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Abstract

A self routing algorithm for passing Linear class of permu-
tations in Benes, 7 and (2n — 1)-stage shuffle exchange
networks of N = 2" inputs/outputs is presented. In these
networks, switches in the first (n — 1) stages are set by
comparing the destination tags of the inputs to the switch;
switches in the remaining stages are set by the self rout-
ing § algorithm. Thus, the total time required for routing
any Linear permutation is O(r), same as the network de-
lay time. The algorithm also routes 27! permutations in
Benes and 2 permutations in m network trivially. The class
of permutations that are routable by the algorithm is much
richer than the class of Linear permutations. This algo-
rithm routes all possible permutations for 4 input/output
Benes network B(2) (same as 3-stage shuffle exchange net-
work) and m-network, since all the permutations are in the
Linear Class.

1 Introduction

Typically, a parallel computer consists of a number of pro-
cessors and an interconnection network for exchange of
information between them as well as with memory mod-
ules. Considering a processor/memory network model, any
processor should be able to communicate with any mem-
ory module which is called full access. To support SIMD
type computations, ideally we would like the network to be
able to perform all the permutations that allow simulta-
neous use of the memory modules. Such capabilities exist
in crossbar networks and networks that are rearrangeable,
for example the Benes network.

We view parallel computing as computation steps—during
which time some or all of the processors arée busy comput-
ing, and communication steps—at which some permuta-
fion function is set up by the network to allow data ex-
changes. If the underlying network can not support a re-
quired permutation function then it has to be realized in
multiple steps. The advantage with a rearrangeable net-
work is that any permutation can be realized in one com-
munication step. Further, if they are built using smaller
switches such as 2 x 2, then they are relatively cheaper
than crossbar networks. Therefore rearrangeable networks
are used in some parallel computer implementations (e.g.
GF-11 {1]).

A well known rearrangeable network is the Benesd net-
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work [2] which is built in a recursive manner using 2 X 2
switches, and is shown in figure 1. In such networks, it
takes some time to set up the switches to realize a given
arbitrary permutation. For an N = 2" inputs and out-
puts Benes network, determining the switch settings to re-
alize an arbitrary permutation takes O(N log N) time on
a uniprocessor computer(7]. If the required permutations
change frequently while computing a problem, the commu-
nication time may become a bottleneck. An approach to
solve this problem is to compute the switch settings for a
given permutation using a parallel computer with N PE’s.
A separate network with static links between the PE’s in
the parallel computer under consideration could be used
for this comnpulation as suggested by Nassimi and Sahnif6].
Alternatively, the Bene§ network itself can be set to realize
perfect shuffie permutation easily, to convert the parallel
computer under consideration to a perfect shuffle computer
and determine the switch settings in O(n®) time using the
algorithm proposed by Nassimi and Sahnif]. However, it
still takes considerable amount of time to realize a permu-
taion compared to the propogation delay O(n).

We are interested in developing fast self-routing algo-
rithms for many useful permutations required in paral-
lel processing, if not for all the N! permutations. Due
to the nature of techuiques used in developing parallel
algorithms, the permutaitons required are generally nice
and regular and can be expressed as algebraic functions.
Some work was done on developing self~routing algorithms
for classes of permutations, in particular Bit-Permute-
complement (BPC) by Nassimi and Sahni[f]. They also
prove that their algorithm routes the Lenfant’s FUB
families(3}.

In this paper we develop self-routing algorithms for the
Linear Class (£) of permutations. The algorithm is very
simple and routes many other classes of permutations as
well. We consider Benes network as well as the 7 network
of Yew and Lawrie[§] and (21 — 1)-stage shuffle exchange
network. The results include simple routing algorithms
for the classes £ (we extend this class with complements
of bits), 2, and 27! on all these networks. For other per-

mutations one can use a general looping type algorithm or
break it into multiple simpler permutations.

2 Routing in Benes§ Network

We will use I to represent any source and O to represent
its destination tag. All binary additions in this paper are

modulo 2.
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Figure 1: 2" input/output Benes network B(n).

Definition 1 4 permutation is said to be a linear
permutation[4] if for all input I (whose binary represen-
tation is (In Inoy ... 1)) and output O (whose binary rep-
resentation is (On On1 ... O1)) pair there exists a non

singular binary matriz Q,.x. that satisfies 1.

0T =Qx I 1)
Definition 2 Let I' = (I, In-1 .. L1, 1). A permutation
is a Linear~Complement (LC) permutation if there exists
a binary matriz P,yn,y1 where the submatriz of P formed
by taking first n columns is non singular, such that every
(I,0) pair satisfies the equation 2.

oT=pPxI” - (©)
With the definition given above, (C contains BFC.
Throughout this paper we will assume that the num-
ber of inputs/outputs to the interconnection network is
N = 2". We will denote linear-complement, omega and
inverse omega permutations on N inputsin compact form
as LC(n), O(n) and Q7' (n) respectively. And B(n) denotes
Benes network with N inputs/outputs.

