
616 IEEE TRANSACTIONS ON COMPUTERS,  VOL.  46,  NO.  5,  MAY  1997

Communication in Multicomputers with
Nonconvex Faults

Suresh Chalasani and Rajendra V. Boppana

Abstract —A technique to enhance multicomputer routers for fault-
tolerant routing with modest increase in routing complexity and
resource requirements is described. This method handles solid faults
in meshes, which includes all convex faults and many practical
nonconvex faults, for example, faults in the shape of L or T. As
examples of the proposed method, adaptive and nonadaptive fault-
tolerant routing algorithms using four virtual channels per physical
channel are described.

Index Terms —Solid faults, deadlocks, mesh networks,
multicomputers, routing algorithms, wormhole routing.

————————   ✦   ————————

1 INTRODUCTION

MANY recent experimental and commercial multicomputers and
multiprocessors use direct-connected networks with mesh topol-
ogy [1], [16], [15], [9], [17]. These computers use the well-known
dimension-order or e-cube routing algorithm in conjunction with
wormhole switching [11] to provide interprocessor communication.
In the wormhole technique, a packet is divided into a sequence of
fixed-size units of data, called flits, and transmitted from source to
destination in asynchronous pipelined manner. The first flit of the
message makes the path and the tail flit releases the path as the
message progresses toward its destination.

The e-cube routing algorithm is simple and provides high
throughput for uniform traffic. The e-cube achieves its simplicity
by using, always, a fixed path for each source-destination pair,
though the underlying network may provide many additional
paths of the same length (in hops). Therefore, the e-cube cannot
handle even simple node or link faults, because even one fault
disrupts many e-cube communication paths.

Adaptive and fault-tolerant routing for multicomputer net-
works has been the subject of extensive research in recent years
[2], [3], [4], [8], [10], [12], [13], [14], [18]. Most of the current tech-
niques to handle faults in torus and mesh networks require one or
more of the following:

1) new routing algorithms with adaptivity [4], [8], [10], [13],
[14],

2) global knowledge of faults,
3) restriction on the shapes, locations, and number of faults [8],

[10], [14], [3], [18], and
4) relaxing the constraints of guaranteed delivery, deadlock- or

livelock-free routing [18].

In this paper, we present fault-tolerant routing methods that can
be used to augment the existing fault-intolerant routing algorithms
with simple changes to routing logic and with modest increase in
resources. These techniques rely on local knowledge of faults—each
fault-free node needs to know the status of only its links and its
neighbors’ links—and can be applied as soon as the faults are de-
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tected (provided the faults are of specific shapes). Messages are still
delivered correctly without livelocks and deadlocks.

The fault model is a generalized convex fault model, called
solid-fault model. In the convex-fault model, each connected set of
faults has a convex shape (for example, rectangular in 2D meshes)
[3], [8]. In the solid-fault model, a connected fault set is such that
any dimensional cross-section (defined in Section 2.1) of the fault
region has contiguous faulty components. Fault regions with a
variety of shapes, for example, convex, +, L, and T in a 2D mesh,
are examples of solid faults.

Our approach in this paper is to demonstrate techniques which
enhance known fault-intolerant routing algorithms to provide
communication even under faults. To illustrate this, we apply our
techniques to the nonadaptive e-cube and a class of fully-adaptive
algorithms [12] for meshes with solid faults. The results presented
in this paper expand on our earlier results for convex faults [3], [5].

The rest of the paper is organized as follows. Section 2 describes
the solid fault model and the concept of fault-rings. Section 3 de-
scribes our fault-tolerance techniques for the nonadaptive e-cube
algorithm. Section 4 applies these techniques for fully-adaptive
algorithms. Section 5 concludes the paper.

2 PRELIMINARIES

We consider n-dimensional mesh networks with faults. A (k, n)-
mesh has n dimensions, denoted DIM DIM0 , , ,K n-1  and N kn=
nodes. Each node is uniquely indexed by an n-tuple in radix k.
Each node is connected via bidirectional links to two other nodes
in each dimension. Given a node x x xn= -1 0, , ,Kc h  its neighbors in

DIMi i n, ,0 £ <  are x x x x xn i i i- + -±1 1 1 01, , , , , , ;K Kc h if the ith digit

of a neighbor's index is -1 or k, then that neighbor does not exist
for x. If two nodes x and y are connected by a link, then the link is
denoted by x y´ .

