In Procs. of 20th Annual Int’'l Symp. on Computer Architecture, 1993

A Comparison of Adaptive Wormhole Routing Algorithms

Rajendra V. Boppana
Div. of Math. and Computer Science
The Univ. of Texas at San Antonio
San Antonio, TX 78249-0664

Abstract. Improvement of message latency and net-
work utilization in torus interconnection networks by
increasing adaptivity in wormhole routing algorithms
s studied. A recently proposed partially adaptive algo-
rithm and four new fully-adaptive routing algorithms
are compared with the well-known e-cube algorithm
for uniform, hotspot, and local traffic patterns. Qur
sitmulations indicate that the partially adaptive north-
last algorithm, which causes unbalanced traffic in the
network, performs worse than the nonadaptive e-cube
routing algorithm for all three traffic patterns. An-
other result of our study is that the performance does
not necessarily improve with full-adaptivity. In par-
ticular, a commonly discussed fully-adaptive routing
algorithm, which uses 2" wvirtual channels per phys-
tcal channel of a k-ary n-cube, performs worse than
e-cube for uniform and hotspot traffic patterns. The
other three fully-adaptive algorithms, which give pri-
ority to messages based on distances traveled, perform
much better than the e-cube and partially-adaptive al-
gorithms for all three traffic patterns. One of the con-
clusions of this study is that adaptivity, full or partial,
1s not necessarily a benefit in wormhole routing.

Keywords: adaptive routing, deadlocks, multicom-
puter networks, k-ary n-cubes, message routing, store-
and-forward routing, wormhole routing.

1 Introduction

Point-to-point k-ary n-cube and related networks are
being used in many recent experimental and commer-
cial multicomputers and multiprocessors [2, 11, 26, 9,
3]. A k-ary n-cube network has an n-dimensional grid
structure with k nodes (processors) in each dimension
such that every node is connected to two other nodes
in each dimension by direct communication links.
Routing algorithms, which specify how messages
can be sent among processors, are crucial for the effi-
cient operation of a parallel computer. For maximum
system performance, a routing algorithm should have
high throughput and exhibit the following important
features [17]: low-latency message delivery, avoidance
of deadlocks, livelocks, and starvation, and ability to
work well under various traffic patterns. Since mes-
sage latencies increase with increase in the number of
hops, we consider only minimal routing algorithms as
per which a message always moves closer to its desti-

Suresh Chalasani
ECE Department
Univ. of Wisconsin-Madison

Madison, WI 53706-1691

nation with each hop taken; another advantage of min-
imal routing is that livelocks are avoided. The issue
of starvation can be avoided by allocating resources
such as channels and buffers in FIFO order. Ensuring
deadlock-freedom is more difficult and depends heav-
ily on the design of the routing algorithm.

Store-and-forward (SAF) [5] and wormhole (WH) [14]
are two popular switching techniques for interconnec-
tion networks. With SAF technique, the message la-
tency is the product of the number of hops taken and
the sum of the average queuing delay and transmission
time of the message per hop.

In the wH technique, a message is divided into a
sequence of fixed-size units of data, called flits. If
a communication channel transmits the first flit of a
message, it must transmit all the remaining flits of the
same message before transmitting flits of another mes-
sage. At any given time, the flits corresponding to a
message occupy contiguous channels in the network.
In this method, the message latency is proportional
to the sum of the number of cycles spent in waiting
for suitable channels to route message flits, number of
hops, and message length. To avoid deadlocks, mul-
tiple virtual channels are simulated on each physical
channel and a pre-defined order is enforced on the al-
location of virtual channels to messages.

Minimal fully-adaptive algorithms do not impose
any restrictions on the choice of shortest paths to
be used in routing messages; in contrast, partially-
adaptive minimal algorithms allow only a subset of
available minimal paths in routing messages. An
adaptive routing algorithm can be either fully- or
partially-adaptive. The well-known e-cube routing al-
gorithm is an example of non-adaptive routing algo-
rithms, since it has no flexibility in routing messages.

Adaptive routing algorithms have a few disadvan-
tages, however. The complexity of the routing algo-
rithm and, hence, the hardware cost increase with
the increase in adaptivity. Furthermore, partially-
adaptive routing algorithms that favor some paths
more than others can cause highly uneven utilization
and early saturation of the network.

Recently, several fully- and partially-adaptive algo-
rithms for deadlock-free wormhole routing [4, 10, 15,
19, 23] have been proposed. The fully-adaptive al-
gorithm for k-ary n-cubes by Linder and Harden [23]

uses (n+1)2"~1 virtual channels per physical channel.
The fully-adaptive wormhole algorithm by Berman et
al. [4] for k-ary n-cubes uses as many as 10(n—1)+6
virtual channels per physical channel. Felperin et al.
[16] designed a fully-adaptive wH routing algorithm
for tori (k-ary 2-cubes) that uses eight virtual channels
per physical channel. Dally [12] proposes augmenting
multicomputer networks with express channels to fa-
cilitate adaptive routing and reduce the network di-
ameter and message latencies.

In this paper, we present results on the performance
of six algorithms for uniform, hotspot, and local traffic
patterns on k-ary 2-cubes. We compare a recently pro-
posed partially-adaptive and four fully-adaptive wH
routing algorithms with the commonly used e-cube
algorithm. The north-last algorithm used in this pa-
per is a member of many partially-adaptive algorithms
proposed by Glass and Ni [19] based on the elegant
turn model. One of the four fully-adaptive algorithms
used in this study is based on the total number of
possible directions that can be taken by a message.
It is an improvement (reduces the number of virtual
channels used) over the results of Linder and Harden
[23] and Felperin et al. [16] and a generalization of the
result by Dally [11] for mesh networks.

