequential

search [3, 9]. Other approaches, such as in [7], use input port groupings to improve the performance of

input buffered switches.

This problem of searching for cells in input buffers to maximize the number of cells that can be

routed in a cycle can be modeled as a bipartite graph matching problem. With the possibility of N cells

from each input link, this bipartite matching need to be performed in a graph with O(N) nodes and

O(N2) edges. Maximal matching in a bipartite graph can be solved using a network flow algorithm

in O(N2:5) time, which is quite expensive, even for N = 16, to run in each step of routing ATM cells.

Several researchers have used randomized algorithm for speeding up this search problem. It is shown

in [1, 12] that by using logN iterations it is possible to achieve maximal matching with high probability.

The advantage of randomized algorithms is that it is very simple to implement and gives very good re-

sults on the average. These randomized schemes are looking at least N -deep in each input buffer, i.e.,

selecting N cells from each input, in selecting maximum number of cells to route through the switch in

a cycle.

Recently, a low-cost non-blocking switch, the Benes network, with input buffers was proposed as

a possible candidate for high-performance ATM switch [9]. The Benes network being a rearrangeable

network, again, we can always route a given set of cells from the inputs that are going to distinct out-

puts. Thus, the problem of searching the input buffers for cells going to distinct outputs can be solved

by modeling it as a bipartite graph matching problem. The authors in [9] use a sequential search pro-

cedure with each input buffers size varying from N=2 to 5N=2 show that 95% or better throughput can

be achieved in switches of size up to N = 64. Their searching considers both output contention and

network link contention. Clearly, the complexity of this search procedure is O(N2) and there is no guar-

antee of obtaining maximal match in each cycle with this sequential search.

In this paper we study the throughput performance of Benes and Banyan based networks as input-

buffered ATM switches. An example of Banyan based ATM switch is the Phoenix switch [15], which

uses a Banyan switching fabric operating at twice the speed compared to the input/output links. This

Phoenix switch can also be used as the two halves of the Benes network through recirculation of data
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from outputs to inputs. In these input-queued switches, we consider only k cells, for some small con-

stant k, from each input queue and then from among these cells, select a non-conflicting set that can be

routed through the switching fabric. Selection of cells from the input queues in an efficient manner to

achieve high throughput in these types of ATM swithes is still an issue.

In this paper, we investigate methods that efficiently select cells, while greatly simplifying the net-

work control issue when a multistage network rather than a crossbar is used for switching. We consider

using a single copy of the Banyan network as the switch, but operating with internal speeds twice that

of external speeds, for example as in [15]. In each cycle we select and route two partial permutations.

For this purpose, we developed network specific hardware selection to obtain two partial permutations

that are passable in the given blocking network. Our simulation results show that with our hardware

selection schemes we can achieve 95% or better throughput. Therefore, we can use a single blocking

network operating at twice the speed to obtain similar performance compared to Benes network which

requires expensive routing.

This paper is organized as follows. In section 2 we discuss the bipartite matching formulation and

routing in an input-buffered ATM switch. In section 3, we give network specific hardware selection

schemes for Omega network which is a member of the Banyan network family and present our simu-

lation results. Finally, in section 5, we present some concluding remarks.

2 Cell Selection and Routing in Input-Buffered Switches

Consider an N �N , N = 2n, non-blocking ATM switching fabric with input buffers. A buffer is associ-

ated with each input for queueing the incoming cells. The switch can determine by table lookup using

VCI to which output link a cell needs to be routed. In one cycle, we can route, possibly, one cell from

each input to its desired output link. Each output link can only receive one cell in a cycle, and therefore,

we need to carefully select cells from the input buffers for routing. Of course, our goal is to maximize

the throughput while keeping the ordering of cells going from a particular input link to a given output

link.

By using a non-blocking network, such as the crossbar or the Benes network, we will avoid network

conflicts. Thus, in switch routing, we only need to consider output conflicts. If we look at only the HOL

cells from each input buffer, the throughput will be limited. The idea is to look deeper into each input

buffer to select non-conflicting cells for routing. Several researchers have used this approach to study-
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Figure 1: A Bipartite Graph

ing the throughput performance of input buffered switches. At ATM link speeds, the cycle time for

routing cells is very short, and previous studies have used fast randomization algorithms for selecting

sub-optimal solutions.

