A Comparison of TCP Performance over Three Routing
Protocols for Mobile Ad Hoc Networks -

Thomas D. Dyer
Computer Science Division

The Univ. of Texas at San Antonio
San Antonio, TX 78249

tdyer@cs.utsa.edu

ABSTRACT

We examine the performance of the TCP protocol for bulk-
data transfers in mobile ad hoc networks (MANETs). We
vary the number of TCP connections and compare the perfor-
mances of three recently proposed on-demand (AODV and
DSR) and adaptive proactive (ADV) routing algorithms. It
has been shown in the literature that the congestion control
mechanism of TCP reacts adversely to packet losses due to
temporarily broken routes in wireless networks. So, we pro-
pose a simple heuristic, called fixed RTO, to distinguish be-
tween route loss and network congestion and thereby im-
prove the performance of the routing algorithms. Using the
ns-2 simulator, we evaluate the performances of the three
routing algorithms with the standard TCP Reno protocol and
Reno with fixed RTO. Our results indicate that the proactive
ADV algorithm performs well under a variety of conditions
and that the fixed RTO technique improves the performances
of the two on-demand algorithms significantly.

1. INTRODUCTION

The TCP protocol has been extensively tuned to give good
performance at the transport layer in the traditional wired
network environment. However, TCP in its present form is
not well-suited for mobile ad hoc networks (MANETSs) where
packet loss due to broken routes can result in the counter-
productive invocation of TCP’s congestion control mecha-
nisms. Although a number of studies have been conducted
and protocol modifications suggested, improving TCP per-
formance in MANETS is still an active area of research. The
performance studies published to date have either focussed
on specific protocols or were restricted to a single TCP con-
nection.

The objectives of this study were two-fold: to compare TCP

*This research has been partially supported by
DOD/AFOSR grant F49620-96-1-0472 and NSF grant
CDA 9633299.

IACM Symposium on Mobile Ad
Hoc Networking & Computing
(Mobihoc), October 2001

Rajendra V. Boppana
Computer Science Division

The Univ. of Texas at San Antonio
San Antonio, TX 78249

boppana@cs.utsa.edu

performance over different proposed MANET routing proto-
cols, and to explore the utility of using a sender-based heuris-
tic to distinguish between packet loss due to congestion and
loss due to route failures. We conducted simulations to mea-
sure the performance of TCP for bulk-data transfers over two
of the proposed on-demand protocols, DSR [16] and AODV
[18]. A third protocol, ADV [5], was also considered. ADV
combines an on-demand approach with proactive distance
vector routing. A background UDP traffic load from con-
stant bit rate sources was included so that we could assess
the impact of non-TCP traffic on the TCP throughput and
vice versa.

We examined the relative impact of two existing options de-
signed to enhance TCP performance, selective acknowledge-
ments and delayed acknowledgements. We also considered
a modification to the TCP sender designed to lessen the nega-
tive effect of TCP’s reaction to retransmit timeouts caused by
temporary route failures. Several researchers have designed
mechanisms by which the TCP sender is notified of a route
failure, and in some schemes, the sender is also notified when
the route has been re-established [7, 13]. We have not im-
plemented such a scheme for this study, but our sender-side
heuristic gives some indication of the performance gains that
can be achieved by altering the TCP sender’s behavior.

The results of our simulations demonstrate that the proactive
ADV protocol performs well under a variety of conditions.
ADV does not, however, benefit from our modifications to
the TCP sender. On the other hand, the on-demand algo-
rithms both showed significant performance improvements
with the addition of our sender-side heuristic to TCP Reno.

2. RELATED WORK

Several performance evaluations of MANET routing proto-
cols for UDP traffic have been presented in the literature [5,
6, 9, 15, 17]. Other studies have presented mechanisms for
improving TCP performance in 1-hop wireless networks [3,
4,2, 20].

Recent studies have addressed the TCP performance prob-
lems caused by route failures in an ad hoc network. Chan-
dran et al. proposed a feedback-based scheme called TCP-
Feedback or TCP-F [7]. In this scheme, when an intermediate
node detects the disruption of a route due to the mobility of
the next host along that route, it explicitly sends a Route Fail-
ure Notification (RFN) to the TCP sender. Upon receiving

the RFN, the source suspends all packet transmissions and
freezes its state, including the retransmission time out inter-
val and the congestion window. When an intermediate node
learns of a new route to the destination, it sends a Route Re-
establishment Notification (RRN) to the source, which then
restores its previous state and resumes transmission. The ef-
fect of this scheme was studied by simulating a single TCP
connection. The main conclusion of the study was that aver-
age route repair time has a major impact on TCP throughput.

Holland et al. advocate the use of explicit link failure notifi-
cation (ELFN) to significantly improve TCP performance in
MANETs [13]. In the ELFN scheme, when the TCP sender
is informed of a link failure, it freezes its state (timers and
window size) as in TCP-F. There is no route re-establishment
notification, however. Instead, the source sends out packets
(probes) at regular intervals to determine if a new route is
available. Using ns-2 [11] to simulate a IEEE 802.11 wireless
network running TCP Reno and the DSR routing protocol,
they show that the ELFN scheme can increase TCP perfor-
mance considerably. They also obtained significant perfor-
mance improvements by simply turning off the DSR feature
whereby intermediate nodes send out route updates based
on the contents of their (often stale) route caches.

Ahuja et al. [1] conducted a simulation-based comparison
of TCP performance over several MANET routing protocols,
including AODV, DSR, and SSA [10]. Only a single source
of TCP traffic was simulated. They concluded that frequency
of route failures, routing overhead, and delay in route estab-
lishment are the important determinants of TCP throughput
in an ad hoc network. Like [13], they found that disabling
route replies from cache actually improved TCP throughput
by eliminating the effect of stale routes.