The other three fully-adaptive algorithms are de-
rived from the store-and-forward algorithms [20] based
on the the number of hops taken by messages. While
routing messages, these algorithms use some form of
priority information, in addition to full-adaptivity.
One of these algorithms also employs load balancing
of virtual channels. The design of these algorithms
is based on a recent result on designing deadlock-free
WH routing algorithms from SAF routing algorithms
[8]. To make the paper self-contained, this method
is briefly explained in the next section. For certain
cases [8], these algorithms require fewer virtual chan-
nels than the previously proposed fully-adaptive algo-
rithms.

The rest of this paper is organized as follows. Sec-
tion 2 describes the routing algorithms used in our per-
formance study. Section 3 compares the performance
of six different WH routing algorithms. Section 4 con-
cludes this paper.

2 Routing Algorithms

In this section, we discuss six different deadlock-free
wormbhole routing algorithms, used in this study. Out
of these six algorithms four are fully-adaptive, one is
partially-adaptive, and one is non-adaptive. Three of
the four fully-adaptive algorithms are derived from
the corresponding SAF routing algorithms, based on
our recent results [8] on developing deadlock-free wH
routing algorithms from SAF algorithms.

We first describe these three fully-adaptive routing
algorithms, which will be collectively referred to as
hop schemes.

2.1 Hop schemes

Notation. In the rest of this paper, we use k"
to denote a k-ary n-cube. Dimensions of k" are
numbered from 0 to (n — 1) and nodes are num-
bered in each dimension from 0 to (k — 1). FEach
node is uniquely indexed by an n-tuple using the n
numbers it obtained in the n dimensions. We as-
sume the adjacent nodes are connected by two uni-
directional communication links. Thus, each node

z = (#p_1,...,20) has 2 outgoing links from it
to nodes (zp—_1,..., 41,2 + 1,2-1,...,20) and
(n-1,.. . &iy1,2; — 1, @;_1,...,20) in dimension i

the addition and subtraction operations performed
here are with respect to modulo k. A node z =
(Zn-1,...,20) in k™ is termed even (respectively, odd)
if Zzzg_l z; is even (respectively, odd).

Throughout this paper, a communication channel
or a communication link should be taken to mean
a physical channel. Every physical channel, virtual
channel, and message originating from a node can be
given unique number based on the address of the node.
Construction of wH algorithms. Figure 1 illus-
trates construction of a WH routing algorithm from an
SAF algorithm. Figure 1(a) shows the node model used
for SAF routing. In SAF routing, buffers in a node are
the critical resources. Deadlocks in SAF routing are
avoided by partitioning the buffers into several classes
— by, b1, ..., by, — and placing constraints on the set
of buffer classes a message can occupy in each node.
This technique of avoiding SAF deadlocks is known as
the buffer reservation technique [20].

To derive a WH algorithm from the saF algorithm,
we proceed as follows. First, on each physical chan-
nel in the network used for WH routing, we provide
virtual channels c¢g,¢1, ..., ¢y and the corresponding
flit-buffers (see Figure 1(b)). Next, if a message can
occupy a buffer of class b; at an intermediate node and
go through a communication channel in the SAF net-
work (see Figure 1(a)), then in the wWH network the
message can only reserve virtual channel ¢; (see Fig-
ure 1(b)). In other words, if the sAF algorithm speci-
fies that a message should occupy buffer of class b; at a
node and can take one channel from the set of physical
channels S to complete the next hop, the correspond-
ing WH algorithm specifies that the message at that
node should take the next hop using a virtual channel
of class ¢; on any of the physical channels in the set
S.

The above construction allows one to design a WH
routing algorithm from any given SAF algorithm with

Physical Channel

WSO s~ ~+—— T

(b)

Figure 1: Derivation of wWH routing from SAF routing.

the same degree of adaptivity. However, a wH algo-
rithm derived using the above procedure need not be
deadlock-free. The following lemma presents a gen-
eral condition under which the wH routing algorithm
designed from an SAF algorithm is deadlock-free.

Lemma 1 If the SAF routing is deadlock free and the
buffers occupied by ecvery message in successive hops
have monotonically increasing ranks, then the WH

routing algorithm derived from the SAF algorithm is
also deadlock free.

See [8] for a proof.

A few well-known fully-adaptive sAF schemes based
on the number of hops taken [20] satisfy the above
lemma, and hence can be used for WH routing.
Positive-hop saF and wWH routing algorithms.
In the well-known positive-hop SAF algorithm, the
number of buffer classes in each node equals the di-
ameter of the network plus one [20]. A message is
placed in a buffer of class 0 in the source node. Dur-
ing routing, a message is placed in buffer of class ¢
in an intermediate node if it completed i hops thus
far. Since the maximum number of hops a message
can take equals the diameter of the network, the max-
imum number of buffer classes required in each node
for SAF routing equals the diameter of the network
plus one; for k", this number equals n|k/2] + 1.

The corresponding positive-hop (or, PHop for
brevity) WH routing algorithm can be designed by pro-
viding n|k/2]+1 virtual channels — co, ..., ¢p|k/2) —
on each physical link. For example, in 162, 17 virtual
channels are provided on each physical link. A mes-
sage reserves virtual channel ¢ at an intermediate node

to complete hop i + 1. As an example, suppose that
a message M with source (4,4) and destination (2, 2)
in 62 takes the following path:

4,4) = (3,4) = (3,3) = (2,3) = (2,2)

This message M reserves virtual channel ¢y on the
link from (4,4) to (3,4), ¢1 from (3,4) to (3,3), ¢
from (3, 3) to (2,3), and ¢3 from (2, 3) to (2, 2).