We assume that a message that reaches its destination is con-
sumed in finite time. If a message has not reached its destination
and is blocked due to busy channels, then it will continue to hold
the channels it has already acquired and not yet released. There-
fore, deadlocks can occur because of cyclic dependencies on chan-
nels. To avoid deadlocks, multiple logical or virtual channels are
simulated on each physical channel and allocated to messages
systematically [11]. When faults occur, the dependencies are even
more common, and more virtual channels may need to be used or
the use of channels may have to be restricted further. Using extra
logic and buffers, multiple virtual channels can be simulated on a
physical channel in a demand time-multiplexed manner. We specify
the number of virtual channels on per physical channel basis and
denote the ith virtual channel on a physical channel with c i .

In the remainder of this section, we describe the fault model
and the concept of fault-rings for 2D meshes. Our results can be
extended to multidimensional meshes and torus networks with
suitable modifications. We label the sides of a 2D mesh as North,
South, East, and West.

2.1 The Fault Model
We consider both node and link faults. For fault detection, proces-
sors test themselves periodically using a suitable self-test algo-
rithm. In addition, each processor sends and receives status signals
from each of its neighbors. A link fault is detected by the proces-
sors on which it is incident by examining these status signals. A
processor that fails its self-test stops transmitting signals on all of
its links, which appears as link faults to its neighbors. A fault-free
processor ignores the incoming signals on its links determined to
be faulty.  So, faulty nodes do not generate messages.

We model multiple simultaneous faults, which could be con-
nected or disjoint. We assume that the mean time to repair faults is

quite large, a few hours to many days, and that the existing fault-
free processors are still connected and should be used for compu-
tations in the mean time. We develop fault-tolerant algorithms
that can work with only local fault information—each node
knows only the status of links incident on it and on its neighbors
reachable via its fault-free links.

A node fault is equivalent to making the links incident on that
node faulty. Therefore, given a set F with one or more node faults
and some link faults, we can represent the fault information by a
set Fl  which contains all the links incident on the nodes in F and
all the links in F. Two faulty links a x y= ´ and b u v= ´  in Fl

are adjacent if one of the following conditions hold:

1) a and b have different dimensions and are incident on a
common node,

2) node x can be reached from u in one hop and node y from v
in one hop, or

3) node x can be reached from v in one hop and node y from u
in one hop.

A pair of links adjacent by the above definition are said to be con-
nected. Two nonadjacent links a a Fp l1, Œ  are connected if there

exist links a a Fp l2 1, ,K - Œ  such that ai  and ai+1, for 1 £ <i p, are

adjacent. A faulty node and a faulty link a are connected if there is
at least one link incident on the faulty node to which link a is con-
nected. A set with a single faulty link represents a trivially con-
nected fault set. A set of faulty links Fl  with two or more compo-
nents is connected if every pair of links in Fl  is connected. A set F
of faulty nodes and links is connected, if the corresponding set Fl

of faulty links is connected. The fault sets

F1 1 0 1 1 0 1 1 1= ´ ´( , ) ( , ), ( , ) ( , ) ,m r
F2 0 4 0 5 1 4 1 5= ´ ´( , ) ( , ), ( , ) ( , ) ,m r
F3 2 2 2 3 3 2 4 1= ´( , ) ( , ), ( , ), ( , ) ,m r

and F4 4 4= ( , )l q
in Fig. 1 are examples of connected fault sets. F2  is an example of the
connected fault based on the last two adjacency rules given above.

Before defining solid faults, we need to define cross sections of
networks and faults. Each connected fault set describes a subnet-
work of the original mesh. Given a subnetwork or network, all of
its nodes that match with one another in all but one component of
their n-tuple representations and the links among them form its
1D cross section. For example, in a 2D mesh, each row and each
column is a 1D cross section of the network. The column cross
sections of F3  in Fig. 1 are

( , ), ( , ) ( , ), ( , ) ( , )  4 1 3 1 4 1 4 1 5 1´ ´m r
and

 ( , ), ( , ) ( , ), ( , ) ( , ) ,  3 2 2 2 3 2 3 2 4 2´ ´m r
and its row cross sections are

 ( , ) ( , ) ,  ( , ), ( , ) ( , ), ( , ) ( , ) ,  2 2 2 3 3 2 3 1 3 2 3 2 3 3´ ´ ´m r m r
and

( , ), ( , ) ( , ), ( , ) ( , ) .  4 1 4 0 4 1 4 1 4 2´ ´m r
Sometimes a 1D cross section of a fault contains just a single faulty
link. In a similar manner, 2D and higher-dimension cross sections
can be defined.

