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Abstract. We present storage schemes based on lin-
ear permutations to store and access N x N, for any in-
teger N, data arrays in parallel processors with shuffle-
exchange type interconnection networks. For parallel
access of the most important templates, namely, row,
column, main diagonal, and square block, simple cri-
teria are given based on the linear permutations in-
volved. This is the first such solution to provide ac-
cess of the important templates of arbitrary size square
matrices without memory and network conflicts using
minimum number of memory modules and a shuffle-
exchange type network.
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1 Introduction

In parallel processors, access to shared data in the
memory modules plays an important role in the over-
all performance. For specific problems, knowing the
data access patterns by processors, one can allocate
data to memory modules initially so that high par-
allelism can be achieved in data access at run time.
By the parallel access of data, we mean that the ac-
cess of data is free of memory conflicts (that is, no
memory module contains more than one element of
the data to be accessed) and interconnection network
conflicts (that is, one pass through the interconnec-
tion network is sufficient to transfer data from proces-
sors to memory modules or vice versa). In this paper
we address the problem of storing an m x m matrix,
m > N, in the N memory modules such that vari-
ous N-(element)subsets (also called, templates) of the
matrix are retrieved from memory modules without
memory and interconnection network conflicts.

Previously known results [3, 4, 5, 7, 9, 10, 11, 12]
either assume that N is a power of 2 and provide tem-
plate access without memory and network conflicts
or, for arbitrary N, discuss only the issue of tem-
plate access without memory conflicts. In this paper,
we present a class of scrambled schemes, called clip
schemes, to store an N x N matrix for any integer
N. These schemes are based on the class of composite
linear permutations. As a main result of this paper,
we specifically show some storage schemes in the pro-
posed class which provide conflict free access of rows,
columns, main and back diagonals, and square blocks
(when N is square of an integer) of data arrays using
the generalized shuffle-exchange networks.

2 Preliminaries

We assume that there are N processors and N mem-
ory units in the parallel processor system. Let N =
JAREE -xp;", where p1, - - -, pr are distinct and primes,
k>1,r,....me>1,andn =r + .-+ 7. Let
dz, 0 < z < n, be the zth digit of the sequence
p1,...,p1(ry times), pa,. .., pa(rs times), ..., pp. Let
wo=1and wy, = H;:l dy, 1 < @ < n. Each processor
(memory module) is given a unique and distinct index
i, 0 < i < N, which can be represented in mixed radix
form as ip_; ... with d; and w, as the radix and
weight of the xzth digit, i,. However, it is treated as
an n-digit column vector (4, ..., in_1)T in the matrix-
vector computations defined below. Similarly , given
an n-digit column vector (jo, ... ,in-1)T, its value is
computed as 372~ jow,.

We use modulo arithmetic in the matrix-vector
computations involving vectors and matrices defined
in mixed radix form. Specifically, if two digits of radix
p are added (or multiplied) then the result is given in
modulo p. For example,the modulo addition and mul-
tiplication of the two digits 2 and 3 of radix 5 are 0
and 1, respectively. We never perform modulo arith-
metic between digits of different radices. We use &
to represent the modulo addition and juxtaposition to
indicate multi-lication.

Subsets of a matrix. A template T of an N x N
data matrix is a set of N element positions {(A¢, fic)|
0 < & < N}, with (Ao, u0) = (0,0) [11]. By the
access of a template T, we mean accessing of the N
elements of the matrix whose positions are given by
the template. Row (7}), column (T), diagonal (74),
and square block (T) templates are the four impor-
tant templates reported in the literature [4, 9]. These
templates are defined as follows.

Definition 1 T, = {(0,7)]0 < j < N}, T. = {(,0)]
0<i< N}, Ty ={(5,9|0 <i< N}, and T, = {(3,))|
0<i,j<VN}.