The pHop WH scheme is deadlock-free due to the

following argument (see [8] for more details). In the
SAF scheme, if we assign any buffer of class ¢ a rank of
1, it is easy to see that the buffer classes occupied by a
message have monotonically increasing ranks. Apply-
ing Lemma 1, we conclude that the PHop WH routing
algorithm is deadlock-free.
Negative-hop (NHop) sAF and WH routing algo-
rithms. In the negative-hop sAF algorithm, the net-
work is partitioned into several subsets, such that no
subset contains adjacent nodes (this is the graph col-
oring problem). Let us assume that these subsets are
labeled 1,2, ..., M and that each node in a subset with
label 7 is also labeled with 7. A hop is a negative hop
if it is from a node with a higher label to a node with
a lower label; otherwise, it is a positive hop. A mes-
sage occupies a buffer of class b; at an intermediate
node if and only if the message has taken exactly ¢
negative hops to reach that intermediate node. In the
negative-hop SAF scheme, a message that is currently
in a buffer of class b; can only wait for a buffer of ei-
ther class b; (if it is waiting for a positive hop) or class
b1 (if it is waiting for a negative hop). Gopal [20]
proves that this sAF routing is deadlock free.

For even k, the structure of k" is a bipartite
graph, and its nodes can be partitioned into two sub-
sets (therefore, it can be colored using only two col-
ors). Because adjacent nodes are in distinct parti-
tions, the maximum number of negative hops a mes-
sage takes is at most half the diameter of k", which
equals [n|k/2]|/2]. Hence, negative-hop schemes with
[n|k/2]|/2]+1 buffer classes per node can be designed
for k™ in a straightforward manner when & is even. For
162, for example, 9 buffer classes per node are suffi-
cient with the negative-hop scheme. When £ is odd,
negative hop schemes that require about the same
number of buffer classes per node can be designed [6];
however, the design of such negative-hop schemes for
odd k is quite involved and will not be considered any
further.

In order to derive the negative-hop wWH routing algo-
rithm from the corresponding SAF algorithm, we pro-
vide [n|k/2]/2] + 1 virtual channels on each physical
link of £”. When a message is generated, the total
number of negative hops taken is set to zero, current

€2:2) __6__(.))—_)

B3) lt"(f—_’_ =

o
==

IO O e gj
T
U

G H G & R R SR

Figure 2: An example to illustrate the negative-hop
scheme in 62.

host is set to the source node. The following pseu-
docode describes how a message is routed as per the
negative-hop scheme.
while (current-host # destination) do {
1. select the nezt-host.
2. reserve a virtual channel of class given by
number-of-negative-hops-taken
from current-host to next-host.
3. if current-host is odd, increment
number-of-negative-hops-taken by one.
4. current-host < next-host.

A message, when it moves from an even node to an
odd node, reserves a virtual channel of the same class
it reserved in the previous hop; otherwise, it reserves a
virtual channel one class higher than what it reserved
in the previous hop. Using Lemma 1, it can be shown
that the negative-hop WH algorithm is also deadlock-
free [8].

An example of the negative hop scheme is shown
in Figure 2. In this figure, a message that originates
at source node (4,4) is to be routed to destination
(2,2) in 62. It can be easily shown that, as per the
negative-hop scheme, the message can take any of the
shortest paths from (4,4) to (2,2) (because of the
fully-adaptive nature of the negative-hop algorithm).
Suppose that the path taken by the message is

4,4) — (3,49 — (3,3) = (2,3) = (2,2).

The hop from node (4,4) to node (3,4) is a positive
hop and the message reserves virtual channel ¢y in or-

der to complete this hop (recall that in all 4 virtual
channels ¢g, ¢1, ¢g, 3 need to be multiplexed on each
physical channel in order to implement the negative-
hop WH scheme in 6%). At node (3,4), current-host is
(3,4) and the number-of-negative-hops-taken is zero,
whereas the value of next-host becomes (3,3). The
message reserves virtual channel ¢y again while taking
the hop from node (3,4) to (3,3) since the number-
of-negative-hops-taken is still zero. However, the hop
from (3,4) to (3, 3) is a negative hop; hence, the mes-
sage reserves virtual channel ¢; from node (3,3) to
(2,3). Similarly, the message reserves virtual channel
¢1 in its final hop from node (2, 3) to node (2, 2).
Negative-hop scheme with bonus cards (Nbc).
The negative hop (also positive hop) scheme described
above does not utilize virtual channels evenly: virtual
channels with lower numbers are utilized more than
virtual channels with higher numbers. For example,
all messages use virtual channels numbered ¢g, but
only messages between diametrically opposite nodes
(very few) use virtual channels numbered Clnlk/2]/2]-
Given below is a variation of the negative hop scheme,
which attempts to achieve a more uniform utilization
of virtual channels.

In the negative-hop with bonus-cards (Nbc) scheme,
each message is given a few bonus cards based on
the number of negative hops it can take (which
is approximately half the total number of hops it
can take) before reaching destination. The num-
ber of bonus cards a message M receives at its
source node in k" is given by the following formula.

