Adaptive wormhole routing in tori with faults

S.Chalasani
R.V.Boppana

Indexing terms.: Adaptive routing, Deadlocks, Fault-tolerant routing, Multicomputer networks, Message routing, Performance evaluation, Torus networks,

Wormhole routing

Abstract: The authors present a method to
enhance wormhole routing algorithms for
deadlock-free fault-tolerant routing in tori. They
consider arbitrarily-located faulty blocks and
assume only local knowledge of faults. Messages
are routed via shortest paths when there are no
faults, and this constraint is only slightly relaxed
to facilitate routing in the presence of faults. The
key concept used is that, for each fault region, a
fault ring consisting of fault free nodes and
physical channels can be formed around it. These
fault rings can be used to route messages around
fault regions. We prove that, at most, four
additional virtual channels are sufficient to make
any fully-adaptive algorithm tolerant to multiple
faulty blocks in torus networks. Simulation
results are presented for a fully-adaptive
algorithm showing that good performance can be
obtained with as many as 10% links faulty.

1 Introduction

Point-to-point torus and related networks are being
used in many recent experimental and commercial mul-
ticomputers and multiprocessors [1-3]. A (k,n)-torus
network has an n-dimensional grid structure with &
nodes (processors) in each dimension such that every
node is connected to two other nodes in each dimen-
sion by direct communication links. The wormhole
(WH) switching technique by Dally and Seitz [8] has
been used in many recent multicomputers [1-4]. In the
WH technique, a packet is divided into a sequence of
fixed-size units of data, called flizs. If a communication
channel transmits the first flit of a message, it must
transmit all the remaining flits of the same message
before transmitting flits of another message. To avoid
deadlocks among messages, multiple virtual channels
are simulated on each physical channel and a prede-
fined order is enforced on the allocation of virtual
channels to messages.

For fault-free networks, important issues in the
design of a routing algoritlim are high throughput,
low-latency message delivery, avoidance of deadlocks,

© IEE, 1995
IEE Proceedings online no. 19952079
Paper first received 5th January 1995 and in revised form 10th May 1995

S. Chalasani is with the Electrical & Computer Engineering Department,
University of Wisconsin-Madison, Madison, W1 53706-1691, USA

R.V. Boppana is with the Computer Science Division, The University of
Texas at San Antonio, San Antonio, TX 78249-0664, USA

386

livelocks and starvation and ability to work well under
various traffic patterns. Given a network with faults,
our approach is to use the existing network rather than
recreate the original network using spare nodes and
links. Therefore, for networks with faults, a routing
algorithm should exhibit the following additional fea-
tures: graceful degradation of performance and ability
to handle faults with only a small increase in routing
complexity and local knowledge of faults.

The well-known e-cube or dimension-order routing
algorithm is an example of nonadaptive routing algo-
rithms, since always a particular path is used in routing
messages between a pair of nodes even when multiple
shortest paths are available. With the e-cube, even a
single fault disrupts communication between multiple
pairs of nodes. With increase in adaptivity, a message
is more likely to find a less congested path or fault-free
path. Therefore, the issue of adaptivity, the extent of
choice in selecting a path between a pair of nodes in
routing a message, plays an important role in designing
fault-tolerant routing algorithms.

1.1 Description of the problem and results
We present a technique to enhance minimal, fully-
adaptive routing algorithms for fault-tolerant routing
in tori. A minimal fully-adaptive algorithm routes mes-
sages along any of the shortest paths available. We
consider routing methods that use only local knowl-
edge of faults. We assume that faulty processors are
confined to one or more rectangular blocks.

For each fault region, there exist one or more paths
that pass through fault-free nodes and links and encir-
cle the fault. For a fault in a 2D torus, there is an undi-
rected ring of fault-free nodes and links; we refer to
this ring as fault-ring. In this paper, we show that fault
rings can be used to route messages around the fault
regions using only local knowledge of faults and with-
out introducing deadlocks and livelocks.

1.2 Related results

Adaptive, fault-tolerant routing algorithms for WH
and virtual cut-through switching techniques has been
the subject of extensive research in recent years [5-10].
Reddy and Freitas [11] use global knowledge of faults,
spare nodes, and routing tables to investigate the per-
formance limitations caused by faults. Gaughan and
Yalamanchili [12] use a pipelined circuit-switching
mechanism with backtracking for fault-tolerant rout-
ing. These two results are applicable to networks with
arbitrarily-shaped faults. Our interest in this paper, is
to design fault-tolerant wormhole routing algorithms
that can be applied with local knowledge of faults. One
important criterion is that the fault-free performance
should not be sacrificed for fault-tolerant routing.

IEE Proc.-Comput. Digit. Tech., Vol. 142, No. 6, November 1995

There are no previous results speciftcally on fault-tol-
erant wormhole routing in tori. Often, the results devel-
oped for meshes [5,8,13] can be extended to tori with
suitable modiftcations, since meshes and tori are closely
related. The wraparound links in tori lead to extra
deadlock possibilities, however. Therefore, if the results
developed for meshes are applied with few changes, the
number of virtual channels required to avoid deadlocks
may be doubled [5]. Furthermore, meshes have edges,
for example, the top row in a 2D mesh, and faults on
edges are complicated to handle [13]. But this case
never arises in tori, since they are node symmetric.
Hence, extending efficient mesh routing techniques to
tori in a straight forward manner may not necessarily
yield efficient routing algorithms for the latter net-
works.