Tt is clear that T}, 7%, T4, and T, correspond to the po-
sitions given by, respectively, row 0, column 0, main
diagonal, and the square block Spgo of the data ma-
trix. The square block S;; of an N x N matrix,
N square of some integer, is the VN x /N subma-
trix with (i,7) in the top left position. Given a tem-
plate T = {(0,0),(As,ptc) |1 < & < N}, the set
{(a,),(a® Ay, b® pz)|1 < & < N}, defines the affine
template T'(a 0) of T. For example, ith row is the
affine row template, 7;.(3,0). The back diagonal of a
matrix is the diagonal starting at its upper right cor-
ner and ending at its lower left corner; it is an affine
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Figure 1: Examples of 6 x 6 Omega and inverse Omega
networks. Addresses of lines before each stage are as

indicated.

template of some template, for example, for N = 2",
T4(0, N —1).

Processor-memory interconnection networks.
We assume that N x N Omega or generalized shuffle-
exchange networks [8, 1], which are less expensive com-
pared to the alternatives such as the crossbar, are
used for processor-memory interconnection. An im-
portant property of these networks is the ability to
setup paths from inputs to outputs nsing only the out-
put address with simple digit-controlled routing (at
each stage, a particular digit of the address is used)
[8]. An N x N Omega network [8] consists of n stages,
numbered 0,...,n ~ 1 left to right. Stage (n — 1 — z),
0 < z < n, contains N/d, switches of size d, x d,
which are interconnected to the preceding stage with
a d,-shuffle. In a p shuffle, 7, 0 < ¢ < N —1, is mapped
to pi mod (N — 1) and (N ~ 1) is mapped to itself.
The Omega network, for N = 2 x 3, and its inverse are
shown in Figures 1(a) and 1(b).

Composite linear permutations. Using the con-
cept of linear transformations [6], we define compos-
ite linear transformations on the set obtained by the
cartesian product of vector spaces. For primes p, ¢ and
ry,72 >0, let ;V;, and ,V;, be two vector spaces over
GF(p) and GF(q) respectively. Let V = ,V;, x (V.
An element i € V is a (r; + r2)-tuple with first r; el-
ements (compactly denoted 7., —1) in GF(p) and the
remaining elements in GF(g). Under the composite
linear transformation, any ¢ € V is mapped to some
j € V given by the following matrix equation.

( ].O:rl-l ) - ( pQr; 0 ) ( 2'O:rl—l )
jn rydrp—-1 0 qug i7'1:7’1+7'2—1

)
The matrix, denoted @, in the above equation is called
the characteristic matrix of the composite linear trans-
formation; entries of its submatrix ,Q,, are in GF(p)
and those of (@, are in GF(gq). A characteristic ma-
trix is said to be nonsingular if and only if each of
its submatrices corresponding to a particular radix is
nonsingular. In that case, the mapping is called ‘com-
posite linear permutation’.

A composite linear permutation on a set of N ele-

ments has its n X n characteristic matrix as follows.

PlQn 0 0
0 Pz (;)’~2 e 0
0 0 ox @ri

If the columns of @ are represented as qo,...,qn-1,
then Q@ = (qo, .. -,qn—1) and Qi = i0g0® - -Bin-1¢n—1-
A composite affine linear permutations is of the form
j = Qi@ c for some ¢ € V. The composition of two
composite affine linear permutations is again a com-
posite affine linear permutation [2].

3 Inverse Omega passable com-

posite linear permutations
Only a subset of the class of composite linear permu-
tations are realized by a generalized Shuffle-Exchange
network in one pass. Therefore, we characterize this
subset of composite linear permutations so that net-
work conflicts are eliminated in the data access by us-
ing the storage schemes based on such permutations.

Definition 2 For a matriz Q = (qi j)nxn, the “lead-
ing” principal submatriz Q(z), 0 < ¢ < n, of Q 1s
defined as follows.

9z, z ' dar

Theorem 1 A composite linear permutation, =, with
characteristic matriz Q on the set of N numbers is re-
alized by an N x N inverse Omega network if only if all
the leading principal submatrices of Q) are nonsingular.

For proof, see [2]. It is easy to show that if a compos-
ite linear permutation is passed by the inverse Omega
network, then any affine composite linear permutation
is passed by it. The composite linear permutations
passable by an Omega network can be characterized
in an analogous manner [2].