Bonus cards =
Maximum possible negative hops in k" —
Negative hops to be taken by M.
A message with no bonus-cards is routed exactly the
same as in the case of NHop algorithm. In routing
a message with b bonus cards, b > 1, any of virtual
channels numbered 0,1, ..., b can be used for the first
hop of the message. Thus a message with bonus cards
has a wider choice of virtual channels and is likely
to choose least congested one for the first hop. The
routing of message after the first hop is the same as in
the case of NHop scheme. That is, if a message arrives
at an intermediate host node via a virtual channel of
class ¢;, then it uses a virtual channel of class ¢;41
(if it took a negative hop to reach this node) or ¢
(otherwise) to leave the node.
A more flexible version of this Nbc scheme is de-

scribed in [T7].
2.2 Fully-adaptive routing based on
the enumeration of directions

Another fully-adaptive deadlock-free WH routing
scheme for a k-ary n-cube (respectively, mesh) that

uses 2" (respectively, 2" ~1) virtual channels per phys-
ical channel can be derived based on the recent work
of various researchers [11, 16, 23]. We refer to this
algorithm as two-power-n (or, 2Pn) algorithm.

Let s = s,_1...850 and d = d,,_1...dyg be the
source and destinations of a message being routed. Us-
ing s and d an n-bit tag t = 1,1 ...%y is created as
follows.

1 if s; < d;,
t; = 0 if s; > di, (1)
Oorl ifs; =t¢;.

Description of the algorithm. For fully-adaptive
deadlock-free routing, we use 2" virtual channels for
each physical channel of the network. Each of these
virtual channels is given an n-bit number. For each
message to be routed, its tag is computed using (1).

In each hop, a message with tag ¢ chooses the vir-
tual channel with number ¢ on any one of the links of
the uncorrected dimensions'. O

It can be shown [8] that algorithm two-power-n
routes messages free of deadlocks in k-ary n-cubes.

2.3 The North-Last Algorithm

Glass and Ni [19] proposed the north-last algorithm
for multi-dimensional meshes and tori. The NLast al-
gorithm works as follows. If destination index is less
than source index in dimension 1, then a message must
correct dimension 0 first before taking any hops on di-
mension 1 links; otherwise it is routed fully-adaptively.
It prohibits adaptive routing of some messages; for ex-
ample, in routing a message from node (3,3) to (1,1) in
a 10% with upper left node being (0,0) and lower right
node being (9,9), its path is always through nodes
(3,2), (3,1), and (2,1) regardless of the traffic or other
conditions in the network. If the four edges of a two-
dimensional network are labeled West, East, North,
and South, then messages that are going to North do
not have adaptivity. Hence the name.

3 Simulation results

To compare the performance of these routing algo-
rithms, we have developed an event-driven simulator.
This simulator can be used for k-ary n-cubes (multi-
dimensional tori) and multi-dimensional meshes for
wormhole routing.

We compare the performances of six deadlock-
free wormhole routing algorithms: three fully-
adaptive hop schemes (positive-hop, negative-hop,
and negative-hop with bonus-cards), partially-
adaptive north last algorithm, proposed by Glass and

!The dimensions in which the message needs to take one or
more hops in order to reach its destination from the current
node.

Ni [19], and the well-known non-adaptive e-cube algo-
rithm. We consider only minimal routing of messages.

To limit the search space, we have fixed some im-
portant parameters in the following performance com-
parisons. High-radix, & > 16, is commonly used for
two- and three-dimensional networks [11, 2]. We have
conducted our simulations for 162 tori. In literature,
fixed-length messages with 16, 20, or 24 flits are com-
monly considered. We have considered 16-flit mes-
sages in this study. The message interarrival times
are geometrically distributed.

Traffic patterns. We have considered uniform,
hotspot, and local traffic patterns. The uniform (or
random) traffic pattern could be representative of the
traffic generated in massively parallel computations in
which array data are distributed among the nodes us-
ing hashing techniques. More realistically, the traffic
pattern tends to be random coupled with some local
or hotspot type traffic [1, 24]. For this reason we have
also performed simulations for uniform traffic coupled
with a moderate hotspot traffic and completely local
traffic.

In the hotspot traffic pattern simulated, a particu-
lar node receives some hotspot traffic in addition to the
regular uniform traffic. For example, with a hotspot
percentage of four, a newly arrived message in 162 is
directed with 0.0438 probability to the hotspot node
and with 0.0038 probability to any other node. That
is, the hotspot node receives about 11.5 times more
traffic than any other node in the network. In multi-
processors, this traffic pattern could be representative
of computations in which critical sections (or the cor-
responding locks) are placed in a single node. When
software techniques are used to distribute hotspot traf-
fic, a more representative hotspot traffic is obtained
by simulating multiple hotspot nodes each receiving
hotspot traffic in addition to the regular uniform traf-
fic. In this paper, we consider hotspot traffic with one
hotspot node.

In the local traffic pattern, the traffic generated by
node (i, j) in 16% is directed with equal probability to
any node within the 7 x 7 mesh consisting of the nodes
{(z,y) |t —=3<2<i+3,j—3<y<j+3} Fora
16 x 16 torus, this corresponds to a locality factor of
0.4. This local traffic pattern is slightly different from
the one considered by Agarwal [1].

Parameters of interest: latency and normalized
throughput. We are interested in the average chan-
nel utilization, p, and average latency, [, of a message.
The average latency of a message is

w—i—(ml—l—g—l)xft, (2)

where w,my,d, f; are the average wait time, average
length of the message in flits, average number of hops
taken by a message, and the time to transfer a flit
between neighbors, respectively.

For uniform traffic, the average number of hops
is the average diameter of the network. For a
k-ary n-cube, it is approximately nk/4; 162 has an av-
erage diameter of 8.03 for uniform traffic. The number
of flits in the message is fixed at 16. It takes one clock
cycle to transmit a flit between neighbor nodes. Mul-
tiple virtual channels mapped to a physical channel
share its bandwidth in time-multiplexed manner; that
iS, ft =1.