2.1 Routing Algorithm

Let the output lines of a switch be numbered as ‘0’ and
‘1* {or upper and lower outputs respectively. Each input
line to a switch will have a routing bit. An input line
to a switch is connected to the output line of the switch
indicated by its routing bit. If the bit is ‘1’ then that input
is connected to the lower output of the switch otherwise, it
is connected to the upper output of the switch. Routing of
[C permutations in Benes network is given by the following
algorithm.

Algorithm 1 For the first (n — 1) stages, an input line to
a switch in stage i,1 < i < (n — 1) will have i—th bit of its
destination tag as its routing bit. For the next n stages, an
input line to a switch in stage j,n < j < (2r— 1) will have
(2n— j)-th bit of its destination tag as its routing bit. For
the first (n — 1) stages, switches are set up such that input
line with smaller destination tag value is routed according
to its routing bit. For the next n stages switches, are set
up such that both the inputs arc routed according to their

routing bits. i
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In first (n — 1) stages, conflicts are resolved by giving pri-
ority to one of the input lines. This algorithm is different
from that of Nassimi and Sahni’s[6] since in case of con-
flict in setting up a switch, their algorithm gives priority to
the top input line, whereas our algorithm gives priority to
the input line with smaller destination tag value. Consider
figure 2(a) with destination tags for its inputs as shown.
Let the bit indicated by the arrow be the routing bit. In
this case, routing bit for both the inputs is ‘1’ so there 1s
a conflict. This is resolved by comparing the destination
tags and giving priority for the input with smaller destina-
tion tag value, which in this case is the lower input. The
other input line is automatically routed to the remaining
output line. In figure 2(b) routing bits for both inputs are
different so they get what they want and the switch is set

as shown.
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Figure 2: An example showing switch settings done by the
algorithm.
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Figure 3: Routing a £L permulation in Benes using the
algorithm proposed

A complete example of this routing scheme is given in fig-
ure 3. Destination tags for each input line to a switch are
given in the binary form. Routing bit for each stage is
indicated by an arrow. This permutation is not routable
by Nassimi and Sahni’s (see figure 4) algorithm. The £C
permutation given in the figures 3 and 4 has the functional
form given below.
Os=1I6; O, = Is; Oy = L+ 1,

In the first stage (figure 3), routing bit is same for both the
inputs to a switch. Hence switches in the first stage are set
up such that input with smaller destination tag is routed
correctly, which in this case are top input lines. After the



first stage of routing, there exists £C permutation between
03,0, of destination tag and I, I of input line, for both

|
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Figure 4: Routing an £ in Bene§ using Nassimi and
Sahni’s algorithm fails. Incorrectly routed inputs are indi-
cated by an asterisk.

top 4 x 4 Benes network B(2) given as,
Os=5L+5L; O=15
and bottom B(2) given as,
Os=1+L+15L; Oa=1I

There exists conflict in setting up switches in the second
stage of the network as well. For top most and bottom
most switches in the second stage top input line has a
smaller destination tag value, so these switches are set to
route top input line correctly. For the other two switches
boltom input lines have smaller destination tag value,
hence, those switches are set to route bottom input lines
correctly. Conflict exists only in the first two stages of the
network. Last 3 stages are routed without any conflicts as
given by the algorithm.

2.2 Proof of Correctness

Theorem 1 Any LC(n) permutation is routable by the
routing algorithm 1, in B(n).

Proof: We will use the fact that stages 2,...,2n — 2 of
B(n) are just two B(n—1) networks, to prove the theorem
by induction. To do this we need to show that after first
stage of routing, the resulting permutation between most
significant (n — 1) bits of the destination tag to an input
of B(n — 1) is still au £C(n — 1) permutation.

More formally, this is true for n = 1. Let it be true for all
m < n. Now consider the following lemma.

Lemma 1 After one stage of routing of an LC(n) per-
mutation using the algorithm 1, for any input-output
pair I and O, the permutation between (Ony---,0;) and
(In-1,..-,1I1) for the top and bottom Benes networks for
271 inputs/outputs belong to LL(n-1).