Anderson et.al., [1] show that the problem of selecting the cells with distinct destinations from the

input queues can be modeled as a bipartite graph matching problem. From the input queued data, one

can construct a bipartite graph with nodes as the input and output ports and the edges denoting the des-

tinations desired by the input cells. Such a graph constructed in [1] will have 2N nodes and at most N2

edges. An example bipartite graph with 4 inputs and outputs is shown in Figure 1. By using a random-

ized iterative matching algorithm with O(logN ) iterations, one can achieve high throughput. Another

recent work [12] also used randomized algorithm approach for cell scheduling to provide bandwidth

guarantees in input buffered crossbar switch.

The use of an input-buffered Benes network as a low cost ATM switch was recently studied by Lin

et. al. [9]. The Benes network based ATM switch fabric for N = 8 is shown in Figure 2. They proposed

a sequential search procedure to select the cells from input buffers for routing. Their algorithm avoids

both output contention and network conflicts in the Benes network by the careful selection of cells for

routing. This algorithm is slow and also requires searching deep into the input buffers, from N/2 to

5N/2 to achieve high throughput. Therefore, this will not be fast enough to route cells at ATM speeds

and also requires large amounts on input buffer space.

The Benes network is a low cost rearrangeable network and a routing algorithm exists to route any

given arbitrary permutation. In order to use the Benes network as a low-cost input-buffered ATM switch,
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Figure 2: Benes Network as an ATM Switch

we can use any of the previously discussed methods for use with a crossbar for cell selection. These can

be the randomized algorithms or the Bipartite graph matching with small number of cell lookahead in

the input queues. Thus, use of Benes network as an input-buffered ATM switch will consist of two steps

– cell selection and cell routing. Each step needs to be performed as efficiently as possible. For routing a

set of inputs to non-conflicting outputs in a Benes network, there exists optimal sequential algorithms

that take O(N logN ) time. Therefore, by spending a similar amount of time in cell selection, we can

perform exact routing of cells through a Benes network. However, this much time is required in every

step of switching and can be expensive for switches of size N > 16.

The Benes network is known to be topologically equivalent to a cascade of two copies of Banyan

network. Banyan networks are known to be self routable, although only for the set of passable permu-

tations through that network. The two copies of Banyan networks can be used in cascade with all lines

operating at same speed, or in time with a single copy of the Banyan network and recirculating the out-

puts back to inputs and clocking the internal links twice as fast as the external links. This will reduce

the hardware cost further and such an approach was used in the design of Phoenix switch [15]. With

such a Banyan network, we can also perform two independent switching steps within the switch and

match with the line speed. With this mode of operation, in each cell switching time, we can select and

route two separate routable sub-permutations through the Banyan network.

Our goal is to use the Banyan network with internal links twice as fast as the line speed as input-

buffered ATM switches. For efficient operation of the switch, we would like to take advantage of the

self-routing capabilities of these networks. However, the Benes network can self-route only a few sub-
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sets of permutations, such as the linear-complement class [2]. So, the question is how to select input

cells from the buffers that have no output conflicts and are routable by the self routing algorithm of the

Benes network. The Banyan network can self route even smaller subset of permutations. The problems

of selecting the cells that area routable without conflict in the network still remains. If we can find a

fast approach to choosing large number of cells from the input buffers for self routing through these

networks, then we can achieve high throughput.

Our idea is to use a copy of the network of interest (Benes or Banyan) as the control network to

efficiently determine the routable set of cells from the input buffers. Although this control network is

topologically identical to the routing network, its switching elements can be simpler as it is used only

for making decisions by just moving the destination bits through them. The idea is to attempt routing

the tags through the control network and randomly select inputs to proceed when there are conflicts

in a switching stage. We can repeat this procedure several times to increase the number of cells that

can be routed in the next step through the routing copy of the network. This essentially implements

the randomization schemes used in crossbar on a Benes or Banyan network. In the next section, we

describe the details of this hardware specific cell selection techniques and evaluate the performance vis

simulation.

3 Network Specific Hardware Selection Methods

We first describe the hardware selection method for both rearrangeable networks such as the Benes net-

work and blocking networks such as the Omega networks. We explain how the technique applies to

Benes and Omega using examples. Next we present some simulation results on the performance of the

proposed selection method.

3.1 Selection Method

We propose to use a copy of the underlying network itself as the control network to aid the destination

selection process, thereby cell selection and routing are achieved simultaneously. However, this control

copy network need only bit routable as we only route destination address information and do not route

data packets through this network. Hence, each stage of this network could opearte in a clock step

and several cycles of selection/routing could be performed in a single ATM cell data switching time.