The average channel utilization refers to the frac-
tion of the physical channel bandwidth utilized in any
time interval when the network is in steady state. It is
also called the network utilization factor or normalized
throughput of the network. The average channel uti-
lization, denoted p, is computed as the ratio of network
bandwidth utilized to the raw bandwidth available.

3)

where 1/ is the average message interarrival time.
For k™, this can be simplified to

Number of nodes

p=Amdx Number of channels’

/\mlE
= . 4
p=— (4)

The numerator computes the average traffic generated
by a node, and the denominator gives the available
bandwidth due to the physical channels originating
from a node.

Congestion control. If there are no restrictions
placed on message injection, the network would be
unusable once saturation occurs. Therefore, we have
used a simple congestion control based on the one pro-
posed for store-and-forward routing for computer net-
works [22]. In this method, a node is allowed to inject
a message into the network if the number of messages
of the same class? that are in the node is less than a
certain specified limit. With this type of congestion
control, it is feasible to simulate the network for traffic
rates that would otherwise cause saturation and lead
to unbounded delays. Convergence of such simulations
need to be checked carefully, however.

Convergence criteria. For better randomness, sep-
arate sequences of random numbers are maintained for
the distribution of message interarrival time, selection
of destination, etc.

2For the purpose of congestion control, the class of a message
is determined as follows. In the case of hop schemes and 2pn,
a message class is based on the virtual channel number it can
use. In the case of e-cube and NLast schemes, a message class
is based on the particular virtual channel it intends to use.

For each simulation, sufficient warmup time is pro-
vided to allow the network reach steady state. Af-
ter the warmup time, the network traffic is sampled
at periodic intervals. The counters used for statistics
gathering are reset at the beginning of each sampling
period. Statistics are gathered during the sampling
time and analyzed for convergence. After each sam-
pling period, new streams of random numbers are used
for destination selection and message interarrival time,
and statistics are not gathered for some period of time.
Independent of the convergence criteria, a minimum
of three samples and a maximum of 10-15 samples are
taken for each simulation. A simulation is terminated
if it exceeds the maximum time limit or if the conver-
gence criteria are met.

For the purpose of checking convergence, we parti-
tion messages into various classes based on the number
hops they require to reach destinations. One conver-
gence check is based on the variance in the latencies
reported by messages of each hop-class. This check
is based on the population mean (with each hop-class
being a stratum of the message population) described
in [25]. For each stratum, the average latency and
variance are computed. Using proper weights3 of each
stratum in the population, the average message la-
tency, {, and variance of this average latency, o;2, are
computed. The 95% confidence interval of the average
latency is given by (! — 20y, + 20y). The value 20y is
the bound on the error of estimation of {.

Another check is based on the variance of the av-
erage message latencies for each of the latest three or
more samples. For this case also the bound on the
error of estimation is computed. If both error bounds
are within 5% of the respective averages, the simula-
tion is terminated. For the points before saturation,
these criteria are easily satisfied. Longer warmup and
sampling times are needed to achieve convergence for
points near and beyond saturation.

After the simulation, the average number of mes-
sages received in the sampling periods used in the
above convergence criteria is computed. The bound
on the error of this estimation is almost always less

than 1%.

3The weights of each hop-class are based on the frequency
with which they appear for the traffic pattern being simulated.
For example, for uniform traffic on a 162, hop-class 1 has a
weight of 0.0157 and hop-class 16 has a weight of 0.0039, since
each node has four neighbors but only one diametrically oppo-
site node. In the case of local traffic, the number of hop-classes
is six: classes 1 and 6 have weight 0.0833 each, classes 2 and 5
have weight 0.1667 each, and classes 3 and 4 have weight 0.25
each.

Uniform traffic of 16-flit worms

500 ;
4500 0 0 oNbc
400+ +—=+=—+PHop /,"0
350 X—X_XNHop é'"
300F *-*-*2pn
0.0 OEcube o

8

X--X--XNLast
150

Average latency (cycles)
N
[n)
=

0 01 02 03 04 05 06 07 08 09 1
Offered channel utilization (fraction of capacity)

0.8
0—0-0oNbc
0.7+
c + + +PHop
o
7 06F x x xNHop
N
S o5 *toran
=} ~r
o) 0--0--0Ecube
c
é 04r y x xNLast
] —-Q.
'g 0.3 O‘nQ\O
£ 02 e P
<
0.1
oe . , “XXX'"‘X"X"?(, , , ,
01 02 03 04 05 06 07 08 09 1

Offered channel utilization (fraction of capacity)

Figure 3: Performance of the routing algorithms for
uniform traffic.

3.1 Simulation of uniform traffic

The average latency and normalized throughput
achieved are plotted against offered traffic* in Figure 3
for uniform traffic with 16-flit messages. For low traf-
fic load (p < 0.25), all six algorithms have the same
latency. The three hop schemes and the other three
algorithms behave differently during and after satura-
tion.

The three algorithms derived from SAF routing have
similar throughputs with PHop being slightly better:
PHop has better latency and throughput in saturation.
In particular, PHop and Nbc begin to saturate after
0.6, and NHop shows signs of saturation at about 0.55.
The latencies of all three algorithms rise abruptly at
the point of saturation but have bounded values, even
for high traffic loads, p > 0.75, due to congestion con-
trol. Furthermore, the achieved throughputs of the
three algorithms increase steadily. The PHop and Nbc
algorithms achieve their peak throughputs of 0.72 and

4Normalized throughputs are considered in performance
comparisons.

0.63, respectively, at 100% offered load.