With local knowledge of fault information, handling situations
where a message has to travel on a path and retract because it
reached a dead-end is complicated. Such situations occur when the
node connectivity of a 2D cross section of the network is one.
(Node connectivity is the minimum number of nodes that need to
be removed to disconnect a network.) This situation can be identi-
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fied and corrected by disabling the pendant nodes in each 2D cross
section. (A pendant node in a 2D plane has only one good link.) A
pendant node marks itself faulty. This may result in more pendant
nodes in the network. Then the new ones will mark themselves
faulty. This can be repeated several times, bounded by the diame-
ter of the network. At the end, we have a connected network with
each node having two or more working links in each 2D cross
section. Henceforth, we assume that when faults occur appropriate
nodes mark themselves faulty as needed so that the resulting node
connectivity of the network is greater than one.

A connected fault-set F, with all of its links given by the set Fl ,
indicates a solid fault region, or f-region, if the following condition
is satisfied.

If two links a b Fl, Œ  are in the same 1D cross section, then all
the nodes between a and b in the same 1D cross section are
also faulty.

A set of faults is valid if each connected fault in the set is a solid
fault. All the faults in Fig. 1 are examples of  solid faults. The faults
F2  and F4  are also examples of convex (rectangular block-shaped)
faults. The faults F1  and F3  are not convex faults.

2.2 Fault Rings
For each connected fault region of the network, it is feasible to
connect the fault-free components around the fault to form a ring
or chain. This is the fault ring, f-ring, for that fault and consists of
the fault-free nodes and channels that are adjacent (row-wise, col-
umn-wise, or diagonally) to one or more components of the fault
region. For example, the f-rings for the various solid faults in Fig. 1
are shown with thick lines. It is noteworthy that a fault-free node
is in the f-ring only if it is at most two hops away from a faulty
node. There can be several fault rings, one for each f-region, in a
network with multiple faults. Fault rings provide alternate paths
to messages blocked by faults.

A set of fault rings are said to overlap if they share one or more
links. For example, the f-rings of F3  and F4  in Fig. 1 overlap with
each other on link ( , ) ( , ).  3 3 4 3´ Also, if a nonfaulty node has
both links in a dimension faulty, overlapping f-rings are formed (if
x is not faulty and has both links in a dimension are faulty, then it
results in overlapping f-rings). Forming a fault-ring around an
f-region is not possible when the f-region touches one or more
boundaries of the network (e.g., F2  in Fig. 1). In this case, a fault
chain, f-chain, rather than an f-ring is formed around the f-region.
In this paper, we do not consider solid faults that form f-chains or
overlapping f-rings.

2.3 Formation of Fault Rings
Fault-rings are used to route messages around a fault region. Mes-
sages can be routed on an f-ring in one of two directions: clockwise
(immediate boundary of the corresponding fault region is to the
right of a message's path on the fault ring), and counter-clockwise.
A node on an f-ring identifies its neighbors for each direction of
traversal. For f-rings formed around solid faults, the neighbors are
the same for both directions. In a general case, however, these
neighbors can be different. Fault-rings can be constructed for each
fault-region using a two-step distributed algorithm.

To see this, consider a single fault region in a 2D mesh.
In step 1, if a node has a DIM0  faulty link incident on it, then it

sends this information to its DIM1 neighbors, and vice versa. It is
noteworthy that if a node is fault-free and has both links in a di-
mension faulty, then it results in overlapping f-rings, which are
not considered in this paper.

In step 2, each node that has a faulty link or received a “fault
information” message from a neighbor determines its position on
the f-ring using the rules given in Table 1. The first four cases ap-

ply when there are exactly two faulty links are incident on x, the
node trying to determine its f-ring neighbors. The next two apply
when there is exactly one faulty link incident on x. The remaining
cases apply when x has no faulty links.