In terms of adaptivity and performance comparisons,
the results by Dally and Aoki [8] are the most relevant
to ours. With the dimension-reversal schemes of Dally
and Aoki, a message may lose its adaptivity, if its
number of dimension reversals equals the number of
virtual channel classes. A message that has lost adap-
tivity is routed by the e-cube algorithm and is not guar-
anteed to be delivered to its destination if there are
faults in the network. Thus the number of virtual chan-
nels needed and the number of faults tolerated is highly
dependent on the number of virtual channels and the
location of faults. In contrast, our algorithms can toler-
ate any number and combination of rectangular faulty
blocks with simple logic, and require only four virtual
channels more than that required for the original adap-
tive algorithm. (Throughout this paper we indicate the
number of virtual channels on per physical channel
basis). This result compares well with our earlier result
that four extra virtual channels are sufficient for rout-
ing in meshes with faults [13].

2 Preliminaries

A (k,n)-torus (also called k-ary n-cube) has n dimen-
sions, numbered from 0 to (1), and N = k" nodes.
Each node is uniquely indexed by an n-tuple in radix k.
Each node is connected via communication links to
two other nodes in each dimension. The neighbours of
the node x = (x,.1, ..., Xo) in dimension i are (x,.q, ...,
Xirt, X2 1, Xi1..., Xg), where addition and subtraction
are modulo k. A link is said to be a wraparound link if
it connects two neighbours whose addresses differ by
k-1 in dimension i, 0 € i < n. A (k, n)-mesh is a (k, n)-
torus with the wraparound connections missing. We
assume that each communication link represents two
unidirectional physical communication channels. The
link between nodes x and y is denoted by <x, y>. To
simplify presentation, we discuss the concept of fault-
rings for two dimensional (2D) tori. We label the sides
of a 2D torus as North, South, East and West.

2.1 Fault model
We consider both node and link faults. All the links
incident on a faulty node are considered faulty. We
assume that faults are permanent and nonmalicious
faults. Therefore, messages are generated by and for
nonfaulty processors only. We develop fault-tolerant
algorithms, for which it is sufficient if each nonfaulty
processor knows the status of the links incident on it.
A fault set is delined as the set F of faulty nodes and
links. For example, the fault-set F = {(3,3), (3,4), (4,3),
4,4), <(0,0),(0,1)>, <(1,2),(2,2)>} represents four node

IEE Proc.-Comput. Digit. Tech,, Vol. 142, No. 6, November 1995

faults and two link faults in the two-dimensional net-
work shown in Fig. 1. We assume that faults in a 2D
torus have rectangular shapes. A set F of faulty nodes
and links in a 2D torus is said to have a rectangular
shape if there is a rectangle in the torus such that: (a)
there are no faulty components on the boundary of the
rectangle, (b) the interior of the rectangle’ includes all
faulty components in F and (¢) the interior of the rec-
tangle contains no component that is not present in F.

(1,0) (1,n (1,2) (1,3)

R S & B & e & N 41
Jd
(0,0) JYo',n T I
- A iy T)
&

C_Tw“{ o)

20 (2,2) (2,3 ’Lr(E,S)

ur O L] o Q——)
(3,2) (33) (3,4)

C‘(} o)) [] [J (»——)
(4,2) (4,3) (4,4)

ol Do O _)

oJ ey 620 U T 650

Fig.1 Three fault regions and their associated fault rings in a 6 X 6 torus

(

o4

For example, the set {(3,3),(3,4),(4,3),(4,4)} of faulty
nodes shown in Fig. 1 is rectangular, since the interior
of the rectangle — with corners (2,2),(2,5),(5,2), and
(5,5) — includes all faulty components in F and no non-
faulty component (recall that a processor fault implies
that all links incident on it are faulty), However, the set
of faulty links {<(1,1),(1,2)>, <(1,2),2,2)>, <(2.2),
2,1)>, <(2,1),(1,1)>} in a 6 x 6 torus is not rectangu-
lar, since any rectangle with nonfaulty elements on its
boundary contains at least one-element not in F. The
faulty link <(1,2), (2,2)> is an example of a rectangular
fault region, since the interior of the rectangle with cor-
ners (1,1), (1,3),(2,1), and (2,3) contains only the faulty
link. The faulty link <(0,0),(0,1)> in Fig. 1 is consid-
ered rectangular; the rectangle that covers the faulty
link has processors (1,0),(1,1),(5,1) and (5,0) as its cor-
ners.

An fregion is the fault region of the torus given by a
block-fault. Under the block-fault model, the fault-set
in a 2D torus can be written as a union of disjoint
smaller fault sets, each of which denotes an f-region.
For example, the fault set F in Fig. 1 is in fact the
union of three disjoint f-regions {(3,3),(3.4),(4,3),(4,4)},
{<(0,0),(0,1)>} and {<(1,2),(2,2)>}. We assume that
faults do not disconnect the network.

There are many reasons to consider block faults.
First, they model several common fault scenarios such
as faults of isolated nodes and links and consecutive
nodes in a row or column. Second, an arbitrarily-
shaped fault can be modelled as a block-fault, albeit by
labelling some nonfaulty processors and/or links as

t Interior of a rectangle is defined as the set of processors and links that
are not on the boundary of the rectangle.

387

faulty [5]. Finally, the block fault model accurately
models faults at the chip, multichip module, and board
levels.

2.2 Faultrings

Conceptually, fault regions may be considered as
islands of faults in a sea of communication channels
and nodes. In the same manner as a ship is navigated
around an island, it should be feasible to route a mes-
sage around fault regions. For this purpose, we use the
concept of fault rings, denoted f-rings.

For each f-region in a network with faults, it is feasi-
ble to connect the fault-free components around the
region to form a ring or chain. This is the fault ring for
that region and consists of the fault-free nodes and
channels that are adjacent (row-wise, column-wise or
diagonally) to one or more components of the fault
region. The f-ring of a block-fault has rectangular
shape. For example, the f-ring of the node fault region
{(3,3),(3,4),(4,3),(4,4)} in Fig. 1 passes through the
fault-free nodes (2,2),(2,3),(2,4),(2,5),(3,5),(4,5),(5,5),
(5,4),(5,3),(5,2),(4,2),(3,2) as shown in Fig. 1. The f-ring
associated with the link fault region {<(1,2),(2,2)>} has
nodes {(#j) | 1 £i<2,1 <j<3} in its perimeter. The f-
ring for the faulty link <(0,0),(0,1)> has nodes (1,0),
(0,0),(5,0),(5,1),(0,1) and (1,1) on its perimeter.