It is not meaningful to compare the saturation la-
tencies of hop schemes with those of the other three
algorithms, since the latter ones have lower through-
puts. The fully-adaptive 2Pn has lower peak through-
put than e-cube and saturates more quickly. The e
cube algorithm has a peak throughput of 0.34, which
occurs at offered traffic of 0.4.> Another observa-
tion is that e-cube performs better than the partially-
adaptive NLast algorithm, which is consistent with the
results by Glass and Ni [19] for mesh networks. The
effect of congestion control on e-cube in saturation is
to limit the rate at which the latency increases and
maintain throughput close to the maximum through-
put slightly after the point of saturation. The conges-
tion control seems to be less effective for 2Pn and NLast
with respect to throughput but keeps message laten-
cies low. Abrupt falls and plateau in the throughput
curve of NLast indicate that the congestion control is
not effective for certain traffic loads. With a different
congestion control, it might be feasible to maintain its
peak throughput of 0.25. (Glass and Ni [18] report a
peak throughput of approximately 0.23 for this algo-
rithm on a 10 x 10 mesh.)

3.2 Simulation of hotspot traffic

Performances of the six algorithms for hotspot traf-
fic with 4% hotspot traffic are given in Figure 4.
The hotspot node is chosen to be node (15,15). We
have experimented with various different choices for
hotspot nodes and found that the NLast yields best re-
sults when the hotspot node is (15, 15); performances
of the e-cube and hop schemes are unaffected by the
choice of the hotspot node.

Compared to uniform traffic, the increase in laten-
cies due to hotspot traffic is negligible when the traffic
is low (applied load of 0.2 or less). However, hotspot

5To verify the validity of our simulations for e-cube, we com-
pared the peak throughput reported here with those indicated
in various previous studies. Song [27] reports peak channel
utilizations of 40% for e-cube routing on mesh networks with
bidirectional (half-duplex) channels. He also shows that the
use of two unidirectional channels to connect adjacent nodes
results in lower throughputs. Since we simulate two unidirec-
tional channels for connections between nodes, our results are
correspondingly lower. Though torus is slightly different from
a two-dimensional mesh, our experiments indicate that e-cube
yields similar normalized throughputs on these networks when
other parameters such as network size and message length are
kept the same. Berman et al. [4] simulate a variant of e-cube
(which allows non-minimal routing) and report a peak through-
put of 0.2 for message population consisting of a mix of 15- and
31-flit messages on a 31 X 31 torus. The often reported 50% net-
work utilization obtained by e-cube on mesh networks [26, 13]
is based on the bisection bandwidth width arguement, which
actually gives a better upper bound on the available bandwidth
for meshes with uniform traffic. This value cannot be used to
compare channel utilizations, however.

700 Hotspot traffic of 16-flit worms with 4% hotsgr)‘ot traffic

o0 oNbc
600r + + +PHop

T x—x—xNHop
5 500¢

> %% 2pN
> 4001 0--0--0Ecube
g x-%-xNLast
< 300

e

T 200

<

100

0 01 02 03 04 05 06 07 08 09 1
Offered channel utilization (fraction of capacity)

0.6 ; "
00 oNbc
05 + + +PHop
s [X—x—XNHop
'ﬁ *,,,*,,,*an
= 04} 0--0-0Ecube
5 X--X--XNLast
2
S 0.3¢
<
[S]
3 -0
§ 0.2¢ L
<
[}
< 01}
X

XXX
01 02 03 04 05 06 07 08 09 1
Offered channel utilization (fraction of capacity)

Figure 4: Performance of the routing algorithms for
4% hotspot traffic.

traffic causes early saturation and latencies in satura-
tion are much higher compared to the uniform traffic
case.

Once again, e-cube, NLast, and 2Pn algorithms sat-
urate much earlier than the hop schemes. Of these
three, e-cube is the best algorithm yielding a max-
imum normalized throughput of 0.25. It is consis-
tently better than 2pn and Nrast algorithms. The
peak normalized throughput realized by PHop and Nbc
is slightly more than 0.5, while that of NHop is about
0.45. The actual saturation for these algorithms be-
gins at about 0.35. But due to congestion control, the
latencies are controlled and normalized throughputs
increase steadily.

3.3 Simulation of local traffic

Figure 5 presents the performances of the six algo-
rithms for local traffic with 0.4 locality of fraction. In
this case, 2pn with a peak throughout of 0.37 per-
forms better than e-cube, and NLast has the least
throughput. Hop schemes have much higher normal-
ized throughput and controlled latencies in saturation

Local traffic of 16-flit wormswith 0.4 locality fraction

300
00 oNbc i P
250 + + +PHop) ’
T x—x—xNHop ’P *
g 200L *-%_*2pn / 1
g 0--0--0Ecube d
g 150F x--X--XNLast i+
B
100
g
<
50 X
% 01 0z 03 04 05 06 07 08 09 1
Offered channel utilization (fraction of capacity)
0.8 . .
o0 oNbc b
0.7 + + +PHop i
5 0.6- X—X—XNHOD X
E *_%_*2pn
E 05} 0--0-0Ecube
T x--X--XNLast
= 0.4%
e X «
© ek
-g 031 e k
£ 02t
< O 0
0.1 , 0o
0 “Xx,x,,x_,X——————»X """""""""" Xooeee Keomomooee T

01 02 03 04 05 06 07 08 09 1
Offered channel utilization (fraction of capacity)

Figure 5: Performance of the routing algorithms for
local traffic with 0.4 locality factor.

region. A noteworthy point is that Nbc with peak
throughput of 0.72 performs better than PHop, since
it uses more virtual channels (due to bonus cards) in
routing messages. It also has the lowest latency among
the three hop schemes for up to 0.75 applied traffic
load.