3. PROTOCOLS

In this section, we give a brief overview of the routing pro-
tocols used in our performance analysis. We also discuss the
variations of the TCP protocol that were considered.

Routing protocols. As noted in the introduction, AODV and
DSR are on-demand algorithms. Unlike proactive protocols
such as DSDV [19], on-demand protocols do not maintain
routes between all the nodes in an ad hoc network. Rather,
routes are established when needed through a route discov-
ery process in which a route request is broadcast. A route
reply is returned either by the destination or by an interme-
diate node with an available route. Route error messages are
used to invalidate routing table entries when link failures are
detected.

Like AODV, ADV [5] is a distance vector algorithm that uses
sequence numbers to avoid long-lived routing loops [12, 19].
Routes to active receivers are established when needed as
in an on-demand algorithm. Routing updates, however, are
used to distribute routing information in a proactive fash-
ion. ADV has no explicit route repair mechanism, relying
instead on the routing updates to re-establish broken routes.
Unlike the periodic updates in a traditional distance vector
algorithm, ADV routing updates are triggered adaptively in
response to network load and topology changes. In partic-
ular, a node can inform its neighbors, as part of its routing
updates, of its need to replace a broken route, which in turn

2

allows the neighboring nodes to trigger updates much more
quickly. This feature makes ADV more adaptive than the
previous distance vector algorithms.

Transport protocols. We used mixed TCP and UDP traffic.
For UDP, we used the existing standard UDP protocol.

For TCP, we took the Reno version of the TCP protocol as
our base case. We compared this baseline performance to
that obtained using two available TCP options, selective ack-
owledgements (SACK) and delayed acknowledgments. Con-
sidering the frequency with which routes can change in a
MANET, we assumed that out-of-order and delayed packet
(and ACK) deliveries would occur somewhat frequently. The
use of SACK should reduce the number of unnecessary re-
transmissions that can result when duplicate ACKs caused
by out-of-order deliveries trigger fast retransmits. Delayed
ACKs are expected to help by reducing the volume of ACK
traffic in normal network conditions. In the case of a bro-
ken route, delayed ACKs allow the TCP sender to increase
its send window in increments larger than 1. When two de-
layed data packets arrive at the destination in sequence, only
one ACK will be generated and the sender does not retrans-
mit any additional packets.

In the event of a retransmit timeout, TCP retransmits the old-
est unacknowledged packet and doubles the retransmit time-
out interval (RTO). This process is repeated until an ACK for
the retransmitted packet has been received. This exponential
backoff of the RTO enables TCP to handle network conges-
tion gracefully. However, in a MANET, the loss of packets
(or ACKs) may be caused by temporary route loss as well
as network congestion. Since routes are likely to be broken
frequently in high node mobility environments, routing al-
gorithms for MANETSs are designed to repair broken routes
quickly. To take advantage of this capability, it is intuitive
to let a TCP sender retransmit the unacknowledged packet
at periodic intervals rather than having to wait increasingly
long periods of time between retransmissions.

Therefore, we modified the TCP sender, employing a heuris-
tic to distinguish between route failures and congestion with-
out relying on feedback from other network nodes. When
timeouts occur consecutively, i.e. the missing ACK is not
received before the second RTO expires, this is taken to be
evidence of a route loss. The unacknowledged packet is re-
transmitted again but the RTO is not doubled a second time.
The RTO remains fixed until the route is re-established and
the retransmitted packet is acknowledged.

Our modification to the TCP congestion control mechanism
is intended for use in wireless networks only. The getsockopt
and setsockopt function calls in Unix may be easily modified
so that applications can make use of this feature.

4. SIMULATION METHODS

For our simulations, we used the ns-2 network simulator [11]
with the CMU extensions by Johnson et al. [8]. These exten-
sions include the modeling of an IEEE 802.11 wireless LAN
[14]. We used CMU’s implementation of DSR, and all pa-
rameter values and optimizations used for DSR are as de-
scribed by Broch et al. [6]. The AODV and ADV implemen-
tations are by the AODV and ADV groups, respectively. For

AODV we used the following settings: MAC link layer feed-
back; 50s active route timeouts; local route repair; 1, 2, and 7
for TTL_START, TTL_INCREMENT, and TTL_.THRESHOLD,
respectively. For ADV, all parameter values, except buffer
timeout (which is set to 30s in this study), are the same as
those given in [5].

The network we simulated consisted of 50 nodes randomly
placed on a 1000m x 1000m field at the beginning of a simula-
tion. We utilized a mobility pattern based on the random way-
point model. To mimic high node mobility, node speeds were
uniformly distributed between 0 m/s and 20/ms, yielding
a mean node speed of 10 m/s, and only zero-length pause
times were considered.

We simulated the steady-state conditions of a network with
various background traffic loads generated by 10 and 40 con-
stant bit rate (CBR) connections. The CBR packet sizes were
fixed at 512 bytes. After a warm-up time of 100 seconds,
one or more TCP connections were established over each of
which an FTP file transfer was conducted for 900 seconds.
The TCP packet size was 1460 bytes, and the maximum size
of both the send and receive windows was 8. Since routing
protocol performance is sensitive to movement patterns, 50
different mobility patterns (scenarios) were generated.