Our scheme works as follows. In each cell time slot, the selection process is conducted to determine

the inputs and cells that they send in the following time slot. There are multiple rounds of contest for
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destinations. This technique works for Benes, Banyan or any other multistage network.

In the first round, all inputs have equal chance of winning. In a round of contest, each input that

has not won earlier, will send the destination address of the cell it intends to send in the next time slot;

each destination that has won in an earlier round of the current selection process, will send the address

of the destination it won. Each input selects its cell independently of the other inputs. The destination

bits propagate through the network, stage by stage. At each stage, a switch uses an appropriate routing

digit to route inputs to outputs. Conflicts are resolved as follows. If there is an input with a winning

destination address, then it is routed to the output in consideration. (It is noteworthy that there can

be at most one input with a winning destination address that competes for an output of any switch.)

Otherwise, one of the inputs is randomly chosen and routed to the output. If the network is a unique

path network, such as the Banyan, the losers can be dropped at this point. Otherwise, the remaining

inputs are randomly assigned the remaining outputs. A round concludes after routing the destination

addresses through the last stage of the network and inputs that have the winning addresses are notified.

It can be easily shown that the number of inputs with winning destination addresses is a monotonically

increasing function of the number of rounds. After a few such rounds we have a set of destinations that

can be routed in the next time slot, on the actual data network, without conflicts using the paths selected

in the selection process.

3.2 Selection of Cells for Blocking Networks

To see how the selection process works for blocking multistage networks, let us consider an 8�8Omega

network designed using 2 � 2 switches. Figure 3 gives an example of the cell selection. Initially, each

input requests for the output specified by its first cell in the queue. It is helpful to view the destination

addresses as 3-bit numbers. In each stage, a particular bit (called the routing bit) of the destination ad-

dresses is used to determine how the 2 � 2 switches in that stage are setup. For the Omega network,

the left most bit, middle bit, and right most bit are the routing bits for the left, middle, and right stages,

respectively. If the routing bit of a request is a 0, then that request should be routed to the upper output

of the 2� 2 switch; otherwise it should be routed to the lower output. This is the so-called Omega self-

routing method. If both inputs of a 2�2 switch have the same value for their routing bits, then only one

of them can be connected to the output of that switch correctly; the other can be dropped, since once a

path is misrouted, it will never reach the correct destination.

Using these rules, the input connection requests are propagated through the Omega network. At
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each stage, the requests that are not routed correctly due to contention are dropped. Three inputs win

in the first round, two in the second round, and one more in the third round. In this example, further

rounds do not improve the matching. The paths that are used for winning inputs’ requests are not dis-

turbed in later rounds. For example, inputs 0, 3, and 6 (when counted from top starting with 0), win in

the first round and have paths to their destinations 6, 4, and 0, respectively, established. These paths

are not disturbed in rounds 2 and 3.

3.3 Selection of Cells for Rearrangeable Networks

A commonly used rearrangeable multistage network is the Benes network. Figure 4 shows how the

proposed hardware selection works for an 8 � 8 Benes network constructed from 2 � 2 switches. The

Benes is a multipath network, which means that there is more than one path from any input to any

output. In particular, an input’s connection request that is misrouted in the first two stages (of the ex-

ample network) may still reach its correct output provided it is not misrouted in the final three stages.

The routing bits used for the 8�8 Benes network are right most bit, middle bit, left most bit, middle bit

and right most bit, respectively, for the five stages from left to right. In this example, we allow connec-

tion requests to be misrouted when there is contention in the first two stages of 2� 2 switches, unless

both requests are to the same destination. The network setup for the last three stages is exactly as in

the case of the Omega network. By using specific rules to resolve contentions in the first two stages

of the network, it is feasible to route some interesting classes of permutations such as the affine linear

permutations which occur in parallel computing [2].

In the example shown in Figure 4, four inputs win in the first round, one in the second round, and

one more in the third round. The connections used for winning inputs in a round are not disturbed in

later rounds.

3.4 Enhancements to the Selection Method

This scheme can be enhanced in several ways. We can make the inputs that lost in the previous selection

round choose destinations that are not taken already by a winning input. A bit vector, one bit for each

destination to indicate its availability, can be easily maintained for this purpose. Each input still selects

its cell independently of the other inputs; it merely avoids choosing a cell with a destination that has

the corresponding bit in the bit vector set.