TABLE 1
DETERMINING THE NEIGHBORS OF A NODE ON AN f-RING

Faulty Links Neighbors

East & South links of x Nx , Wx

East & North links of x Sx , Wx

West & South links of x Nx , Ex

West & North links of x Sx , Ex

East or West link of x (no faulty column links) Nx , Sx

North or South link of x (no faulty row links) Ex , Wx

North link of Ex or East link of Nx Nx , Ex

South link of Ex or East link of Sx Sx , Ex

North link of Wx or West link of Nx Nx , Wx

South link of Wx or West link of Sx Sx , Wx

Let x be the node whose neighbors are to be determined. N E Sx x x, , , and Wx  denote

the nodes adjacent to x in the North, East, South, and West directions, respectively.

Even with nonoverlapping f-rings, a node may appear in up to
two f-rings in a 2D mesh with solid faults. For example, nodes (2, 1)
and (1, 2) appear in the f-rings of F1 and F3  in Fig. 1. There can be
at most two faulty links incident on a fault-free node even with
multiple f-regions. If multiple faults occur simultaneously, a node
may send or receive messages about multiple f-regions. Using the
faulty link direction and dimension provided in each fault status
message, it is feasible to separate the messages on faults for differ-
ent f-regions. For multidimensional meshes, each solid fault cre-
ates multiple fault rings, one for each 2D cross section of the fault.
In summary, f-rings are formed for any connected fault set using
only near-neighbor communication among fault-free processors.

The definition of solid faults can be used to check if a fault can
be characterized as a solid fault. In a 2D mesh, the boundary of a
solid fault crosses each row and each column exactly zero times or
twice. A special type of shape-finding message can be circulated
around an f-ring and the number of times the message crosses
each row and column can be counted. If any row or column is
visited more than twice, then the corresponding fault is not a solid
fault; otherwise it is a solid fault. If a fault is not a solid fault, then
selected nodes and links can be disabled using this rule. Some
techniques to do this are discussed in [7].

Fig. 1. Examples of solid faults in a mesh. Faulty nodes are shown as
filled circles, and faulty links are not shown. Thick lines indicate the
corresponding fault rings.
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If a fault is a solid fault, the routing techniques described in the
remainder of the paper can be used to route messages without any
further network reconfiguration.

3 FAULT-TOLERANT NONADAPTIVE ROUTING

We first show how to enhance the well-known e-cube routing al-
gorithm to handle solid faults in 2D meshes. The e-cube routes a
message in a row until the message reaches a node that is in the
same column as its destination, and then routes it in the column.
For fault-free meshes, the e-cube provides deadlock-free shortest-
path routing without requiring multiple virtual channels to be
simulated. At each point during the routing of a message, the e-cube
specifies the next hop, called e-cube hop, to be taken by the mes-
sage. The message is said to be blocked by a fault, if its e-cube hop
is on a faulty link. The proposed modification uses four virtual
channels, c c c0 1 2, , , and c3 , on each physical channel and tolerates
multiple solid faults with nonoverlapping f-rings.

To route messages around f-rings, messages are classified
into one of the following types using Procedure Set-Message-
Type (Fig. 2): EW (East-to-West), WE (West-to-East), NS (North-
to-South), or SN (South-to-North). A message is labeled as either
an EW or WE message when it is generated, depending on its di-
rection of travel along the row. Once a message completes its row
hops, it becomes a NS or a SN message depending on its direction
of travel along the column. Thus, EW and WE messages can be-
come NS or SN messages; however, NS and SN messages cannot
change their types. These rules are summarized in procedure Set-
Message-Type. EW and WE messages are collectively known as
row messages and  NS and SN as column messages.

Procedure Set-Message-Type (M)
/* Comment: The current host of M is a a1 0,c h  and desti-

nation is b b1 0,c h . When a message is generated, it is la-
beled as EW if a b0 0≥  and as WE otherwise. */

If M is an EW or WE message and a b0 0= ,
           change its type to NS if a b1 1<  or SN if a b1 1> .

Procedure Set-Message-Status (M)
/* Comment: Determine if the message M is normal or
misrouted. The current host of M is a a1 0,c h  and destina-

tion is b b1 0,c h . */
1)  If M is a row—EW or WE—message and its e-cube

hop is not blocked, then set the status of M to normal
and return.

2)  If M is a column—NS or SN—message and a b0 0= ,
and its next e-cube hop is not on a faulty link, then set
the status of M to normal and return.