In each simulation run, we measured connect time, through-
put, and goodput. Connect time is the time it takes to deliver
the first TCP packet. Short connect times are important for
some types of TCP traffic such as HTTP. Throughput is com-
puted as the amount of data transferred by TCP divided by
900 seconds, the time interval from the end of the warm-up
period to the end of the simulation. This does not include re-
dundant packet receipts due to unnecessary packet retrans-
missions and packet replication in the network. Goodput
is the ratio of TCP packets successfully delivered to the to-
tal number of TCP packets transmitted. In order to gauge
the routing protocol overhead, we measured both the num-
ber of routing packets and the number of bytes of routing
data transmitted per second at the IP layer. The overhead in-
cludes the routing of the background CBR traffic. For DSR,
the number of bytes of routing data transmitted includes the
routing information carried by data packets. We also mea-
sured the number of routing packets transmitted per second
at the MAC layer, including all the IP layer routing packets
and the RTS, CTS, and ACK control exchange packets used
for transmitting unicast data and routing packets.

5. PERFORMANCE RESULTS

For each number of TCP connections (1, 2, 5, and 10), we
performed a series of four simulation runs. Each simula-
tion run tested a different technique or combination of tech-
niques: TCP Reno, Reno with SACK, Reno with SACK and
delayed ACKs, and fixed RTO on consecutive timeouts plus
SACK and delayed ACKs. In each run, a set of performance
measurements were made for each of the three routing proto-
cols at each of several background traffic loads from 10 CBR
connections and from 40 CBR connections.

5.1 1 TCP Connection

Figures 1 and 3 show the connect times, throughputs, good-
puts, and routing overheads, averaged over the 50 scenarios,
observed for each of the protocols for 1 TCP Reno connec-

tion with a background traffic load generated by 10 and 40
CBR connections. In figures 2 and 4, TCP’s SACK and de-
layed acknowledgment options have been added along with
the fixed-RTO mechanism. While the use of SACK alone and
the combination of SACK and delayed ACKs did enhance
performance in some cases (10-12% increases in throughput
for AODV and DSR at higher traffic loads, for example), the
gains were modest and those results are not included here.

With TCP Reno and a 50 Kbps 10-CBR background, DSR
throughput was about 55% that of the other protocols. This
is a reasonable result considering that with a lighter back-
ground traffic load, routes in the network are more likely to
be stale, and stale routes are troublesome for DSR. The stale
route problem is very evident when we consider the connect
times. While the connect times for ADV and AODV remain
essentially unchanged with the addition of the fixed RTO, the
connect time for DSR dropped dramatically from over 30 sec-
onds to just under 6 seconds. At the same time, DSR through-
put increased by 67%. The fixed-RTO technique continued to
yield a 70-75% gain in DSR throughput as the 10-CBR traffic
increased from 50 Kbps to 200 Kbps. Significant throughput
gains were also observed for the 40-CBR case as shown in
Figures 3 and 4. The goal of fixing the RTO was to reduce the
impact of route unavailability. It appears this technique was
particularly effective in mitigating the stale route problem for
DSR.

The fixed-RTO technique, in combination with SACK and de-
layed ACKSs, also yielded increased throughput for AODV,
although the gains were much smaller than those observed
for DSR. Interestingly, the increase in throughput for the 40-
CBR case was about twice that seen in the 10-CBR case. As
the background traffic load increased, the gain in throughput
remained the same, about 8%, for 10 CBR connections, while
the gain in the 40-CBR case grew to 48% for a 200 Kbps load.
To the extent that the additional routing traffic from 40 CBR
flows results in increased packet delays, we would expect the
fixed-RTO technique to be of relatively greater benefit.

The increases in throughput that we observed for ADV did
not exceed 4%. It appears ADV was performing as well as
possible since, although the application of these techniques
tended to minimize the performance differences among the
protocols, in no case did the other protocols exhibit a higher
level of throughput than ADV. Furthermore, in the 40-CBR
case, ADV clearly outperformed AODV and DSR regardless
of which techniques were used. We observed this same result
at higher background traffic loads. For a 100 Kbps load and
40 connections, ADV throughput was 17% to 52% greater
than that of the other protocols.

The fixed-RTO technique lets the TCP sender avoid wait-
ing for ever longer periods of time before attempting to re-
transmit the next unacknowledged packet. In effect, the TCP
sender is probing the network in a manner similar to the
ELFN scheme [13]. But because the probe interval is equal
to the retransmit time interval which in turn is tied to the
estimated RTT, the fixed-RTO method is inherently adaptive.

The graphs in Figures 5 - 7 plot congestion window size as
it changes over time for the scenario in which the three pro-
tocols yielded their worst or nearly worst performance. The

o
@

500

100.0

o
=

./"\'—/‘j

—

— ADV
S>—©AODV
o—e DSR

o
w

TCP Throughput (Mbps)
o
N

o
e

TCP Connect Time (sec) [log scale]

—

#*—% ADV *—%ADV
&—< AODV O—<AODV
e—eDSR - 400 e—eDSR 1

300 -

N
S
3

=
S
3

* ————%

IP Layer Routing Overhead (pkt/s)

o

0.1

200 50 100

o

50 100 150
Background CBR Traffic (Kbps)

o

Background CBR Traffic (Kbps)

o

50 100 150
Background CBR Traffic (Kbps)

150 200

Figure 1: Connect times, throughputs, and routing overhead for 1 TCP Reno connection with a 10-CBR background.

0.5

500

100.0

*—*ADV
—<©AODV
e—e DSR

o
=

o
w

b——f.\.__‘,

R

TCP Throughput (Mbps)
o
N

TCP Connect Time (sec) [log scale]
°
[

)

\

F—* ADV #—% ADV
—& AODV &—&AODV
oo DSR 400 o—eDSR |

300 -

N
S
3

IP Layer Routing Overhead (pkt/s)
=
S
8

)

0.1

200

o

0 50 100 150 50 100

Background CBR Traffic (Kbps)

Background CBR Traffic (Kbps)

50 100 150
Background CBR Traffic (Kbps)

150 200

Figure 2: Connect times, throughputs, and routing overhead for 1 TCP connection using SACK + delayed ACKs + fixed RTO

with a 10-CBR background.

plotted window size is a 5-second moving average, so non-
integral window sizes appear. A 5-second interval was cho-
sen to smooth the plot without losing important detail. The
first 100 seconds were the warmup period before the TCP
traffic was initiated.