3.4 Discussion

The partially-adaptive NLast algorithm does not ex-
hibit better performance than the simpler e-cube algo-
rithm. It causes early saturation of the network for the
three traffic patterns. It requires complicated routing
logic, which could increase the node complexity, node
delay per hop, or both. The main problem with the
NLast algorithm is that it skews even uniform traffic.
However, Glass and Ni [19] report that this class of
algorithms perform better than e-cube for other types
of nonuniform traffic such as matrix transpose.

Our results indicate that the fully-adaptive hop
schemes PHop, Nbc, and NHop yield better through-
puts for the traffic patterns considered in this study.
This could be due to the use of more virtual chan-

nels per physical channel [13], balancing the traffic on
virtual channels, or both. For example, for uniform
traffic, PHop gives better throughput and also uses
more virtual channels than any other algorithm. In
the case of hotspot traffic, however, Nbc gives better
throughput than PHop despite the use of fewer virtual
channels. A possible explanation is that the load on
virtual channels is balanced in Nbc but not in NHop
and PHop algorithms.

The fully-adaptive 2Pn scheme performs worse than
the non-adaptive e-cube algorithm for uniform and
hotspot traffic. Trying to explain the unexpected low
performance of the 2pn algorithm, we have closely
looked at algorithms Nbc and 2pn. In this light, we
have simulated 2pn and Nbc algorithms for virtual-
cut-through routing [21] of 16-flit packets on 162 for
uniform traffic. The 2pn algorithm performed as well
as Nbc and better than e-cube with respect to both
latency and peak throughput.

The 2pPn scheme routes a message at each hop based
on the local knowledge available at the current host
node. In contrast, Nbc uses local knowledge with some
kind of priority information (based on the number of
hops taken) to route a message. In the case of packet
routing, lack of this information is not a severe handi-
cap to 2pPn, since it employs one-hop lookahead (which
is known to yield close to optimal performance for uni-
form traffic), and the penalty for not choosing the best
path is not too severe. In the case of wormhole rout-
ing, however, the critical resources (channels) are held
for a longer time. Therefore, the penalty for choosing
a path that later turns out to be congested is more se-
vere for wormhole routing than for SAF routing. This
indicates that the use of priority could be beneficial in
wormhole routing.

4 Concluding remarks

In this paper, we have evaluated the effectiveness of
several WH routing algorithms with various degrees
of adaptivity. We have considered four fully-adaptive
(PHOD, NHop, Nbc, and 2Pn) algorithms, one partially-
adaptive (NLast) algorithm, and the well-known non-
adaptive e-cube algorithm. Of the four fully-adaptive
algorithms, 2pPn uses the fewest virtual channels, four,
for tori.

The remaining three fully-adaptive algorithms,
PHop, NHop, and Nbc, are obtained from hop based
packet routing algorithms. Algorithm PHop uses as
many as 17 virtual channels per physical channel for
16x 16 tori. Algorithms NHop and Nbc use nine virtual
channels per physical channel. These hop schemes are
different from the other three algorithms, since they
use some sort of priority information in routing mes-
sages. Furthermore, algorithm Nbc tries to balance the

load on virtual channels, a feature not given much at-
tention previously. The purpose of our study is to see
the improvements in network throughput and message
latency with the use of adaptivity and other features.
Our observations are summarized as follows.

Fully-adaptive algorithms do not necessarily yield
better throughput than non-adaptive algorithms. A
case in point is the 2pPn fully-adaptive algorithm. For
two-dimensional tori, it looks very attractive, since it
provides full-adaptivity with only four virtual chan-
nels per physical channel. However, simulation results
show that e-cube algorithm outperforms it for uni-
form and hotspot traffic patterns. On the other hand,
the other three fully-adaptive algorithms based on hop
schemes, namely, PHop, NHop, and Nbc algorithms,
require more virtual channels but improve through-
puts substantially. For the traffic patterns used, hop
schemes are better than the other three algorithms.
A comparison of NHop and Nbc algorithms indicates
that balancing traffic on virtual channels yields higher
throughput and lower message latency for a given
throughput.

Another point of observation is that partially-
adaptive algorithms such as NLast [17, 19] do not com-
pare well with e-cube and hop-based algorithms. They
have routing logic complexity comparable to that of a
fully-adaptive algorithm and performance similar to or
worse than that of the non-adaptive e-cube algorithm.
This observation does not apply to the planar adaptive
routing proposed by Chien and Kim [10], since it is an
entirely different type of partially-adaptive algorithm.

We are conducting further simulations of these
routing algorithms for multidimensional tori and
meshes. In future, we intend to use communication
traces obtained from computations on parallel pro-
cessors to evaluate the performances of routing al-
gorithms. Another issue of interest is evaluation of
improvements in throughputs with addition of vir-
tual channels. Dally [13] shows that additional vir-
tual channels improve the performance of e-cube for
uniform traffic. Our work here indicates that the use
of priority is beneficial in fully-adaptive routing. Fur-
ther work is needed, for example, to see if the extensive
amount of priority information used by PHop is indeed
necessary. The issue of balancing load on virtual chan-
nels needs to be explored further. Though the number
of virtual channels used in hop schemes is a concern,
there are ways to reduce this number substantially for
NHop based algorithms [6]. We are also studying the
implementation aspects of these algorithms.

Acknowledgements

The authors thank Profs. C.S. Raghavendra and D.K.
Panda for many discussions and comments on an ear-

lier draft of this paper, Prof. Ram C. Tripathi for
discussions on the convergence criteria used in the
simulations, and Mr. Francis Ho for help in develop-
ing the simulator. The first author’s research is sup-
ported by NSF Grant CCR-9208784, and the second
author’s research by a grant from the Graduate School
of UW-Madison. Most of the simulations have been
performed on the workstations in the CS Lab at UT-
San Antonio supported by NSF Grant USE-950407

under ILI program.