3)  Set the status of M to misrouted, determine using
Table 2 the f-ring orientation to be used by M for its
misrouting.

Fig. 2. Procedures to set the status and type of a message.

In addition to its type, each message also provides its current
status information: normal or misrouted. A row message is
termed normal, if its e-cube hop is not blocked by a fault. A col-
umn message whose head flit is in the same column as its desti-
nation is normal if its e-cube hop is not blocked by a fault. All
other messages are termed misrouted. Procedure Set-Message-
Status in Fig. 2 gives these rules.

3.1 Modifications to the Routing Logic
Normal messages are routed using the base e-cube algorithm. A

normal message blocked by a fault is treated as a misrouted message
and routed on the corresponding f-ring using the logic given in Fig. 5
until it becomes normal again. Sometimes a message may travel on the
f-ring before being blocked by the fault contained by the f-ring. In
such cases, the message is forced to use the f-ring orientation compati-
ble with its travel on the f-ring up to that point. For example, a WE
message may be blocked at node y in Fig. 3 after traversing a hop on
the f-ring. In that case, the message should traverse the f-ring in the
clockwise orientation (Rule 4 in Table 2) to get around the fault.

In other cases, a message is blocked the first time it arrives at a
node on an f-ring (for example, node x for a WE message in Fig. 3).
In such cases, a message may use clockwise or counter clockwise
orientation depending on other conditions. The orientations and
conditions are given in Table 2.

If a message takes a normal hop on a link that is not on an f-ring,
then the virtual channel to be used is given by the base e-cube
algorithm. Under the e-cube, a message may use any virtual chan-
nel in its normal hop without deadlocks. (In fact, with e-cube
routing, there can be only one type of message, using each physi-
cal channel that is neither faulty nor part of an f-ring.) Sometimes a
message may travel on an f-ring using the base e-cube algorithm
because its normal hop is on the f-ring. In addition, a message may
travel on an f-ring because it is blocked by the corresponding fault.
In both cases, messages traveling on f-rings can use only the following
virtual channels: EW messages use c0  for all hops on f-rings, WE
messages use c1 , NS messages use c2 , and SN messages use c3 .

Consider a message M from (3, 0) to (4, 5) in the mesh with two
solid faults in Fig. 4. M begins as a WE message and is routed to (3, 1),
where its e-cube hop is blocked by the faulty node (3, 2). It is mis-
routed in the counter-clockwise orientation to (4, 1) to be compatible
with its previous hop, which is on the f-ring. After routed by the
base e-cube from (4, 1) to (4, 4), it is blocked by the faulty link
(4, 4) (4, 5),´  and is misrouted in the (randomly chosen) clockwise
orientation. M is routed as an NS message for its final hop. The use
of virtual channels per the enhanced routing logic is as indicated.
The hop from (4, 3) to (4, 4) is by the e-cube on a link not on any
f-ring; so, any of the four classes of virtual channels may be used for
this hop as per the e-cube.

If a message is destined to a faulty node, then it can be detected
and removed from the network using our misrouting logic. A mes-
sage, say, M, destined to a faulty node will eventually become a
column message, say, an NS message, with our misrouting logic.
Upon further routing, M will reach a point where it has just com-
pleted misrouting by reaching a south row of the f-ring, but its des-
tination is directly above its current host node and its e-cube hop is
on the faulty North link of its current host node. Upon detecting this
anomaly, the message M can be removed from the network.

Fig. 3. Routing of misrouted messages around fault rings.
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3.2 Proof of Deadlock and Livelock Freedom
LEMMA. The algorithm Fault-Tolerant-Route routes messages in 2D

meshes with solid faults and nonoverlapping f-rings free of deadlocks
and livelocks.

PROOF. Each type of message (EW, WE, SN, and NS) uses a dis-
tinct class of virtual channels. This can be easily seen for the
virtual channels simulated on physical channels forming
f-rings. For each physical channel not on any f-ring, there
can be only one type of message using that physical channel
because of e-cube routing. Therefore, in all cases, each mes-
sage type has an exclusive set of virtual channels for its hops.
Furthermore, row messages (EW and WE) can become col-
umn  messages, but not vice-versa. Thus, deadlocks among
two different types of messages cannot occur, since NS and
SN messages do not depend on any other message type.
Hence, to prove deadlock-freedom, it is sufficient to show that
there are no deadlocks among messages of a specific type.