A fault-free node is in the f~ring only if it is at most
two hops away from a faulty node or is adjacent to a
node with a faulty-link incident on it. There can be sev-
eral fault rings, one for each fregion, in a faulty net-
work with multiple faults. Up to two f-rings in a 2D
torus may have a common link, and up to four f-rings
may have a common node. For example, nodes
(2,2),(2,3) and the link between them are common to
two f-rings in Fig. 1. A set of fault rings are said to
overlap if they share one or more links.

An f-ring represents a two-lane path to a message
that needs to go through the f-region contained by the
fring. Thus, an f-ring simulates four paths to route
messages in two dimensions. Depending on the size of
the f-region, physical channels in an fring may need to
handle a large amount of traffic compared to the other
fault-free physical channels. Further, routing messages
around one or more fault-rings creates additional pos-
sibilities for deadlocks. Hence, wormhole routing algo-
rithms must be designed to handle additional
congestion and deadlocks caused by faults.

When a fault occurs, the f-ring around it can be
formed in a distributed manner using a two-step proc-
ess. In the first step, each processor that detected a
faulty link sends this message to its neighbours in other
dimensions. Based on the set of messages received, each
node that is to be on the f-ring determines its neigh-
bours in the f-ring. For more details, the reader is
referred to [13].

3 Fault-tolerant routing algorithms for 2D tori

In this Section, we present techniques using which any
fully-adaptive routing algorithm can tolerate multiple
rectangular fault regions in a 2D torus. Our approach
is to use a known adaptive algorithm as much as possi-
ble to route messages. When a message is blocked! by a
fault and the adaptive algorithm cannot handle it, the
additional routing logic described here will be used to
route the message around the fault.

The fully-adaptive algorithms we consider have the
following property: if a message, upon arriving at an
intermediate node, cannot find an idle channel for its
next hop, then it can choose any one of the channels
allowed by the routing logic and wait for that channel
indefinitely without causing deadlocks. The adaptive
algorithms based on Duato’s theory [6] do not satisfy
this, since they require the message in the above exam-
ple to rechoose a channel, to avoid deadlocks, after
waiting for a finite amount of time.

The following lemma forms the basis for the result
presented in this Section. For the most part of the Sec-
tion, we assume that the faults in a torus are such that
the resulting f rings are nonoverlapping. However, at
the end of the Section, we indicate how fault-tolerant
routing can be achieved with overlapping f~rings.

Lemma 1: Consider a 2D torus with multiple rectangu-
lar fault blocks. Suppose that a message with destina-
tion d is being routed in the torus using a fully-adaptive
routing algorithm. If the message is blocked at a node,
say x, then the addresses of x and d differ in exactly
one dimension.

Proof: We prove this by contradiction. Assume that the
message is blocked at node x and that x and d differ in
both dimensions. It can be easily verified that under the

LU message is said to be blocked by faults at node x if there is no fault-
free link <x, y> such that the hop from x to y is along the shortest path
from x to d.

Table 1: Virtual channels and F-ring orientations used by affected

messages

ggzsage conditions satisfied Z;]r;:anxel F-ring orientation
oM dy = x; and dy > xg and (dy - xg) <L k/2] Co clockwise

oW dq = x; and dy > X and (dy — x,) > Lk/2] Co counter-clockwise
oM dy = xy and xo > dp and (xg — dp) <L k/2] o clockwise

ow dy = x; and xg > dg and (xg — dy) >Lk/2] ¢ counter-clockwise
1M (dy - x7) <Lk/2]and d; > x; and dj = x, c, clockwise

"W (dy - x7) >Lk/2] and d; > x; and dy = xg ¢ counter-clockwise
™™ (%, - dq) <L k/2] and d; < x; and dj = xg Cs clockwise

Tw {(x; - dy) >Lk/2] and d; < x; and dj = xg C3 counter-clockwise

X =Xy, Xp) is the node at which the message is affected and d = (d, d;) is its destination

388

IEE Proc.-Comput. Digit. Tech., Vol. 142, No. 6, November 1995

Procedure Fully-Adaptive-2D(M) /* Uses a generic fully-adaptive algorithm 7/

/* Uses four additional virtual channels ¢y, ¢y, ¢;, ¢3*/

Aule 1: If M is unaffected, reserve vitual chanels and links according to %

Rule 2: 1f M is a 0*-message, route it using virtual channel ¢, for the rest of its journey. Virtual
channel ¢; is used exclusively for 0-messages, c, for 1*-messages and c; for 1™-messages.

Let d be the dimension in which the message was blocked when it was affected. Let d” be the
other dimension. Let a legal hop be defined as a hop in dimension d that takes the message
closer to its destination.

Case 1: If the current host and destination match in dimension ¢°, and the legal hop is
available, it is taken (see Fig. 3).

Case 2: If M is a message on an f-ring, it is routed using the virtual channel and orientation
shown in Table 1 until it reaches the other parallel side of the f-ring such that current host and

destination match in d” (see Fig. 3).

Fig.2 Fault-tolerant routing logic for 2D tori

block-fault model, a nonfaulty node can have faulty
links incident in at most one dimension. If x has no
faulty links incident on it, then a hop in either dimen-
sion will take the message closer to its destination. If x
has one or both links in a dimension faulty, then one
of the links in the other dimension takes the message
closer to its destination. In all cases, the message can
move closer to its destination and cannot be blocked.
This contradicts the assumption that the message is
blocked at x.