Proof for the lemma: Inputs to a switch differ only in bit
I;. So depending on whether the cquation for routing bit
0, contains I, or not, the routing tags of the inputs to a
switch are different or are same. Consider the first case;

the equation for O, will be of the form Oy = I + LF,
where LF) isindependent of I;. Since each input is routed
according to its routing bit because there are no conflicts,
the equation for O, after exchange is given as O; = I;. So
the effect of exchange is like substituting I; + LF} in all
occurrences of [; in the equations for On, ...,04. Since an
inverse shuffle is performed after exchange, all the top out-
puts of the switches go to the top Benes network B(n — 1)
and all bottem outputs of the switches go to bottom Benes
network B(n — 1). So substituting I; = 0(1) in the equa-
tions for bits O,,...,0; of the routing tags of the inputs
routed to top(bottom) B(n —1) we get £fC(n—1) permuta-
tion as desired. In the second case, the equation for O; will
be of the form, O, = LF, where LF, is independent of I;.
Let k& be the most significant bit in which two destinations
differ. Then the equation for O contains I; and is given
as Or = Iy + LF}, LF, is independent of I;. The algorithm
routes inputs such that input with O; = Oy is routed to
top ouput line of the switch and the other input to the
bottm ouput line of the switch. So after the exchange op-
eration O; = I; + Ok. So the net effect is equivalent to
substituting I; + LF, 4+ LF} in all the occurrences ofl\e('lu;-
tious for Oy, ..., 0. Since au inverse shuffle is perforined
after exchange, as in the previous case we get LC(n — 1)
permutation between O,,...,0; bits of the routing tags
and inputs I,_q,...,I; of the top and botltom B(n — 1)
networks. |
From the above lemma £C (n) is routed in the first stage
of B(n) such that there exists fC(n — 1) permutation be-
tween O,,-+,0, and the inputs of B(n — 1). Since this
is correctly routed by induction hypothesis, after (2n — 2)
stages all the outputs are in the correct place as far as
first n — 1 bits are concerned. This means two destinations
which differ only in the last bit of their destination do not
exist in the same B(n — 1). A shuffle and exchange will
route these inputs to the correct places. 1

3 Routing in Shuffle Exchange

Networks

We will modify the routing algorithm to route LC permu-
tations in m-network. A m-network is a cascade of two Q

networks [8].

3.1 Routing Algorithm

Algorithm 2 For the first n stages of the pi-network, an
input to a switch in stage 7,1 < ¢ < n, will have (n—1i4+1)-
th bit of ils destinalion tag as the routing bit. Routing is
done as follows. First the destination tags are bit reversed
and then compared. The smaller one will be routed accord-
ing to its routing bit as before. For the next n stages of

the network we use the standard 2 self-routing algorithm.
I

A complete example is given in figure 5. Routing bit in
each stage is indicated by an arrow. This permutation is
not routable by the self routing algorithm given in (8]-
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Consider second switch from top in stage 1 of figure 5.
Both inputs have the same routing bit ‘1’. But upper input
has destination tag with smaller value when compared to
that of lower one after bit reversal of the destination tags.
Ilence upper input is routed to the lower ontpnt of the
switch. But in the case of bottom most switch in the first
stage lower input has smaller destination tag value after
bit reversal. So, that switch is set such that lower input is
routed according to its routing bit which is lower output
of the switch.

3.2 Proof of Correctness
We need the following lemmas, to prove that the algorithm
works correctly.

Figure 5: Routing an £C permutation in m-network using
the algorithm proposed

Lemma 2 If a permutation is LC permutation then after
a shuffle on the input bits, the resulting permutation is still

L.
Proof is obvious, hence omitted. 1

Lemma 3 If a permutation 1s LC permutation then after
performing an ezxchange operation on the inputs using the
algorithm 2 the resulting permutation ts still LC.

Proof for this lemma follows very closely that of lemma
1. Crucial part of the proof is showing that for the first
n stages the algorithm performs exchange operation such
that routing bit O; is set to I,_;4; if the equation for O;
contains I, 11, otherwise to I,, ;13 + O; for sume j <4 as
specified by the algorithm. I
In the case of Benes network we noted that two input lines
to a switch in stage 1 differ only in I;. However, in the
case of the 7 network we shall take into account the fact
that a shuffle was performed before the exchange operation
.hence I, becomes I;. So the two input lines to a switch
In the first stage of a 7 network differ only in I,. In the
ﬁ.rst stage, algorithm 2 will route using O, as the routing
bit. So there will not be any conflicts if O, contains I,,.
Proceeding in this manner it is casy to see that for the ﬁr:t
7 stages there will not be any conflicts if the routing bit
On_i11 contains iy,
L(ltmma 4 Routing an LC permutation using algorithm 2
will always assure that at any stage 1, 1 < ¢ < n, the