References

[1] A. Agarwal. Limits on interconnection network per-
formance. IFEE Trans. on Parallel and Distributed
Systems, 2(4):398-412, Oct. 1991.

[2] A. Agarwal, et. al. The MIT Alewife machine: A large-
scale distributed multiprocessor. In Proc. of Workshop
on Scalable Shared Memory Multiprocessors. Kluwer
Academic Publishers, 1991.

[3] R. Alverson, D. Callahan, D. Cummings, B. Koblenz,
A. Porterfield, and B. Smith. The Tera computer sys-
tem. In Proc. 1990 Int. Conf. on Supercomputing.

[4] P. E. Berman, L. Gravano, and G. D. Pifarre. Adap-
tive deadlock- and livelock-free routing with all mini-
mal paths in torus networks. In Proc. Fourth Sympo-
stum on Parallel Algorithms and Architectures, pages
3-12, 1992.

[5] D. Bertsekas and R. Gallager.
Prentice-Hall Inc., 1987.

[6] R. V. Boppana and S. Chalasani. Design of hop-
based wormhole routing algorithms with reduced vir-
tual channel requirements. In preparation.

[7]R. V. Boppana and S. Chalasani. A comparison
of wormhole routing algorithms based on adaptiv-
ity. Technical Report UTSA-CS-92-113, University of
Texas at San Antonio, Division of Math., Comp. Sci.,
and Statistics, San Antonio, Texas, Nov. 1992.

[8] R. V. Boppana and S. Chalasani. New wormhole rout-
ing algorithms for multicomputers. Technical report,
Univ. of Wisconsin-Madison, Dept. of Electrical and
Computer Engineering, Madison, WI, 1992. Some of
the results will be presented at the 7th Int. Parallel
Processing Symposium, 1993.

[9] S. Borkar et al. iWarp: An integrated solution to
high-speed parallel computing. In Proc. Supercomput-
ing ‘88, pages 330-339.

[10] A. A. Chien and J. H. Kim. Planar-adaptive routing:
Low-cost adaptive networks for multiprocessors. In
Proc. 19th Ann. Int. Symp. on Comput. Arch., pages
268-277, 1992.

[11] W. J. Dally. Network and processor architecture
for message-driven computers. In R. Suaya and
G. Birtwislte, editors, VLSI and Parallel Compu-
tation, chapter 3, pages 140-222. Morgan-Kaufman
Publishers, Inc., San Mateo, California, 1990.

[12] W. J. Dally. Express cubes: Improving the per-
formance of k-ary n-cube interconnection networks.
IEEE Trans. on Computers, 40(9):1016-1023, Sept.
1991.

Data Networks.

10

[13] W. J. Dally. Virtual-channel flow control. IFEFE
Trans. on Parallel and Distributed Systems, 3(2):194—
205, Mar. 1992.

[14] W. J. Dally and C. L. Seitz. Deadlock-free message
routing in multiprocessor interconnection networks.
IEEE Trans. on Computers, C-36(5):547-553, 1987.

[15] J. Duato. On the design of deadlock-free adaptive
routing algorithms for multicomputers: Theoretical
aspects. In PARLFE ’91: Parallel Architectures and
Languages, pages 234-243.

[16] S. Felperin, L. Gravano, G. Pifarre, and J. Sanz. Fully-
adaptive routing: Packet switching performance and
wormhole algorithms. In Proc. Supercomputing 91,
pages 654-663.

[17] S. A. Felperin, L. Gravano, G. D. Pifarré, and J. L.
Sanz. Routing techniques for massively parallel com-
munication. Proceedings of the IEEE, 79(4):488-503,
1991.

[18] C. J. Glass and L. M. Ni. Adaptive routing in mesh-
connected networks. In Proc. Int. Confernce on Dis-
tributed Computing Systems, pages 12-19, 1992.

[19] C. J. Glass and L. M. Ni. The turn model for adaptive
routing. In Proc. 19th Ann. Int. Symp. on Comput.
Arch., pages 278-287, 1992.

[20] I. S. Gopal. Prevention of store-and-forward deadlock
in computer networks. [EEFE Trans. on Communica-
tions, COM-33(12):1258-1264, Dec. 1985.

[21] P. Kermani and L. Kleinrock. Virtual Cut-Through: A
New Computer Communication Switching Technique.
Computer Networks, 3:267-286, 1979.

[22] S. S. Lam and M. Reiser. Congestion control of
store-and-forward networks by input buffer limits—
an analysis. IEFE Trans. on Communications, com-
27(1):127-133, Jan. 1979.

[23] D. H. Linder and J. C. Harden. An adaptive and fault
tolerant wormhole routing strategy for k-ary n-cubes.
IEEE Trans. on Computers, 40(1):2-12, 1991.

[24] G. F. Pfister and V. A. Norton. Hot spot con-
tention and combining in multistage interconnection
networks. IEEE Trans. on Computers, c-34(10):943-
948, Oct. 1985.

[25] R.L. Scheaffer, et. al. FElementary Survey Sampling.
Duxbury Press, North Scituate, Mass., 2 edition, 1979.

[26] C. Seitz. Concurrent architectures. In R. Suaya and
G. Birtwislte, editors, VLSI and Parallel Computa-
tion, chapter 1, pages 1-84. Morgan-Kaufman Pub-
lishers, Inc., San Mateo, California, 1990.

[27] P. Y. Song. Design of a network for concurrent mes-
sage passing systems. Master’s thesis, Department of
Electrical Engineering and Computer Science, MIT,
1988.