To distinguish blocked messages from others, we use
the concept of message status, which could be unaf-
fected or affected. A message is injected into the net-
work with the unaffected status. When an unaffected
message is blocked by a fault, its status is changed to
affected, and it retains this status for the remainder of
its journey. In our method, when a message becomes
affected, it starts using a special class of virtual chan-
nels. The class of virtual channels used by an affected
message is based on the dimension and direction it
needs to travel to reach its destination.

Consider a message with destination d = (d}, d;). Let
it become affected at node x = (x;, xo). From lemma 1,
it is clear that the message needs to travel in only one
dimension; that is, either x; = d; or xy = dp. In each
dimension, there are two possible directions. Thus,
there can be four different types of affected messages.
0*,0-,1%, and 1~ . The message is termed a 0*-message if
dy = x; and d, > x,. Furthermore, it is a 0¥ M message
if it will not use a wraparound link in dimension 0; oth-
erwise it is a 0" W-message. There are eight types of
affected messages for a 2D torus and they are given in
Table 1. When a message becomes affected, its type is
determined and assigned. This type is used to deter-
mine the virtual channel class to be used for the
remainder of the message’s journey, and the orientation
(direction of travel) to be used when routed on an f-
ring. Table 1 gives this information for each of the
eight possible message types.

3.1 Routing affected messages

The fault-tolerant version of a generic fully-adaptive
algorithm F, denoted F; uses four virtual channels, -
¢p,¢1,¢2 and ¢3 — in addition to those used by F. Chan-
nel ¢, is used exclusively by 0* affected messages (both
0" M and 0* W), similarly, virtual channel classes cq,¢5,¢3
are used exclusively by 07, 17, 1~ messages, respectively.
Rules to route various messages are specified in proce-
dure ‘Fully-Adaptive-2D’ (Fig. 2).

IEE Proc.-Comput. Digit. Tech., Vol. 142, No. 6, November 1995

Example: In Fig. 4, three faulty nodes—(1,0),(4,1) and
(5,4)-are present. There are three f-rings corresponding
to these three faulty nodes. Several messages in this
Figure and their routes are indicated in Table 2. For
example, the message from (5,2) to (3,1) is first routed
from (5,2) to (5,1). It becomes affected by fault (4,1) at
(5,1). Since it needs to travel from (5,1) to (3,1), it is
labelled as a 1"M message. From the rules for 1°M
messages (see Table 1), it is routed in the clockwise ori-
entation using virtual channel c;.

dimension d

M
V3. %)
(D,.Dy) (X, Xg)

Fig.3 Routing of the message from (X[, Xp) to (Y, Yy) is done using
Case 2 of Rule 2 of procedure ‘Fully-Adaptive-2D’; Case 1 is used

thereafter
Co
B e fiy
©bc; fhon c; Jow 109
Cy ECO
%o Yin |)) .5
C2 C2
Coel 2 & S S & D)
(20 (2,
Cl)
T < Q o c
T
C3=
; N)) I I N D
oo for of T e
C3= C‘i C}f CO! C‘ } C
! Cy C1y 1 |)
e °
Lt Gy 0 et 60 650

Fig.4 There are three f-rings corresponding to the three faulty nodes
(1,0), (4,1) and (5,4). Various messages in this network and how they are
routed is indicated in Table 2

389

Table 2: A few messages in the faulty network of Fig. 4

affected by message

virtual

source destination affected at faulty node type channel orientation path indicated by
(0,0) (2,0) (0,0) (1,0 "M cy clockwise) solid thick lines
(1,1) (1,5) (1,1) (1,0) orw Co counter-clockwise dashed thick lines
(0,4) (4,4) (0,4) (5,4) % [counter-clockwise solid thick lines
(5,3) (5,5) (5,3) (5,4) oM cy clockwise dashed thick lines
(5,2) (3,1) (5,1) 4,1) ™™™ c3 clockwise dashed thick lines
(4,2) (4,0) (4,2) (4,1) oM ¢4 clockwise solid thick lines

Theorem 1: Assume that the fully-adaptive routing
algorithm F correctly routes messages and is deadlock
free. The fault-tolerant fully-adaptive routing algorithm
Fy described by Rules 1 and 2 (in Fig. 2) is deadlock-
free in the presence of multiple rectangular fault blocks
and delivers messages correctly between any pair of
nonfaulty nodes.

Proof. Algorithm F, correctly routes unaffected mes-
sages between any pair of nonfaulty nodes, since F cor-
rectly routes messages. Since the virtual channels used
for affected messages are different from those used for
unaffected messages, the statement is true for all unaf-
fected messages. To complete the proof, we need to
show that affected messages are also routed correctly
without deadlocks and livelocks.

To see that the procedure Fully-Adaptive-2D cor-
rectly delivers messages, observe that (i) an affected
message is misrouted only around an f-ring, (ii) a mes-
sage, once it leaves an f-ring will never revisit it, (iii) an
affected message takes only a finite number of hops on
each fring and (iv) there are a finite number of f rings
in the torus. These four observations show that a mes-
sage is delivered to its destination in a finite number of
hops and that there are no livelocks in the system.

We next prove the deadlock-freedom of the proce-
dure Fully-Adaptive-2D. Unaffected messages cannot
be involved in a deadlock, since F is deadlock-free and
since they do not require or wait for the virtual chan-
nels ¢g, ¢;, ¢; and ¢3. Among affected messages, 0¥-mes-
sages use only virtiial channel c¢y; similarly, a distinct
virtual channel is used for messages of each type. Thus,
it is enough if we show that there are no deadlocks
among 0-messages.