4 Clip schemes
The clip storage scheme: Element (¢,j) of the
data matrix is stored in location ¢ of the memory unit
with index ¢ @ #(j), where 7 is some composite linear
permutation. 1
The most important characteristic of a clip scheme
is the composite linear permutation (hence, the cor-
responding ‘Q’ matrix) used. This composite linear
permutation gives the complete information about the
storage scheme. Therefore, a clip scheme, which de-
fines an N x N mapping matrix, can be compactly
represented using a much smaller n x n characteristic
matrix, Q. In Figure 2(a), we give the mapping matrix
for storing a 9 x 9 data matrix in 9 memory units, as
specified by the clip scheme using the composite lin-
ear permutation with the characteristic matrix given
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Figure 2: The mapgi)ng and characteristic matrices of
a clip scheme to store a 9 x 9 data matrix.

in Figure 2(b). With clip schemes, address computa-
tions can be done on-the-fly, since the arithmetic to
compute the address of a data element is performed
on individual digits of its indices. There is no prop-
agation of carry from one digit to another during an
address computation. When N is a power of 2, the
address gencration circuit consists of only exclusive-or
gates [3]. In the general case, simple digit arithmetic
circuits can be used [2].

Conflict-free access of templates of interest.
For each template, T, of interest, we would like to
know whether the template access is free of memory
conflicts. If it is so, then we want to determine the data
transfer function, f(T'), to be realized by the intercon-
nection network in the access of that template or any
of its affine template. For the row, column, diagonal,
and square block templates, which are of interest to us
here, this is typically done by showing that the index
of the memory unit that a given processor has to access
is given by some matrix-vector computation that is in
the form of equation 1. Whenever the matrix appear-
ing in the computation is non-singular, the template
access is free of memory conflicts and the correspond-
ing data transfer function is a composite affine linear
permutation. From this matrix, we can also deter-
mine whether the data transfer function is realized by
an Omega or inverse Omega network. The theorems
below state the criteria for providing conflict-free ac-
cess of rows, columns, main and back diagonals, and
square blocks. Proofs of these results are given in [2].
Theorem 2 For any clip scheme, I, and I, are free of
memory conflicts and f(T,) and f(T,) are composite
linear permutations, given by the matrices Q@ and I
(identity matriz), respectively.

Theorem 3 For a clip scheme with characteristic ma-
triz ), Tq is free of memory conflicts if and only if the
following matriz is non-singular.

Q"=QeI
Furthermore, whenever Q" is non-singular, f(Ty) isa
composite linear permutation given by Q"
Theorem 4 For a clip scheme with characteristic ma-

triz Q, the back diagonal is accessible free of memory
conflicts if and only if the mairiz (I — ()) s nonsin-

gular. Furthermore, when it is nonsingular, the data
transfer funclion is a composite linear permutation.

For the access of square block templates, we assume
that N is square of an integer, that is, ri,...,r
are all even. The mixed radix form considered thus
far does not use all the radices in representing val-
ues in the set {0,...,v/N — 1}. Therefore, it does
not facilitate a systematic study of the square block
templates, since both indices of an element of the
template are less than vVN. So, we slightly mod-
ify the representation of ¢, 0 < i < N. In the
modified form, dy, 0 < 2 < n/2, is the rth digit
of the sequence py,...,p1,P2,.-.,P2,--Pk)-- -, Pk,
where each p,, 1 < y < k, is repeated ry/2 times;
for n/2 € @ < n, dy = dy_ny3. Weights wy arc com-
puted as products of d, as defined before. Then, ¢ is
represented in mixed-radix form ,_;...7 such that
iz, 0 < & < n, is of radix d, and of weight w,. For
example, for N = 2% x 32 x 55, 100 is represented in
the earlier notation as (000000)5(20)3(0100)s, here the
subscript indicates the radix of the digits within the
parentheses, and in the modified notation given above
as (000)5(0)3(00)2(013)5(1)3(00),. Similarly, rows and
columns of a characteristic matrix expressed in the
earlier notation are rearranged to obtain the corre-
sponding characteristic matrix in the modified nota-
tion. Note that the modified notation does not affect
the results for the conflict-free access of the various
templates given above. Let I,, or simply I when there
is no confusion, is the n x n identity matrix; zth col-
umn of I is denoted by e,.