In this scenario, the length of the shortest possible path be-
tween the TCP sender and receiver nodes changed fairly fre-
quently and tended to be a bit long, often 5 or 6 hops or
more. Around 375 seconds into the simulation, all three pro-
tocols experienced a route failure. Referring to Figures 5 - 7,
we see that, with TCP Reno, ADV was able to recover fairly
quickly, but AODV and DSR were stalled for extended pe-
riods of time. In Figure 6, the AODV congestion window is
stuck at its minimum value of 1 from the route loss around
375 seconds until after 600 seconds, then again from about
800 seconds until the end of the run. The resulting through-
puts for AODV and DSR were approximately 91 Kbps and
36 Kbps, respectively. ADV throughput was higher, but still
just 170 Kbps. The route repair and route discovery mech-
anisms of the on-demand protocols were not able to cope
with the high degree of mobility and the large number of
hops from sender to receiver. ADV, with its proactive rout-
ing, was able to adapt to the rapidly changing network topol-
ogy, keeping the congestion window open. With the addition
of the fixed RTO, the more frequent packet retransmisions
caused AODV and DSR to initiate route discoveries which
led to faster route repairs, resulting in a larger congestion
window on average. AODV and DSR throughputs increased
to 202 Kbps and 130 Kbps, respectively. ADV, on the other
hand, did not receive any benefit because the routing infor-
mation disseminated through triggered updates was usually

sufficient to re-establish routes before consecutive timeouts
occurred. As a result, ADV throughput remained virtually
unchanged.

5.2 Multiple TCP Connections

In the case of multiple TCP sources, we considered back-
ground traffic loads of 100 Kbps and 200 Kbps from 10 CBR
and 40 CBR connections. The sender and receiver nodes were
unique for each connection, although in some cases a TCP
end point was also the endpoint of one or more CBR flows.
The combined throughputs of 2, 5, and 10 TCP connections
with a 100 Kbps background traffic load are shown in Figures
8and 9.

As was observed previously for 1 TCP source, the addition
of SACK and delayed ACKs to TCP Reno resulted in mod-
est gains (5-10%) in throughput. In most cases, ADV con-
tinued to provide the highest throughput. As before, AODV
showed decreased throughput relative to ADV and DSR as
the number of CBR connections increased from 10 to 40. Be-
cause AODV relies on its route discovery process to establish
new routes and repair broken routes, the larger number of
connections results in considerably more work. At the same
time, a larger number of connections, as well as a higher vol-
ume of traffic, enables DSR to use caching and snooping ef-
fectively to reduce this route discovery overhead. For 5 and
10 TCP sources, DSR throughput was observed to be nearly
as high or even higher than that of AODV, particularly for a
larger number of CBR flows.

o
@

500

100.0

— ADV
©S—<© AODV
o—=e DSR

S

e

o
=

TCP Connect Time (sec) [log scale]
e
o
TCP Throughput (Mbps)
o o o
[N @
IP Layer Routing Overhead (pkt/s)
= N
8 8

=
o
°

*—% ADV

*—¥ ADV
©&— AODV

S>—<&AODV

o—e DSR [e—eDsR

o

¥

s
S
3

o

0.1

50

o

50 100 150 200
Background CBR Traffic (Kbps)

o

Background CBR Traffic (Kbps)

o

50 100 150 200
Background CBR Traffic (Kbps)

150 2

=1
S}
o

Figure 3: Connect times, throughputs, and routing overhead for 1 TCP Reno connection with a 40-CBR background.

500

100.0 0.5

H—*ADV
&—< AODV
&—e DSR

e

o
=

TCP Throughput (Mbps)
o o
N @
IP Layer Routing Overhead (pkt/s)
N
S
8

»-\
o
°

I
o

TCP Connect Time (sec) [log scale]
°
[

)

*—¥% ADV
S>—©AODV
I e—eDSR

*—k ADV
SO—<© AODV
o—e DSR

IS
S
3

300 -

o

‘*’_,*———*———56

=
S
]

)

0.1

o

0 50 100 150 200 50

Background CBR Traffic (Kbps)

Background CBR Traffic (Kbps)

50 100 150 200
Background CBR Traffic (Kbps)

150 200

o

Figure 4: Connect times, throughputs, and routing overhead for 1 TCP connection using SACK + delayed ACKs + fixed RTO

with a 40-CBR background.

When the fixed-RTO technique was employed, the perfor-
mance differences of the three protocols tended to be min-
imized. However, for more than two TCP connections, the
benefit of fixing the RTO in response to consecutive timeouts
became great enough that AODV and DSR provided greater
throughput than did ADV. For 10 TCPs with a 10-CBR back-
ground, DSR throughput was 10% higher than ADV through-
put. This effect became even more pronounced when the
background traffic load was increased to 200 Kbps as can be
seen in Figures 10 and 11.

With a 200 Kbps traffic load from 10 CBR flows, AODV and
DSR both performed better relative to ADV. As we show
later in this report, ADV provided significantly better CBR
throughput than the other protocols. Therefore, as the vol-
ume of CBR traffic increased, the impact of the background
load on TCP throughput was largest for ADV. For the un-
modified TCP sender (i.e., no fixed RTO), ADV and AODV
throughputs were virtually the same and were higher than
the DSR throughput, although this advantage decreased as
the number of TCPs was increased. With 40 CBR connec-
tions, ADV continued to provide better throughput than both
AODV and DSR, which had nearly identical performance.