There are two types of 0% messages: 0*M and 0*W.
The part of the network used by 0" M messages consists
of row channels in the East direction and column chan-
nels in the North direction in the West columns and
South channels in the East columns of f-rings. Its
underlying graph is acyclic. Similarly, 0" W uses an acy-
clic network of ¢, channels. Therefore, a deadlock
among 0*-messages involves both 0*M and 01 mes-
sages. But 0" M and 0*J/ messages use disjoint sets of
physical channels. This is obvious for the physical
channels that are not part of the f~ring, since 0¥ A/ mes-
sages travel from West to East, and 0"W messages
from East to West when not misrouted. From Table 1,
it is clear that 0*M and 0* I messages reserve virtual
channels on physical channels in clockwise and coun-
ter-clockwise directions, respectively, on an f-ring.
Therefore, there is no dependency among the 0 mes-
sages. Similarly, we can prove the deadlock freedom
for other types of messages.

390

3.2 Fault-tolerant routing with overlapping
f-rings

Thus far, we have assumed that faults are such that the
frings do not overlap. However, this is not a serious
restriction. If f-rings overlap, then deadlock-free fault-
tolerant routing may be provided using either one of
the following methods.

(a) When two f-rings overlap, deadlocks may occur
when, for example, 0"M and 0" messages use the
same physical channels in the column shared by the
overlapping f-rings. This can be avoided by using two
virtual channels (instead of one) for 0° messages. Simi-
larly, two virtual channels for each of 0, 1*, 1~ message
types are needed. Therefore, this technique requires
eight extra virtual channels. Except for the use of addi-
tional virtual channels, the routing logic remains the
same as in the case of nonoverlapping f-rings.

(b) An alternative is to route an affected message such
that it does not use wraparound links in the only
dimension it needs to travel at the time it is affected.
For example, a 0" M message is routed as before. But a
0* W message is labelled as a 0" M message when it is
blocked for the first time and routed as a 0" M message
until it reaches its destination. That is, a 0" message
is not routed along its shortest path. This ensures that
the physical channels used by 0+ messages form an
acyclic directed graph. Since each message tvpe uses a
distinct class of virtual channels, the routing is dead-
lock free.

4 Simulation results

To study the performance issues we have developed a
flit-level simulator. This simulator can be used for
wormhole routing in k-ary n-cubes with and without
faults. In this Section, we present simulation results on
the performance of the negative-hop (NHop) algorithm
[14]. The NHop provides minimal, fully-adaptive rout-
ing in fault-free tori using L.l k/2 T/ZJ + 1 virtual chan-
nels.

The negative hop wormhole algorithm is discussed in
[14]. To use the negative hop algorithm, the network is
coloured, and each node is given a label corresponding
to its colour. A hop by a message is a negative hop if it
moves from a node with higher label to a node with
lower label. Any other hop is a nonnegative hop. Mes-
sages when injected have 0 negative hops and are
routed minimally when there are no faults. If a message
has taken 7 > 0 negative hops, then it uses virtual chan-
nels of class i for its next hop. In our simulations, we
have used the NHop algorithm, developed originally
for fault-free networks, and fortified it with four addi-

IEE Proc.~-Comput. Digit. Tech., Vol. 142, No. 6, November 1995

tional channels and the fault-tolerant logic described in
Section 3.

We have simulated a 16 x 16 torus for the uniform
traffic pattern and 20-flit messages. The virtual chan-
nels on a physical channel are demand time-multi-
plexed, and it takes one cycle to transfer a flit on a
physical channel. The message interarrival times are
geometrically distributed. We use the uniform traffic
model. We use bisection utilisation and average mes-
sage latency as the performance metrics. The bisection
utilisation (p;) is defined as

message length
bisection BW

The bisection bandwidth (BW) is deftned as the maxi-
mum number of flits that can be transferred across the
bisection in a cycle, and is proportional to the number
of nonfaulty links in the bisection of the network. The
maximum value of p, is 1.0. For fault free networks
with uniform traffic, the bisection utilisation and chan-
nel utilisation are the same. For networks with faults,
they differ. But bisection bandwidth is more easily trac-
table and provides a consistent measure of perform-
ance. The half-width of the 95% confidence interval for
each point shown in the graphs is within 4% of the
value reported.

The fault-tolerant Nhop requires 13 virtual channel
classes: nine for fault-free routing and four for fault-
tolerant routing. We have used 16 virtual lanes per
physical channel. we distributed 12 lanes among the
nine normal, fault-free classes and allocated one lane to
cach of the four special, fault-tolerant classes. The
three additional lanes improve the performance of the
NHop.

To facilitate simulations at and beyond the normal
saturation points for the routing algorithm, we have
limited the injection by each node. This injection limit
is independent of the message inter-arrival time; the
motivation for injection control is due to Lam [15].
After some experimentation, we have chosen an injec-
tion limit of four for the NHop; that is, a node is not
allowed to inject a new message if four or more mes-
sages generated by it are still in the node. Too high an
injection limit leads to uncontrolled latencies at satura-
tion; too low an injectlon limit reduces throughputs
around the saturation slightly. For the value selected
there is little effect on the latency and throughput
achieved by the algorithm prior to the saturation of
network.

(no. of messages across the bisection/cycle) x

4.1 Performance for various fault cases
We have simulated a 16 x 16 torus with 1%, 5%, and
10% of the total network links faulty. Specifically, for
the 1% case, we have set, randomly, a node and link
faulty; since four links are incident on a node, five of
the 512 links in the network are faulty. For the 5%
fault case, we have set four nodes and 10 links faulty;
for the 10% fault case, we have set 9 nodes and 15 links
faulty. In each case, we have randomly generated the
required number of faulty nodes and links. To see the
performance degradation with faults, we have also sim-
ulated the routing algorithm on a fault free torus.
Since we have simulated only isolated faults, a
slightly more flexible version of fault-tolerant logic can
be used without creating deadlocks. This flexible ver-
sion uses any of the orientations, clockwise or counter-
clockwise, to route any affected message. The simula-

IEE Proc.-Comput. Digit. Tech., Vol. 142, No. 6, November 1995

tion results reported in this Section are for the NHop
fortified with this flexible fault-tolerant logic. We have
incorporated two more improvements that are specific
to the NHop algorithm: (a) a message that has taken i
negative hops can use virtual channels in any of classes
0, ..., ;; (b) an affected message is allowed to use chan-
nels in normal classes even for misrouting until it takes
more negative hops than the number of normal virtual
channel classes, at which point one of the four special
channels is used for the remainder of its journey. These
changes do not introduce any deadlocks among mes-
sages routed by the NHop algorithm.