Deadlocks among NS Messages. Deadlocks can be among
NS messages waiting for virtual channels at nodes on a single
f-ring only or at nodes on multiple f-rings. (The NS messages
waiting for virtual channels at other nodes will be routed by
the deadlock-free e-cube and cannot be part of deadlocks.)
Furthermore, an NS message may use counter clockwise or
clockwise orientation to travel on an f-ring. The set of physical
channels used for each orientation are disjoint. Misrouted NS
messages with clockwise orientation never use the channels

on the west-most column of an f-ring. (For example, the link
(2, 0) (3, 0) ´ constitutes the west-most column of the f-ring
for F1  in Fig. 4.) Similarly, NS messages misrouted counter
clockwise on an f-ring never use the east-most column of the
f-ring (for example, the two links between nodes (2, 3) and
(4, 3) for the f-ring of F1  in Fig. 4). Therefore, the paths used
by NS messages on an f-ring are acyclic. So, a single f-ring
does not cause deadlocks among NS messages.

Let us define a relation R on the set of f-rings as follows.
Given two f-rings f1 and f2 , f R f1 2   if there exists a DIM1

(column) cross section of the network containing nodes on
both f-rings and the top-most node f1  is above that of f2 .

If f R f1 2   and f R f2 1   , then

1) both f-rings have the same top node in a DIM1 cross sec-
tion or

2) there exists two DIM1 cross sections such that in one cross
section the top node of f1  is above that of f2  and in the
other f2  has its top node above that of f1 .

Case (1) is feasible if f1  overlaps with f2 , which is prohibited,
or f f1 2= . Case (2) is feasible if the f-region contained by f2

wraps around (in one or more columns) that of f1 . This is im-
possible, since faults are solid. So R is antisymmetric.

Suppose f R f1 2   and f R f2 3   , for three f-rings f1 , f2 ,  and f3 .
If both f1  and f3  have a common column, then f R f1 3   , since
faults are solid. If f1  and  f3  do not have a common column,

Fig. 4. Example of nonadaptive fault tolerant routing.

Procedure Fault-Tolerant-Route (Message M)/* Specifies
the next hop of M */
1)  Set-Message-Type (M).
2)  Set-Message-Status (M).
3)  If M is normal, select the hop specified by the base al-

gorithm.
4)  If M is misrouted, select the hop along its f-ring ori-

entation.
5)  If the selected hop is on an f-ring link, route the mes-

sage using virtual channel c0  if M’s type is EW, c1  if
WE, c2  if NS, or c3  if SN.

6)  If the selected hop is not on an f-ring link, route the
message using the virutal channel specified by the
base algorithm.

Fig. 5. Fault-tolerant routing algorithm.

TABLE 2
DIRECTIONS TO BE USED FOR MISROUTING MESSAGES ON f-RINGS

Rule
No.

Message
Type

Traversed
on the f-ring

Position of
Destination

F-Ring
Orientation

1a WE No In a row above its
row of travel

Clockwise

1b WE No In a row below its
row of travel

Counter Clockwise

1c WE No In the same row Either orientation

2a EW No In a row above its
row of travel

Counter Clockwise

2b EW No In a row below its
row of travel

Clockwise

2c EW No In the same row Either orientation

3 NS or SN No (don't care) Either orientation

4 Any message Yes Don't care Choose the orientation that is
being used by the message
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however, then f R f1 3/  and f R f3 1/ . This shows that R is a subset
of some partial-order.

NS messages always use f-rings as per the relation given
by R. So, f-rings are used acyclically by NS messages.