The connect times, throughputs, goodputs, and routing over-
heads observed for the various number of TCP connections
with a 100 Kbps background traffic load are shown in Fig-
ures 12 - 15. Given the relatively small throughput gains ob-
served when using just the TCP options, we show only the
results obtained using TCP Reno and TCP Reno with SACK,
delayed ACKS, and fixed RTO. The relative performances of

the three protocols for a 200 Kbps background traffic load
were not qualitatively different from those observed for a 100
Kbps load, so to save space those results are not included.

For TCP Reno, the goodputs we observed for all three proto-
cols were similar, ranging from about 96% to 98%. DSR gen-
erally achieved the highest goodput, and AODV the lowest.
When the TCP options and the fixed-RTO mechanism were
added, goodputs ranged from about 94% to 96%. ADV had
the highest goodput in most cases, and again AODV had the
lowest. Goodput decreased slightly as the number of TCP
connections was increased.

AODV generated the highest number of routing packets, fol-
lowed by DSR. The routing activity for AODV and DSR in-
creased as more TCPs were added, but the rate of increase
diminished as the number of connections grew. Due to its
proactive nature, ADV generated the fewest routing packets,
and ADV routing activity was constant with respect to both
the number of TCP connections and the number of CBR con-
nections.

Although the frequency of ADV routing updates remained
constant, the amount of routing information contained in the
updates did increase with the number of TCPs. When mea-
sured in Kbps, ADV routing overhead was quite a bit higher
than that of the other protocols. For 1 TCP flow, ADV gener-
ated about twice as many routing bytes per second as AODV
for 40 CBR connections, again a consequence of ADV’s proac-
tive routing. Several researchers have pointed out that in
a wireless network, the high cost of accessing the medium
places a premium on a reduced number of routing packets.

Congestion Window Size
[~N
T

w
T

o 200 400 600 800 1000
Simulation Time (sec)

Congestion Window Size
[~N

T T

.

w
T

200 400 600 800 1000
Simulation Time (sec)

Figure 5: ADV congestion window sizes of a TCP connection using Reno and SACK + delayed ACKs + fixed RTO.

Congestion Window Size
[~N
T T

w
T
L

o 200 400 600 800 1000
Simulation Time (sec)

Congestion Window Size
[~N

T T

.

w
T
L

o 200 400 600 800 1000
Simulation Time (sec)

Figure 6: AODV congestion window sizes of a TCP connection using Reno and SACK + delayed ACKs + fixed RTO.

Congestion Window Size
o ~N
T T

w
T
L

o 200 400 600 800 1000
Simulation Time (sec)

Congestion Window Size
0 ~N

T T

.

w
T

. | | |

o 200 400 600 800 1000
Simulation Time (sec)

Figure 7: DSR congestion window sizes of a TCP connection using Reno and SACK + delayed ACKs + fixed RTO.

Hence, the larger number of ADV routing bytes may not be
aconcern.

The TCP performance afforded by a routing protocol should
be weighed against how well the protocol is able to move
non-TCP traffic at the same time. To assess the impact of
TCP traffic on non-reactive CBR flows, we measured the av-
erage CBR packet latency and the fraction of CBR packets
successfully delivered. The results for 10 CBR connections
are shown in Figures 16 - 17.

CBR latencies increased as more TCPs were added, but the
increases were not enough to indicate saturation. ADV la-
tency was about twice that observed for the other protocols,
which had nearly identical latencies. This is in contrast to the
results reported by [5], who found ADV latencies were lower
than those of AODV and DSR. In that study, however, the
CBR packet size was only 64 bytes, and a very short buffer re-
fresh time of 1 second was used for ADV. For 10 TCP connec-

tions, ADV latency was slightly greater than 1 second com-
pared to 0.5 second for DSR and AODV. The use of a fixed
RTO had essentially no impact compared to TCP Reno.

ADV did a much better job of handling the background CBR
flows in terms of packet delivery fraction. With 10 TCP traf-
fic sources, ADV delivered 70-75% of the CBR packets com-
pared to about 60% for AODV and 50% for DSR. For only
2 TCPs, ADV achieved a delivery fraction above 90% for 10
CBR flows and in excess of 95% for 40 CBRs. AODV outper-
formed DSR in all cases, the observed difference increasing
with the number of TCP and CBR connections. Again, the
use of a fixed RTO had little or no effect compared to TCP
Reno.

6. CONCLUSIONS

Using the well-known ns-2 simulator with 802.11 wireless
LAN extensions, we compared the performances of two on-
demand algorithms, AODV and DSR, and a proactive algo-
rithm, ADV. We varied the number of TCP connections, the

-

*—%ADV -
&—<O AODV
—eDSR

=4
©
=4
©

. o
J»
o
=3

o

S

|

TCP Throughput (Mbps)
o o o o o
o

g S

TCP Throughput (Mbps)
o o o o o
o

©

o
o
o
o

=3
=
=3
=

o
o

@k{

TCP Throughput (Mbps)
o o o o o
o

o o
s &

PN o N c

w

F*—*ADV 02 F*—*ADV
G—oAODV ©—6A0DV
e DSR 01 e DSR
‘ 0 ‘
+ o o + + o
9 N 9 9
& = & o & =
< 3 < 3
) @ %) &

Figure 8: Combined throughputs for 2, 5, and 10 TCP connections with a 100 Kbps, 10-CBR background.