The results for various fault cases are given in Fig. 5.
For the fault-free network, the NHop has a peak utili-
sation of 0.755 at a latency of 191 cycles. The NHop
shows a graceful degradation of performance in the
presence of faults. The message latencies with faults are
higher; the utilisation ranges from 0.648 to 0.735.

4.2 Peak performance

Comparative performance across different fault cases in
Fig. 5 is specific to the fault sets used. Therefore, we
have further simulated the NHop for 1, 5 and 10%
faults. For each case, we have simulated 10 different
fault sets for 100% traffic load. (The injection control
helps us here, otherwise, we would have to perform the
tedious task of determining the saturation point for
each fault set and for each fault case.) The values
obtained from the ten different fault sets are averaged
and shown in Figs. 6 and 7.

300 T T v

250¢ x

N
[«
o

latency, cycles
&
o

I

0 0.2 0.4 0.6 0.8 1.0
bisection utilisation

Fig.5 Performance of the NHop algorithm for uniform traffic in a 16 x
16 torus with various faults. The label dp indicates the results for d% faults
-x—0p

-1 1p

-A- 5p

X+ 10p

As the number of faults is increased, the latency
increases steadily and the utilisation drops steadily.
Comparing the fault-free case and 10%-faults case, we
note that NHop has 31% increase in latency and 15%
decrease in throughput.

The fault-tolerant version of NHop exhibits a similar
graceful degradation in performance in meshes with
faults. We performed additional simulations in which
the NHop for mesh exhibited a 20% drop in through-
put from the fault-free case to the case with 10% faults.
Dally and Aoki [8] indicate that the dynamic dimension
reversal algorithm exhibits a similar graceful degrada-
tion of throughput for meshes.

391

300 T T T T

250

latency, cycles
- iy NS
o wm o
<o (o] (=]

($20
o
)

0 s L L .
0 2 4 6 8 10
percentage of faults

Fig.6 Latencies for different fault cases

06 1

bisection utilisation
[}
~
.
)

o
()
T
L

O 1 1 1
0 2 4 6 8 10
percentage of faults

Fig.7 Maximum utilisation for different fault cases

5 Fauilt-tolerant routing in multidimensional tori

In this Section, the results of Section 3 are extended to
multidimensional tori using the results for 2D and 3D
tori as the base cases.

5.1 Fault model
To define the fault model precisely, we consider -
tuples of k& symbols {0,..., £ — 1}; we refer to this set as
Q and these correspond to nodes in a k-ary n-dimen-
sional torus.

A node x = (x,,_y,...,Xg) 18 said to be a base-node with
respect to another node y = (y,.1,...,y0) if and only if x;
< y; for all j; if x is a base node for y, y is said to be an

apex-node for x. A block B,, with base-node x and
apex-node y contains all the nodes in the set

NIy = {(anl, .

and cvery link that connects any two nodes in N,,. A
node z = (z,_,..., zg) 1s said to be a boundary node of
block By, if z; = x; or z; = y, for some i. A link <z,z°> is
a boundary link iff both z and z’ are boundary nodes.
The interior of B,, contains all nodes and links that are
not on the boundary of By,

A translation 7', of (k, n)-torus with respect to node
x 18 defined as relabeling every node y = (y,_q,...,¥) il
(kun)-torus with y = (K+3, 1%, 1) 10d Kyvors(kt yr)
mod k,...,(k+ yg—xq) mod k). A set F of faulty nodes
and links in a (k, n)-torus is said to be a faulty-block iff
there exist a node z, base-node x € T,(Q) and an apex-
node y € TAQ) such that:

(i) The interior of By, € T,(Q) contains all and only the
components of F.

(if) No boundary node or link of By, € T,(Q) is faulty.

(iil) The faults in each & x k subtorus of T,(Q) satisfy
the 2D block fault model described in Section 2.

A set F of faulty nodes and links in a k-ary n-dimen-
sional torus is said to be a block-fault if F can be writ-
ten as the union of disjoint subsets F;, F,,..., F, such
that each F; is a faulty-block by itself. The following
observation forms the basis for our fault-tolerant rout-
ing algorithms for n-dimensional tori.

Observation 1: Let F be a block fault in (k, n)-torus and
let Fi,...,F, be the corresponding faulty blocks. If we
consider any k£ X k subtori H of the (k, n) torus, the
faulty nodes of F;, 1 < i < r form a rectangular fault
region (defined in Section 2.1) in H.

L)@ <z <y, 0<i< (n-1)}

Observation 1 allows us to route in a k-ary n-dimen-
sional torus under block-faults by routing a message in
2D tori each with faulty blocks of rectangular shapes.
We use this idea to develop the algorithms presented in
this Section.

5.2 Design of fault-tolerant fully-adaptive
routing algorithms

Our main result in this Section is that any tully-adap-
tive routing algorithm for an n-dimensional tori can be
made fault-tolerant by using four additional virtual
channels per physical channel.

As in the two-dimensional case, a message is said to
be blocked by faults if all of its shortest paths go
through one or more fault regions. A message that is
blocked for the first time becomes an affected message
and remains so for the rest of its journey.