Theorem 5 For a clip scheme with characteristic ma-
triz Q, T, is free of memory conflicts if and only if the
characteristic matriz Q' (obtained from Q such that,
for 0 < i < n/2, q; = ¢;, and, for n/2 < i < n,
q; = ej_ns2) is nonsingular. Furthermore, whenever
Q' is non-singular, f(Ty) is a composite linear permu-
tation given by Ql,

All the above results obtained for various templates
are applicable for any of the affine templates derived
from these templates [2]. For example, if the transfer
function for the access of column 0 (column template,
T.) is a composite affine linear permutation, then the
transfer function for the access of any other column
(an affine template of T.) is also a composite affine
linear permutation.

5 Some practical clip schemes

Thus far, we have described the criteria for the access
of various templates when a clip scheme is used. For
each template access of interest, we showed that the
template is free of memory conflicts if and only if the
characteristic matrix of the storage scheme or some
matrix derived from it is nonsingular. Furthermore,
conflict-free access of row and column templates is al-
ways guaranteed. It still remains to be shown whether



there are any characteristic matrices which satisfy the
constraints given in theorems 3, 4 and 5. In such a
case, to realize the data transfer functions of these
templates without network conflicts, the characteristic
matrix of a storage scheme and its derivatives should
satisfy Theorem 1.

For any N, a square number, we use the mixed
radix form discussed in the context of access of the
square block templates. Let L,;o (Ups2) be an % x
% lower (upper) triangular characteristic matrix such
that an entry on the diagonal has value [p/2] where
p is the radix of that entry. Consider a characteristic
matrix of the following form.

—_ Ln2 In2
Fn—(nn/2 0 ) @)

We may omit the subscript n if there is no confusion.

Theorem 6 For any N not a multiple of 2 or 3, T
defines a clip storage scheme for which row, column,
main diagonal, back diagonal, and square block tem-
plates are free of memory conflicts. Furthermore, the
data transfer functions for the access of all these tem-
plates are realized by an N XN inverse Omega network.

This is easily proved [2] by showing that the character-
istic matrix corresponding to the data transfer func-
tion of each template access is nonsingular and satis-
fies Theorem 1. With a little experimentation, many
schemes satisfying Theorem 6 can be constructed. For
example, the characteristic matrices with Lojo re-
placed by Uy in (2) can be used for clip schemes with
the same results. Also a diagonal entry of L,/ or Uy, 2
could be any value other than 0,1 or p — 1, where p is
the radix of that entry, in the above example charac-
teristic matrices without affecting the validity of the
results.

For the case when N is a multiple of 2 or 3, the
above schemes provide access of the templates without
memory conflicts; however, to avoid network conflicts
in the access of templates, an inverse Omega network
is required for row, column, and square block accesses,
and an Omega network is required for the main and
back diagonal accesses. This is because the smallest
leading submatrix, which is simply a 1 x 1 matrix,
of the characteristic matrix can not take three non-
singular values for when the radix is 3 or 2. See {2] for
more details. Clip schemes for conflict-free access of
templates in parallel processors with Omega networks
can be developed similarly.

6 Summary

In this paper, we considered a class of scrambled skew-
ing schemes, called the clip schemes. These schemes
have the following advantages: (a) use of simple and
popular Omega type interconnection networks to real-
ize the data transfer functions of a template, (b) com-
pact representation of the storage scheme, and (c) ef-
ficient address generation methods. These aspects are

crucial for the use of a storage scheme. The proposed
schemes are flexible and could be used in storing mul-
tidimensional and larger size matrices [2]. The main
contribution of the paper is the development of some
special clip schemes for use in parallel processors with
shuffle-exchange type interconnection networks.

Further work in this direction could be in devel-
oping systematic procedures to obtain schemes that
allow conflict free access of the templates of interest.
One can analyze the transfer functions for subsets that
are regular but not affine templates and investigate
methods to realize them using an Omega or a simi-
lar network. Also, further work is warranted in realiz-
ing composite linear permutations by Omega networks
with binary switches.
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