destination tags for the inputs of a switch will differ atleast
in one of the bits On—it1 through O1.
Proof: This is true for stage 1 since LC is a bijection. Af-
ter (m — 1) stages of shuﬂiirexchangg I will be of the
form (In,mﬂ,...,ll,fn,...,In_m+2). I; means either [
or I;, complement of I.. After a shuffle I will be of the
form (In—ms--- ,Il,fn, . 7I~n—-m+2aInvm+l)' So destination
tags for the two inputs of a switch will not differ in any
of the bits On-mt1y--->01 iff none of the equations for
On-mstr--1O1 contain In_my1. From lemma 3 we know
that after an exchange operation at stage iy Onit1 is set
t0 Ip—iyy OF t0 Inojpr + 0;, j < i, whereupon Q; is set to
In_is1 + On—is1- So the equations for On,.. -, Opnemya are
either independent of In_m41 OF if they contain the term
I._.me1 then the equation for some 0;,1<5< (n—m+2)
will also contain that term. ]
Theorem 2 LC permulations are routable using the algo-
rithm 2 in m-network.
Proof: From lemmas 2 and 3 it follows that after routing
one stage of shuffle and exchange the resulting permuta-
tion is still an LC permutation but it could be different
form the earlier one. So to distinguish this, we use super-
script for the matrix Frx(as1)- So the P matrix in the [C
permutation for stage 1 is indicated as P. The P matrix
for the first stage denoted as P! is same as the P matrix
in the original £C permutation.
Consider an input I = (I,..., 1) with destination O =
(O, ---,01). Let I be of the form D = (Dan,..., D) after
routing first n stages using the algorithm. From lemma 3
and the discussion following the lemma, at any stage 7, 1<
i < n, Dp_i41 is same as On-is1 if the destinations have
diffcrent (n — ¢ + 1)-bit, which is true only when P4
0. Otherwise, Dp_iy1 = On_iy1 + O, j <(n—i+ 1).
Therefore we have,
3)

Diiv1 = 0pis1 + p,'il 0;,1<1<n
Thus the equations for Dy, ..., Dy will be of the form given

below.

D, = 0,1 PL0; forsomej<n
Doy = O, +PLO;, forsomej<n-—1
Dy = O

We can rewrite these equations such that they are in the
characteristic equation form. For example we can rewrite
the equation for D,, as given below.

0, = D+ Plll Oj,
But, O; can again be rewritten in the form given above.
In general we can substitute D + Pf, O;, for some j < k,
for O. Proceeding in this manner we obtain the equation
for O, only in terms of D’s. In the same manner we can

rearrange equations to get equations for all O’s as given
below.

for some 7 < n

O0; =D+ Fi(Diy,...,Dh), 1 <i<n (4)

Clearly these equations are in {2 form hence routable by
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the last n stages of the m—network. )

As an example consider the £ permutation in figure &
characterized by the following set of equations.

03211; Oz:Isi 01"I3+[z
Here Oy does not contain I3 but Oy does. Hence substitut-
ing L+ h(= LE) + L(= LF)in all the occurrences of I3
and performing a shuffle on input bits we get the following
set of equations which characterize LC permutation for the

second stage.
Os=I; Oy=L+L+L Oi=L+5h
One can verify that these equations hold after the first
stage of switches. Dj is given by the following equation.
Dy =03+ 0,
In a similar manner we can obtain equations for Dz and
D, as given below.
Dy=03 Di=0
Rewriting these equations we get,
O3 =Ds+ Dy; Or=2Dy; Or=0Dr
which are in characteristic {2 form, hence routable in the

last three stages of the network (same as 8 input/output

0 network). I

3.3 (2n — 1)-stage Shufle Exchange Net-

work

In the proof given above, we showed that Dy = 0y. This
implies that all the switches in the last stage are set
straight. Hence, we can eliminate all the switches in the
last stage. So, we need only (2n — 1) stages of shuffle ex-
change and a perfect shuffle. However, we can eliminate
this shuffle at the output as follows.

We change the algorithm fo treat destination tags as if
a shuffle was performed on them. i.., O; is treated as
Qli41) mod n- Let the given permutation be denoted as II.
With the modification the algorithm treats as if a shuffle
was performed on II. Hence in effect it routes II' = (o11).
After routing for (2n - 1) stages a o is required to route II'
correctly. So, after (2r — 1) stages we have routed (e7HT)
correctly. But, 0”1l = =161 = II. Hence,

Theorem 3 £C is routable in {(2n — 1)-stage shuffie ez-
change using the modified alyorithm described above.

4 Couclusions

In this paper we have presented algorithms to route £
permutations on Benes, x and (2n — 1)-stage shuffle ex-
change networks. Since there will not be any conflicts in
Ath‘e first n stages of the Benes network if the permutation
is in 271, this algorithm routes O~ permutations as well
Ifl fact the class of permutations routable using the al 0:
nihm given in this paper is much larger than (C clagss
V\.lth a similar argument any () permutation is routable'
using the algorithm in 7 network. It is interesting to note
that i't routes all permutations in'B(Z) for 4 input/output
Benei network. However this algorithm does not roft:te
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all { permutations in Benes networks, with N > 4. 1 the
permutation is known to be ) then it can be routed by set-
ting the first (n — 1) stages of the Benes network straight
as suggested by Nassimi and Sahui (6],
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