1

=4
©

*—kADV
S— AODV
®&—eDSR |

o
=3
S o
o ©

3
3

TCP Throughput (Mbps)
© ©o ©o © o o
(SR O PN
TCP Throughput (Mbps)
o o o o o o
(SR O PN
TCP Throughput (Mbps)
o o o o o
o o

=3
e
=3
e

0.9

< . o
J®

S

w

o
o

*—*ADV 0.2 *—% ADV]
I © AODV &S—OAODV
o—e DSR 0.1 o—e DSR
o ‘
+ o o + + o
(@) X o (@) (@) X
& 5° «® & & 5°
4 4
& &

Figure 9: Combined throughputs for 2, 5, and 10 TCP connections with a 100 Kbps, 40-CBR background.

background CBR traffic, and the number of CBR connections.
We proposed and evaluated the effectiveness of a heuristic
called "fixed RTO.” With this heuristic, a TCP sender can de-
termine if a retransmission timeout is due to network con-
gestion or temporary route loss. In addition, we investigated
the effectiveness of TCP’s selective and delayed acknowledg-
ments in improving the performance.

Our simulations yield several interesting insights into the
performances of the three algorithms. With standard Reno,
the proactive ADV performs extremely well compared to the
on-demand AODV and DSR. ADV provides lower connect
times for TCP connections and higher throughputs as the
number of TCP and CBR connections and volume of back-
ground traffic is varied. ADV’s routing overhead is generally
lower in packets/s and higher in bits/s than that of AODV
and DSR.

All three algorithms do not perform well when a TCP sender
and receiver lose their route frequently and any new route
established is likely to be longer than the old one. (See Fig-
ures 5 - 7 and the corresponding discussion given above.)
Owing to its adaptive triggering of route updates, however,
ADV suffers the least and is able to repair its routes fairly
quickly. On the other hand, AODV and DSR perform poorly,
since their route discovery mechanisms cannot handle such
situations. This underscores the need to have some sort of
proactive mechanism to repair routes quickly.

To improve the performances of the three algorithms, we
used TCP’s selective and delayed acknowledgments, which

yielded marginal performance gains for each of the three al-
gorithms. Our proposed fixed-RTO mechanism improved
the performances of the on-demand algorithms significantly,
however. Since the retransmit timer is frozen and not dou-
bled in cases where packet losses are due to broken routes,
TCP retransmits a data packet more frequently. This, in turn,
stimulates route discovery often enough that the on-demand
algorithms are able to re-establish broken routes. The perfor-
mance gains for DSR are similar to those reported by Hol-
land et al. [13], who use more complicated explicit link fail-
ure notifications. ADV does not benefit from the fixed-RTO
mechanism, since its route repairs do not occur any faster. It
is noteworthy that both AODV and DSR outperform ADV
as the number of TCP connections is increased and the pro-
posed fixed-RTO heuristic is added to TCP Reno.

As the number of TCP connections (and, hence, the offered
TCP traffic) is increased, while keeping the CBR background
traffic fixed, ADV delivers significantly more CBR packets
than AODV and DSR. This appears to indicate that ADV is
likely to deliver real-time multimedia traffic reliably even in
the presence of very large TCP traffic. (In our simulations,
the offered TCP traffic ranged from 2-10 times that of CBR
traffic.) However, we need to investigate this further.

Compared to the literature [1, 7, 13], this paper provides ex-
tensive analyses of routing algorithms and TCP performance
enhancement mechanisms. In addition, our simulations indi-
cate the relative strengths and weaknesses of on-demand al-
gorithms that depend on route discovery mechanisms to re-
pair broken routes and proactive algorithms that adaptively

=4
©
=4
©

— ADV
©—0AODV]
o—e DSR

o
=3
o
=3

S 5

TCP Throughput (Mbps)
o o o o o
= o
TCP Throughput (Mbps)
© ©o ©o © o o
= o

I

o
o

o <
oW

o o
oW

=3
=
=3
=

o
o

=4
©

o
> N ®

S

TCP Throughput (Mbps)
o o o o o
© o

*—KADV 02 *—KADV
6—0AODV G—0AODV
+—eDSR 0.1 oo DSR
‘ 0 ‘
Q © o o 9

& &€ X & kd

& & &
& &

Figure 10: Combined throughputs for 2, 5, and 10 TCP connections with a 200 Kbps, 10-CBR background.

=4
©

*—*ADV 4
S—<AODV
e—eDSR |

S o 9o
> N ®
S o o o
> Y ®» ©

TCP Throughput (Mbps)
o o o o o
= o
TCP Throughput (Mbps)
o o o o o
o

o
oW
o
oW

=3
e
=3
e

|

=4
©

o
=3

S

TCP Throughput (Mbps)
o o o o o o
o o N

w

*—*ADV |

o
o

0.2 *—%ADV

&—<©AODV &—<O AODV

®—eDSR 01 o—e DSR

0 .
O o + o)
& QPQ 6v(, QVO &
S x S
< <
<& <&

Figure 11: Combined throughputs for 2, 5, and 10 TCP connections with a 200 Kbps, 40-CBR background.

trigger route updates to repair broken routes. Our study also
suggests that the fixed-RTO mechanism gives performance
improvements comparable to those reported using explicit
link failure natification (ELFN). We would like to simulate
the ELFN scheme and compare it with the fixed-RTO mech-
anism to provide a more definitive conclusion.

In the future, we plan to enhance our study by incorporating
HTTP traffic, where several TCP connections are opened and
closed in short intervals. Given that ADV provides the short-
est connection times, and that AODV and DSR give slightly
higher throughputs with the fixed-RTO mechanism, it is not
clear which algorithm will handle the HTTP traffic well. We
would like to evaluate the algorithms for their ability to de-
liver real-time multimedia traffic in the presence of FTP and
HTTP traffic.