Livelock Freedom and Correct Delivery. A message is
misrouted only by a finite number of hops on each f-ring,
and it never visits an f-ring more than twice (at most once
as a row message and once as a column message). So, the
extent of misrouting is limited. This, together with the fact
that each normal hop takes a message closer to the desti-
nation, proves that messages are correctly delivered and
livelocks do not occur. �

3.3 Extension to Multidimensional Meshes
We now consider solid faults with nonoverlapping f-rings in a
(k, n)-mesh and show how to enhance the e-cube to provide com-
munication. The e-cube orders the dimensions of the network and
routes a message in dimension 0, until the current host node and
destination match in dimension 0 component of their n-tuples, and
then in dimension 1, and so on, until the message reaches its desti-
nation. From the definition of solid faults in Section 2.1, it is easy
to verify that each 2D cross section (consists of all nodes that
match in all but two components of their n-tuples and the links
among them) of a solid fault in a (k, n)-mesh is a valid solid fault in
a 2D mesh. Therefore, fault-tolerant routing in a (k, n)-mesh is a
valid solid fault in a 2D mesh. Therefore, fault-tolerant routing in a
(k, n)-mesh is achieved by using our results for 2D meshes and the
planar-adaptive routing technique [8].

The routing algorithm to handle nonoverlapping f-rings still
needs only four virtual channels per physical channel. Let Ai ,

where 0 £ <i n , denote the set of all 2D planes (2D cross sections
of the (k, n)-mesh) formed using dimensions i and i + 1 (mod n).

A normal message that needs to travel in DIMi , 0 £ <i n , as per
the e-cube is a DIMi  message. A DIMi  message that completed its
hops in dimension DIMi  becomes a DIM j  message, where j > i is the

next dimension of travel as per the e-cube algorithm. A message
blocked by a fault uses the f-ring in an appropriate 2D plane that
contains the current host node for misrouting. So a DIMi  message,
0 2£ < -i n , uses a 2D plane of type Ai  for routing and virtual
channels of class c i2 2( mod )  or c i2 2 1( mod )+  depending on its direction

of travel in DIMi . A DIM 1n-  message will use an An-1  plane; it will
use virtual channels of classes c2  or c3  if n is even, or c0  or c1  in
DIM 1n-  and c2  or c3  in DIM0 , otherwise.

Table 3 indicates the types of planes and virtual channels used
in routing various types of messages by the routing algorithm. For
n = 2, this usage is the same as described before in this section.
There is a partial-order on the planes used and the sets of virtual
channels used for these planes are pairwise disjoint [7]. So a rigorous
proof of deadlock free routing is straight forward and is omitted.

4 FAULT-TOLERANT ADAPTIVE ROUTING

The adaptive fault-tolerant routing algorithm described in this
section uses the technique developed in the previous section. The
fault intolerant version of the algorithm is based on the general
theory developed by Duato [12]. The particular one we use here
can provide adaptive routing with as few as two virtual channels:
one for deadlock free e-cube routing and another for adaptive
routing. Since we need four virtual channels for deadlock free
routing under faults, we describe the base adaptive algorithm, A ,
for fault-free networks using four channels (Fig. 6). At any point of
routing, a message has two types of hops: the e-cube hop and
adaptive hops. The e-cube hop is the same as before: the hop speci-
fied by the e-cube algorithm. The adaptive hops are all other hops
that take the message closer to its destination. Algorithm A  first
tries to route a message M using an adaptive channel—c c c1 2 3, , or
along any of the dimensions that take M closer to the destination
(Step 2). If this fails, A  tries to route M using the non-adaptive
channel c0 on its e-cube hop (Step 3). If this step also fails, the same
sequence of events is tried after a delay of one cycle.

To enhance this algorithm for fault-tolerant routing, we classify
messages into normal and misrouted categories, as before. While
normal messages may have adaptivity, misrouted messages do
not. The top level description of our fault-tolerant adaptive rout-
ing is the same as that for the nonadaptive case in Fig. 5, with the
algorithm in Fig. 6 as the base routing algorithm. An important
amendment to the routing logic is for normal messages:

1) if a message's e-cube hop is on an f-ring, then adaptive hops
cannot be used; or

2) if message's e-cube hop is not on an f-ring, but one or more
of its adaptive hops are on f-rings, then those adaptive hops
cannot be used.

A message with its e-cube hop on a link that is faulty or part of an
f-ring is routed exactly the same as in the e-cube case, because
e-cube routing is the basis for deadlock freedom in the adaptive
routing. The adaptivity is used only when the message does not
have to travel on f-rings. Further, whenever a message travels on
an f-ring, it reserves virtual channels as specified in Table 3; when
a message is not traveling on an f-ring, it uses channel c0  as the
nonadaptive channel, and channels c c c1 2 3, ,  as adaptive channels
as in the original adaptive routing.