Table 3: Virtual channels used by messages in algorithm

fcube3D

message type plane used virtual channel used

0*-message (0,1)-plane ¢p in both dimensions 0 and 1
0™-message (0,1)-plane ¢ in both dimensions 0 and 1
1*-message (1,2)-plane ¢, in both dimensions 1 and 2
T-message (1,2)-plane ¢z in both dimensions 1 and 2
2*-message (2,0)-plane ¢, in dimension 0 and ¢; in dimension 2
2"-message (2,0)-plane ¢ in dimension 0 and ¢, in dimension 2

392

IEE Proc.-Comput. Digit. Tech., Vol. 142, No. 6, November 1995

Lemma 2: A message destined to d is blocked at a
node, say x, only if and the addresses of x and d differ
in exactly one dimension.

Proof: First, we note that the message will be blocked
at a node x only if x is on the fault ring associated with
the fault block. Further, due to the block-fault model,
x can have faulty links in at most one dimension.
Assume, to the contrary, that the message becomes
blocked at x and that x and d differ in more than one
dimension. Since the outgoing links of x are faulty in
only one dimension, the message can take a hop in a
dimension other than that of the faulty link(s). This
contradicts our assumption that the message is blocked
at x. This proves the lemma. |

From Lemma 2, it is clear that when a message
becomes affected by a fault, it needs to travel in only
one dimension; however, its journey along this dimen-
sion would have been blocked by the faulty rectangular
region. Let us consider a message M with destination d
which becomes affected at x. M will be referred to as
an i-message if it only needs to travel in dimension i
when it becomes affected. Further, we say that an
affected message is an i*-message (respectively, i -mes-
sage) if x; < d; (respectively, x; > d;). As before, an i*
message is actually an i*M or i/*W message; an "M
message uses the clockwise orientation and i W mes-
sage the counter-clockwise orientation when routed on
an f-ring.

Before we consider routing in n-dimensional tori, we
design fault-tolerant fully-adaptive routing algorithms
for 3D tori that use four additional virtual channels.

5.2.1 Fault-tolerant fully-adaptive routing in
3D tori: In a 3D torus, there are six types of affected
messages (07, 0~ ,1*, 17 ,2*, 27). The planes and virtual
channels used to correct in the final dimension are
shown in Table 3. The enhanced fully-adaptive routing
algorithm is shown in Fig. 8.

Lemma 3: Assume that the originalfully-adaptive rout-
ing algorithm F is correct and deadlock and livelock
free. The procedure Fully-Adaptive-3D correctly routes
messages in 3D tori with faulty blocks and does not
cause deadlocks or livelocks.

Proof: From observation 1, it is clear that in any 2D
subtori of a 3D tori with faulty blocks, the f-regions
are of rectangular shape. Further, the fault model
assumes that no complete row or column of faults can
be faulty in any 2D subtori of the network. Thus, 0*
messages use the appropriate links in dimension 0 and
the (0,1)-plane around f-rings to reach their destina-
tions. Similarly, 1* messages travel in dimension 1
using (1,2) plane to get around faults; 2* messages
travel in dimension 2 using (2,0) plane to get around
faults. Since our fault model satisfies the constraint
that each 2D plane of the 3D torus has only block-
faults, affected messages are correctly delivered to their
destinations.

The routing in each 2D plane is livelock-free, since a
message visits each f-ring at most once and its journey
along an f-ring is bounded by a finite number of hops
(see proof of theorem 1).

To prove deadlock freedom, first observe that rout-
ing in each plane is deadlock-free, since the i* and i
messages use distinct virtual channels in each plane.

Procedure Fully-Adaptive-3D(M)

2 If M reached its destination, stop.

channels indicated.

/* Uses a generic fully-adaptive algorithm 7/
/* Uses four additional virtual channels ¢y, ¢y, ¢, ¢3 ¥/

1 Route M using algorithm Funtil M either reaches its destination or is affected by faults.

3 Determine the i for which M is an i*-message or an i-message. /* i€ {0, 1,2} */
4 Depending on the value of i, route M in the plane specified in Table 3 and using the virtual

Fig.8 Fully-adaptive routing in 3D tori using four additional virtual channels

Procedure Fully-Adaptive-ND(M)

2 If M reached its destination, stop.

4 If(nisoddandie {0,1,2}),

algorithm (described above).

/* Uses a generic fully-adaptive algorithm #*/
/* Uses four additional virtual channels ¢, ¢q, ¢3, ¢3 */
1 Route M using algorithm Funtil M either reaches its destination or is affected by faults.

3 Determine the i for which M is an i*-message or an i -message.

Route M in the 3D torus formed by dimensions 0, 1, and 2 using Fully-Adaptive-3D

Else if ((i is even and 7 is even) or (i is odd and 7 is odd)),

Route M in the tori formed by dimensions i and i + 1 applying the logic of Fully-Adaptive-2D
algorithm (Fig. 2) withiasOand i+ 1 as 1.

Else if ((i is odd and n is even) or (i is even and 7 is odd)),

Route M in the tori formed by dimensions i and i - 1 applying the logic of Fully-Adaptive-2D
algorithm (Fig. 2) withi-1asOandias 1.

Fig.9 Fully-adaptive routing in nD tori using four additional virtual channels

IEE Proc.-Comput. Digit. Tech., Vol. 142, No. 6, November 1995

393

Further, the virtual channels used by 0-messages (c,
and ¢;) and 1-messages (¢, and ¢3) are disjoint. Virtual
channels used by 0O-messages and 2-messages are also
disjoint, since 0-messages use ¢y and ¢; in dimension 0
and 2-messages use ¢, and ¢; in dimension 0 (from
Table 3). A similar statement holds for 1-messages and
2-messages. Hence the theorem. |

We use the Fully-Adaptive-2D and Fully-Adaptive-
3D algorithms to provide fault-tolerant routing in »-
dimensional tori. The routing logic is given in Fig. 9.
The correctness, deadlock-freedom and livelock-free-
dom of Fully-Adaptive-nD procedure follow from the
corresponding proofs for Fully-Adaptive-2D and Fully-
Adaptive-3D procedures.