Another enhancement is to run the network twice as fast as the ATM switch being designed. This is
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Figure 3: Example of Omega network based cell selection. The rectangular blocks indicate the cells
(with numbers indicating their destinations) queued at switch inputs. The numbers at the inputs of
the first stage of switches indicate the destinations of the cells that inputs wish to send. Shaded cells
indicate winning inputs and the cells selected; thick-lined cells indicate inputs with rejected requests. In
a switch, dashed lines indicate rejected connections and solid lines accepted connections. Inputs with
rejected connections select new outputs for future rounds. Inputs with accepted connections use the
same outputs for later rounds.
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a feasible method and used, albeit for lower speeds, in the design of the Phoenix switch [15]. Since the

number of rounds that can be done in a time slot is finite and determined by the cell transmission time,

we can split the rounds for selecting input-output pairs between the two passes through the network.

An input may send (based on the selection process) a cell either in the first pass or in the second pass

only. Alternatively, we can use two copies of the multistage network, each running at the same speed

of the ATM switch being designed.

We have conducted several simulations using the Benes and Banyan networks with the selection

technique described above. Our simulations indicate that, the Banyan network performs as well as the

Benes. This may seem counter intuitive because the Benes network is more powerful than the Banyan

when its first half is set up using sophisticated routing algorithms. Since our selection method obviates

this, there is no appreciable performance difference between the Benes and Banyan networks.

It may appear that the proposed design is expensive to implement. Let us say we use three copies of

the Banyan network: two copies for cell routing and one copy for cell selection. Then we need at most

3n stages of switches, where n = logN andN is the number of switch ports. Of these, n stages are used

for the selection, and 2n stages are used as two copies of the Banyan. Since the cell selection network

handles only logN bits of information for comparison and routing, the switch sizes for this network will

be very small. Many of the previous designs use the Benes network or two or more copies of a Banyan to

switch cells. Compared to these designs, our methods requires an extra copy of the Banyan to aid the

selection process. In return, we simplify the selection process, make the network control trivial, and

obtain high throughputs comparable to those achieved with full crossbars.

3.5 Evaluation of the Selection Method Using Simulations

We have conducted extensive simulations to evaluate the performance of the proposed technique. Be-

cause of the selection method used, even a conflict-prone network such as the Banyan performs as well

as the Benes network. We present below performance results for simulations of ATM switches with the

Banyan as the switching network. We use two copies of the Banyan with a total of 10 rounds (5 rounds

for each copy of the network) of contest to determine inputs and the cells they can send for the subse-

quent time slot. Figure 5 presents the delay results and Figure 6 presents the throughput results. As in

the case of crossbar based designs, the switch utilization is over 95% and queueing delays are very small

until just before the point of saturation. For each point in the graph, the half-width of the corresponding

95% confidence interval is within 5% of the mean value reported.
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Table 1: Comparison of ATM switch designs
Approach Cell Selection Network Setup
Hardware selection + Cross-
bar (see [1])

Hardware implementation;
fast

Standard crossbar setup

Examine inputs + Benes net-
work (see [9])

Algorithmic or processor
based; N/2 to 5N/2 cells per
input checked; O(N2) time

Careful network setup
needed; O(NlogN) sequen-
tial time

Hardware selection + Banyan
network (this paper)

Hardware implementation;
fast; more expensive than
crossbar schemes

Self-routing or standard
Banyan network setup

4 Conclusions

In this paper we investigated various schemes for cell scheduling in input buffered switches. This prob-

lem can be solved as a maximum matching in bipartite graph, although it can be expensive for larger

switches. We showed that more efficient cell scheduling is possible by exploiting the self routing ca-

pabilities of Benes and Banyan networks. We presented network specific hardware selection methods

so that very simple routing algorithms can be used and we show that high throughput can be achieved

with Omega (or Banyan) network with either two copies of the network or operate the network at twice

the speed compared to input/output links. Table 1 gives a comparison of various approaches in the

ATM switch design.

Simulations are used to evaluate the performance of these methods under various traffic conditions.

The results show that high throughput can be achieved and practical switches can be built using smaller

input-buffered switches. Such low cost networks can be used in very high-speed input-buffered ATM

switches or in IP switches. We are currently applying the selection methods to handle multicast traffic

and to provide fair access to all outputs by inputs.
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