7. REFERENCES

[1] A. Ahuja et al., “Performance of TCP over different
routing protocols in mobile ad-hoc networks,”
Proceedings of IEEE Vehicular Technology Conference
(VTC 2000), Tokyo, Japan, May 2000.

[2] A.Bakre and B. Badrinath, “I-TCP: Indirect TCP for
mobile hosts,” in Proc. 15th International Conf. on
Distributed computing Systems (ICDCS), May 1995.

[3] H. Balakrishnan et al., “Improving reliable transport and
handoff performance in cellular wireless networks,” in
ACM SIGCOMM, Aug. 1996.

[4] H. Balakrishnan et al., “A comparison of mechanisms

(5]

(6]

[7]

(8]

(9]

for improving TCP performance over wireless links,”
ACM SIGCOMM, Aug. 1996.

R. Boppana and S. Konduru, “An adaptive distance
vector routing algorithm for mobile, ad hoc networks,”
in |IEEE Infocom 2001, Mar. 2001.

J. Broch et al., “ A performance comparison of multi-hop
wireless ad hoc network routing protocols” in ACM
Mobicom ’98, Oct. 1998.

K. Chandran et al., “A feedback based scheme for
improving TCP performance in ad-hoc wireless
networks,” in Proc. International Conference on Distributed
Computing Systems, 1998.

CMU Monarch Group, “CMU Monarch extensions to
the NS-2 simulator.” Available from
http://monarch.cs.cmu.edu/cmu-ns.html, 1998.

S.R. Das, C. E. Perkins, and E. M. Royer, “Performance
comparison of two on-demand routing protocols for ad
hoc networks,” in IEEE Infocom 2000, Mar. 2000.

[10] R. Dube et al., “Signal stability based adaptive routing

(SSA) for ad-hoc mobile networks,” in IEEE Personal
Communications, Feb. 1997.

[11] K. Fall and K. Varadhan, “NS notes and

documentation.” The VINT Project, UC Berkeley, LBL,
USC/ISI, and Xerox PARC. Available from
http://www-mash.cs.berkeley.edu/ns, Nov. 1997.

[12] C. Hedrick, “Routing information protocol.” RFC 1058,

1988.

100.0 1

]

*—*ADV
S>—<&AODV
o—e DSR

o o o
528

TCP Throughput (Mbps)
© © o o o
[EO S

TCP Connect Time (sec) [log scale]

=3
=
o
o

"o 2 4 6 8 10 2
Number of TCP Connections

4

6

Number of TCP Connections

500 300

F—* ADV
©&—<© AODV
o—=e DSR

250

s
S
3

200

w
S
]

150 -

N
S
3

Q/e/ez//e]

* %
* *

100 -

=
S
3

50

IP Layer Routing Overhead (pkt/s)
IP Layer Routing Overhead (Kbps)

o
o

2 4 6 8 10 0 2
Number of TCP Connections

o

4

6

Number of TCP Connections

098 [F—.\.\. 1
E %
2 o096 1
o
8
U]
S o004}
2
*—%ADV | 0.2 *—%ADV |
&—AODV &—&AODV
e—e DSR e—e DSR
. . 0.9
8 10 0 2 4 6 8 10
Number of TCP Connections
2000
F—* ADV <
o—oOAODV 1 =
o—e DSR T 1500 -
Q
<
]
>
o
2 1000
5
o
4
g
g 00 f *—% ADV
Q &>—©AODV
< e—e DSR
. . °
8 10 0 2 4 6 8 10

Number of TCP Connections

Figure 12: Connect times, throughputs, goodputs, and routing overhead for TCP Reno with a 100 Kbps 10-CBR background.

[13] G. Holland and N. Vaidya, “Analysis of TCP
performance over mobile ad hoc networks,” ACM
Mobicom ’99.

[14] IEEE Computer Society LAN/MAN Standards
Committee, “Wireless LAN medium access control
(MAC) and physical layer (PHY) specifications.” IEEE
Std. 802.11-1997. IEEE, New York, NY 1997.

[15] P.Johansson et al., “Scenario-based performance
analysis of routing protocols for mobile ad-hoc
networks,” in ACM Mobicom 99, Aug. 1999.

[16] D. B.Johnson et al., “The dynamic source routing
protocol for mobile adhoc networks.” IETF Internet
Draft. http://www.ietf.org/internet-drafts/draft-ietf-
manet-dsr-02.txt,

1999.

[17] S.Lee, Mario Gerla, and C.K.Toh, “A simulation study
of table-driven and on-demand routing protocols for
mobile ad hoc networks,” in IEEE Network Magazine,
Aug. 1999.

[18] C.E. Perkins, E. M. Royer, and S. R. Das, “Ad hoc on
demand distance vector routing.” IETF Internet Draft.
http://www.ietf.org/internet-drafts/draft-ietf-manet-
aodv-03.txt,

1999.

[19] C. E. Perkins and P. Bhagwat, “Highly dynamic
destination-sequenced distance vector (DSDV) for
mobile computers,” in ACM SIGCOMM ’94,
pp. 234-244, Aug. 1994,

[20] N. Vaidya et al., “Delayed duplicate
acknowledgements: a TCP-unaware approach to
improve performance of TCP over wireless” Technical
Report 99-003, Dept. of computer Science, Texas A&M
University, Feb. 1999.