6 Concluding remarks

We have presented techniques to enhance fully-adap-
tive wormhole routing algorithms for fault-tolerant
routing in tori. In particular, we have shown that four
extra virtual channels per physical channel are enough
to convert a fully-adaptive wormhole algorithm for
fault-tolerant routing. Though the techniques devel-
oped for meshes may be extended with suitable modifi-
cations to tori, such extensions usually double the
number of channels used for mesh networks. By sepa-
rating fault-tolerant routing from normal adaptive
routing, which is the approach used in this paper, this
effect can be limited to only the resources used for
fault-tolerant routing.

We have used the block-fault model in which faulty
processors and links are in the form of multiple rectan-
gular regions of the network. The concept of fault-rings
is used to route messages around the fault-regions. Our
algorithms are deadlock and livelock free and correctly
deliver messages between any pair of nonfaulty nodes
in a connected component of the network even in the
presence of multiple faulty blocks.

The increase in routing-complexity to achieve fault
tolerant wormhole routing is moderate. The status of
a message and its type (to indicate its virtual channel
class and its direction on f-rings) can be maintained
using a few bits in its header. The other overhead is
changing the status and setting the type of a message
blocked for the first time. This is done just once for
each misrouted message. The type of a misrouted
message is determined by comparing the addresses
of the current host and destination of the message. Our
fault-tolerant technique facilitates modular
implementation. The switching among the extra virtual
channels can be implemented by a 4 x 4 crossbar
independent of the crossbar used for the original adap-
tive routing.

To study the performance issues, we have taken a
fully-adaptive wormhole algorithm, NHop, developed
originally for routing in fault-free networks, and forti-
fied it with extra virtual channels and the fault-tolerant
logic described in this paper. Our simulation results

394

indicate that the NHop exhibits graceful degradation in
performance as the number of faulty components in the
network increases.

The proposed techniques seem to be applicable to a
wider class of adaptive algorithms, more complex fault
shapes, and different network topologies. More work
on networks other than tori is needed, however. Since
the NHop algorithm is applicable to any network
topology the fault-tolerant routing based on NHop and
fault-rings may yield a simple and efficient routing
method for many networks of interest.

7 Acknowledgments

S. Chalasani’s research has been supported in part by a
grant from the Graduate School of UW-Madison and
the NSF grants CCR-9308966 and ECS-9216308 R
Boppana’s research has been supported by the NSF
Grant CCR-9208784.

8 References

1 AGARWAL,A.: ‘The MIT Alewife machine: a large-scale distrib-
uted multiprocessor’, Proceedings of workshop on Scalable shared
memory multiprocessors (Kluwer Academic, 1991)

2 NOAKES,M.D.: ‘The J-machine multicomputer: an architectural
evaluation’, Proceedings 20th annual international symposiutn on
Computer architecture, May 1993, pp. 224-235

3 CRAIYQ’QRESEARCH INC.: ‘Cray T3D Aarchitectural summary’,
Oct. 3

4 LILLEVIK,S.L.. ‘The touchstone 30 gigaflop DELTA proto-
type’, 6th Distributed memory computing conference, 1991, pp.
671-677

5 CHIEN,AA., and KIM,J.H.: ‘Planar-adaptive routing: low-cost
adaptive networks for multiprocessors’, Proceedings of the 19th
annual international symposium on Computer architecture, 1992,
pp. 268-272

6 DUATO,J.: ‘New theory of deadlock-free adaptive routing in
wormhole networks’, IEEE Trans. Parallel & Distrib. Syst. Dec.
1993, 4, (12), pp. 1320-1331

7 LINDER,D.H., and HARDEN,J.C.: ‘An adaptive and fault tol-
erant wormhole routing strategy for -ary n-cubes’, IEEE Trans.
Comput., 1991, 40, (1), pp. 2-12

8 DALLY,W.J., and AOKLH.: ‘Deadlock-free adaptive routing in
multicomputer networks using virtual channels’, IEEE Trans.
Parallel & Distrib. Syst. Apr. 1993, 4, (4), pp. 466-475

9 GLASS,CJ. and NI,L.M.: ‘Fault-tolerant wormhole routing in
meshes’, 23rd annual international symposium on Fault-tolerant
computing, 1993, pp. 240-249

10 BOLDING,K., and SNYDER,L.: ‘Overview of fault handling
for the chaos router’, Proceedings of the 1991 IEEE International
workshop on Defect and fault tolerance in VLSI systems, 1991,
pp. 124-127

11 NARASIMHA-REDDY,A.L., and FREITAS,R.: ‘Fault toler-
ance of adaptive routing algorithms in multicomputers’, Proceed-
ings of the 4th IEEE symposium on Parallel and distributed
processing, 1992, pp. 156-161

12 GAUGHAN,P.T., and YALAMANCHILILS.: ‘Pipelined circuit-

switching: a fault-tolerant variant of wormhole routing’, Proceed-

ings of the 4th IEEE symposium on Parallel and distributed

processing, 1992, pp. 148-155

BOPPANA,R.V., and CHALASANI,S.: ‘Fault-tolerant worm-

hole routing algorithms for mesh networks’, IEEE Trans. Com-

put., 1995, 44, (7), pp. 848-864

14 BOPPANA,R.V., and CHALASANI,S.: ‘A comparison of adap-
tive wormhole routing algorithms’, Proceedings of the 20th
annual international symposium on Computer architecture, May
1993, pp. 351-360

15 LAM,S.S., and REISER,M.: ‘Congestion control of store-and-
forward networks by input buffer limits—an analysis’, IEEE
Trans. Commun. Jan. 1979, 27, (1), pp. 127133

1

w

IEE Proc.~Comput. Digit. Tech., Vol, 142, No. 6, November 1995