Once again the virtual channel allocation is crucial for deadlock
avoidance. In the fault-tolerant adaptive routing, channels c0 to c3

are used for messages around f-rings. Virtual channels on links that

TABLE 3
USE OF PLANES AND VIRTUAL CHANNELS BY VARIOUS MESSAGES IN

AN nD MESH BY THE FAULT-TOLERANT ROUTING ALGORITHM

Message type Plane
type

Virtual channel
classes

DIM0 A0,1 c c0 1 and 

DIM1 A1,2 c c2 3 and 

DIM2 A2,3 c c0 1 and 

M

DIM 1,  evenn n- An -1,0 c c2 3 and 

DIM 1,  oddn n- An -1,0
c c

c c
n0 1 1

2 3 0

 and  in ,

and in 

DIM

DIM

-

First of the two virtual channels specified for each message type is used for
hops in the ‘+’ direction of the corresponding dimension and the second vir-
tual channel class for hops in the '-’ direction.

Procedure Adaptive-Algorithm (M, x, d)
/* Current host is x and destination d, dπ x. */
1)  Determine all the neighbors of x that are along a

shortest path from x to d. Let S be the set of such
neighbors.

2)  If the e-cube hop is not on an f-ring and a virtual
channel in the set c c c1 2 3, ,m r  is available from x to a
neighbor y SŒ , route M from x to y using that virtual
channel; return.

3)  If virtual channel c0  is available from x to a neighbor z
along the e-cube hop of M, route M from x to z using c0 ;
return.

4)  Return and try this procedure one cycle later.

Fig. 6. Pseudocode of the adaptive algorithm enhanced for fault-
tolerance.
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are not on f-rings are used for normal routing by Adaptive-
Algorithm. The four virtual channels on physical channels not on
f-rings are partitioned into nonadaptive and adaptive subsets. The
channels in the nonadaptive category are c0  channels, which are
used to ensure deadlock free routing. Furthermore, only one type of
message may use the nonadaptive channel on a physical channel not
an f-ring. Thus, no virtual channel can be used for normal fault-free
routing by one message and for misrouting routing by another mes-
sage. Therefore, each message type has an exclusive set of virtual
channels for deadlock free routing. Given this argument, the proof
of deadlock-freedom is similar to that of the nonadaptive case.
Fig. 7 gives an example of our method. The message uses specific
channels for its hops on the f-ring links ( , ) ( , ),1 1 1 2´
( , ) ( , ),  3 4 3 5´ and (3, 5) (4, 5)´ . For its other hops, the message

uses virtual channels as per the original adaptive algorithm.

5 CONCLUDING REMARKS

We have presented a technique to enhance the nonadaptive and
adaptive algorithms for fault-tolerant wormhole routing in mesh
networks. This technique works with local knowledge of faults,
handles multiple faults, and guarantees livelock- and deadlock-
free routing of all messages. We have used the solid fault model,
which generalizes the convex fault model used in previous stud-
ies. In the convex fault model, any 2D cross section of the fault has
the shape of a rectangle. In the solid fault model, additional fault
shapes such as +, T, L, and ‡ can be handled. Thus, the definition
of solid faults includes the convex fault model as a special case.
With the current technology, a block of processors can be laid out
on a single board.  If a board fails or if adjacent boards fail, such
failures can be modeled using the convex fault model. Our algo-
rithms can handle any number and combination of convex faults
as long as they faulty components do not lie on the boundary of
the network. Our algorithms can be extended (using more virtual
channels) to handle overlapping f-rings and f-chains in a straight
forward manner. Our techniques can thus tolerate a significant
number of fault patterns in mesh networks.

The concept of fault-rings is used to route around the fault re-
gions. The main costs of the proposed fault-tolerant routing tech-
nique are

1) a special bit in message header to indicate the misrouted
status,

2) additional routing logic, which is used by the nodes on
f-rings, and

3) additional virtual channels to avoid deadlocks around f-
rings.

Also, some processing overhead is incurred in forming f-rings.

Our technique extends to related networks such as tori. The
number of virtual channels required for tori is doubled, however,
because of the wraparound connections. Designing routing algo-
rithms that use more than local information and require fewer
virtual channels will be an interesting direction for further work.
Currently, we are evaluating the performance of the proposed
technique and extending the results to more complex fault shapes
and for more general network topologies.
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