100.0

T #—% ADV
s &—< AODV
2]
> o—e DSR
2
= 100 B
o
@
2
@
£
Lt %
g
2 1.0 k|
c
o
(8]
o
]
=
01
0 2 4 6 8 10
Number of TCP Connections
500
- F—* ADV
K4 ©&—<© AODV
= 400 o—e DSR 4
3 O/&/«/e—/—e
151
2
o 300 1
;4
o
=
£
5 200 1
<]
x
g
& 100 ke * x
o
0
0 2 4 6 8 10

Number of TCP Connections

TCP Throughput (Mbps)

IP Layer Routing Overhead (Kbps)

"

o o o o o
& &5 28 8

o
=

03

0.2

01

300

2 4 6 8 10
Number of TCP Connections

250

200

150

100

e

— ADV
S>—©AODV
o—e DSR

2 4 6 8 10
Number of TCP Connections

TCP Goodput

MAC Layer Routing Overhead (pkt/s)

0.96 1
0.94 q
0.92 H—HADV |
S>—<&AODV
&—e DSR
0.9
0 2 4 6 8 10
Number of TCP Connections
2000
1500 1
1000 1
500 *—KADV
>—©AODV
o—e DSR
0
0 2 4 6 8 10

Number of TCP Connections

Figure 13: Connect times, throughputs, goodputs, and routing overhead for TCP Reno with a 100 Kbps 40-CBR background.

100.0
o)
©
S
@
=
2
= 100
S
@
2
@
£
F
g
2 10
£
IS
o
o
O
[
0.1

500

N w IS
S =3 S
3 3 3

IP Layer Routing Overhead (pkt/s)
=
S
8

Figure 14: Connect times, throughputs, goodputs, and routing overhead for TCP SACK + delayed ACKs + fixed RTO with a

H—*ADV
&—<AODV
e—e DSR

2 4 6 8 10

Number of TCP Connections

— ADV
©&—<© AODV
o—e DSR 1

2 4 6 8 10
Number of TCP Connections

100 Kbps 10-CBR background.

10

TCP Throughput (Mbps)

IP Layer Routing Overhead (Kbps)

S © 9 ©o o ©o
= 0 o N ® © -

o
@

0.2
0.1

300

250

200

150

100

— ADV
S>—©AODV

L o—e DSR

0 2 4 6 8 10

Number of TCP Connections

*—¥ ADV

r &>— AODV

&—e DSR

0 2 4 6 8 10

Number of TCP Connections

TCP Goodput

MAC Layer Routing Overhead (pkt/s)

0.98

4
©
3

4
©
®

0.9

2000

.
@
=3
3

.
S
S
3

a
=1
3

—¥ ADV
>—©AODV
o—e DSR

2 4 6 8 10
Number of TCP Connections

—¥ ADV
S>—©AODV
o—e DSR

2 4 6 8 10
Number of TCP Connections

1

TCP Connect Time (sec) [log scale]

IP Layer Routing Overhead (pkt/s)

00.0

— ADV
©&—& AODV
o—e DSR
10.0 1
X
1.0 q
01 . -
0 2 4 6 8 K
Number of TCP Connections
500

400

300

200

100

*—¥% ADV
S>—©AODV
e&—e DSR

*—¥ * *]
2 4 6 8 10

Number of TCP Connections

"

09 F q
.08 1
@

a
S07 q
=
5 06 q
2
505 q
3
E04r q
=
o 03]
O
ozt *—kADV]
S>—<&AODV
01 e—eDSR -
0
0 2 4 6 8 10
Number of TCP Connections

300
I
S s [}
<
B
@ 200 | q
<=
[

3
o 150 | 1
£
5
& 100 [q
)
2 *—% ADV
— 50 F S—©OAODV
o e—e DSR
0
0 2 4 6 8 10

Number of TCP Connections

0.98 - q
g *\,**
2 o096 1
o
8
Qo
S o004} 4
2
092 | *—%ADV |
&>—©AODV
e—e DSR
0.9
0 2 4 6 8 10
Number of TCP Connections
2000
o
=
2
=
2 1s00 | / 1
Q
<
]
>
o
2 1000 - 1
5
o
4
g
g 00 f *—% ADV
Q &>—©AODV
< e—e DSR
°
0 2 4 6 8 10

Number of TCP Connections

Figure 15: Connect times, throughputs, goodputs, and routing overhead for TCP SACK + delayed ACKs + fixed RTO with a
100 Kbps 40-CBR background.

15 15
*—% ADV *—% ADV
&—©AODV &—<AODV
e—eDSR e—eDSR
8 1 1 S 1t 1
R2A R2A
> >
3 3
2 2
o))
© ©
k| k|
o o
& 05 , & 05| ,
S / S
0 0
0 2 4 6 8 10 o 2 4 6 8 10

Number of TCP Connections Number of TCP Connections

Figure 16: CBR latencies for TCP Reno and TCP SACK + delayed ACKs + fixed RTO with a 100 Kbps 10-CBR background.

100

100

90

80 80

: Q

/

70

60 1

50 1

40 1

CBR Packet Delivery Fraction (%)
g
CBR Packet Delivery Fraction (%)

30 1 30 1
20 #—*ADV 20 b #—*ADV
&— AODV &— AODV
10 e—eDSR] 10 e—eDSR]
0 0
0 2 4 6 8 10 0 2 4 6 8 10

Number of TCP Connections Number of TCP Connections

Figure 17: CBR packet delivery fractions for TCP Reno and TCP SACK + delayed ACKSs + fixed RTO with a 100 Kbps 10-CBR
background.

11

	1: ACM Symposium on Mobile Ad Hoc Networking & Computing (Mobihoc), October 2001
	2: 2
	3: 3
	4: 4
	5: 5
	6: 6
	7: 7
	8: 8
	9: 9
	10: 10
	11: 11

