Communication in Multicomputers with
Nonconvex Faults

Suresh Chalasani
Rajendra V. Boppana

Technical Report : CS-96-12
October 1996

The University of Texas at San Antonio
Division of Computer Science
San Antonio, Texas 78249-0667, USA

A shorter version will be published in IEEE Transactions on Computers

Communication in Multicomputers with Nonconvex Faults

Suresh Chalasani
Dept. of Electrical and Computer Engineering
University of Wisconsin-Madison
Madison, W1 53706-1691

Phone: (608) 265-2639
Fax: (608) 262-1267
E-mail: suresh@cauchy.ece.wisc.edu.

Rajendra V. Boppana
Division of Computer Science
The University of Texas at San Antonio
San Antonio, TX 78249-0667

Phone: (210) 458-5692
Fax: (210) 458-4437
E-mail: boppana@cs.utsa.edu.

Abstract

A technique to enhance multicomputer routers for fault-tolerant routing with modest increase in
routing complexity and resource requirements is described. This method handles solid faults in
meshes, which includes all convex faults and many practical nonconvex faults, for example, faults
in the shape of L or T. As examples of the proposed method, adaptive and nonadaptive fault-tolerant
routing algorithms using four virtual channels per physical channel are described.

Keywords: solid faults
deadlocks
mesh networks
multicomputers
routing algorithms
wormhole routing

Chalasani’s research has been supported in part by a grant from the Graduate School of UW-Madison and the NSF

grants CCR-9308966 and ECS-9216308. Boppana’s research has been partially supported by NSF Grant CCR-9208784 and
DOD/AFOSR Grant F49620-96-1-0472.

A shorter version will be published in IEEE Transactionson Computers

Communication in Multicomputers with Nonconvex Faults
Suresh Chalasani Rajendra V. Boppana

1 Introduction

Many recent experimental and commercial multicomputers and multiprocessors use direct-connected
networks with mesh topology [1, 14, 13, 7, 15]. These computers use the well-known dimension-
order or e-cube routing algorithm in conjunction with wormhole switching [9] to provide interpro-
cessor communication. In the wormhole technique, a packet is divided into a sequence of fixed-
size units of data, called flits and transmitted from source to destination in asynchronous pipelined
manner. The first flit of the message makes the path and the tail flit releases the path as the message
progresses toward its destination.

The e-cube routing algorithm is simple and provides high throughput for uniform traffic. The
e-cube achieves its simplicity by using, always, a fixed path for each source-destination pair, though
the underlying network may provide many additional paths of the same length (in hops). There-
fore, the e-cube cannot handle even simple node or link faults, because even one fault disrupts many
e-cube communication paths.

Adaptive and fault-tolerant routing for multicomputer networks has been the subject of exten-
sive research in recent years [2, 3, 4, 6, 8, 10, 11, 12, 16]. Most of the current techniques to handle
faults in torus and mesh networks require one or more of the following: (a) new routing algorithms
with adaptivity [4, 6, 8, 11, 12], (b) global knowledge of faults, (c) restriction on the shapes, loca-
tions, and number of faults [6, 8, 12, 3, 16], and (d) relaxing the constraints of guaranteed delivery,
deadlock- or livelock-free routing [16].

In this paper, we present fault-tolerant routing methods that can be used to augment the ex-
isting fault-intolerant routing algorithms with simple changes to routing logic and with modest in-
crease in resources. These techniques rely on local knowledge of faults—each fault-free node needs
to know the status of only its links and its neighbors’ links—and can be applied as soon as the faults
are detected (provided the faults are of specific shapes). Messages are still delivered correctly with-
out livelocks and deadlocks.

The fault model is a generalized convex fault model, called solid-fault model. In the convex-
fault model, each connected set of faults has a convex shape (for example, rectangular in 2D meshes)
[3, 6]. In the solid-fault model, a connected fault set is such that any dimensional cross section (de-
fined in Section 2.1) of the fault region has contiguous faulty components. Fault regions with a va-
riety of shapes, for example, convex, +, L, and T in a 2D mesh, are examples of solid faults.

Our approach in this paper is to demonstrate techniques to enhance known fault-intolerant
routing algorithms to provide communication even under faults. To illustrate this, we apply our
techniques to the non-adaptive e-cube and a class of fully-adaptive algorithms [10] for meshes with
solid faults. The results presented in this paper expand on our earlier results for convex faults [3, 5].

The rest of the paper is organized as follows. Section 2 describes the solid fault model and the
concept of fault-rings. Section 3 describes our fault-tolerance techniques for the nonadaptive e-cube

algorithm. Section 4 applies these techniques for fully-adaptive algorithms. Section 5 concludes the
paper.

2 Preliminaries

We consider n-dimensional mesh networks with faults. A (k, n)-mesh has » dimensions, denoted
DIMy,...,DIM,_{, and N = k™ nodes. Each node is uniquely indexed by an n-tuple in radix k. Each
node is connected via bidirectional links to two other nodes in each dimension. Given a node = =
(%p-1,...,20), its neighbors in bIM;, 0 < ¢ < n, are (z,—1,...,Tit1,2; £ 1,2,-1,...,20); if the ith
digit of a neighbor’s index is —1 or k, then that neighbor does not exist for z. If two nodes z and y
are connected by a link, then the link is denoted by z<».

We assume that a message that reaches its destination is consumed in finite time. If a message
has not reached its destination and is blocked due to busy channels, then it will continue to hold the
channels it has already acquired and not yet released. Therefore, deadlocks can occur because of
cyclic dependencies on channels. To avoid deadlocks, multiple logical or virtual channels are sim-
ulated on each physical channel and allocated to messages systematically [9]. When faults occur,
the dependencies are even more common, and more virtual channels may need to be used or the
use of channels may have to be restricted further. Using extra logic and buffers, multiple virtual
channels can be simulated on a physical channel in a demand time-multiplexed manner. We spec-
ify the number of virtual channels on per physical channel basis and denote the ith virtual channel
on a physical channel with ¢.

In the remainder of this section, we describe the fault model and the concept of fault-rings for
2D meshes. Our results can be extended to multidimensional meshes and torus networks with suit-
able modifications. We label the sides of a 2D mesh as North, South, East and West.

2.1 The fault model

We consider both node and link faults. For fault detection, processors test themselves periodically
using a suitable self-test algorithm. In addition, each processor sends and receives status signals
from each of its neighbors. A link fault is detected by the processors on which it is incident by ex-
amining these status signals. A processor that fails its self-test stops transmitting signals on all of
its links, which appears as link faults to its neighbors. A fault-free processor ignores the incoming
signals on its links determined to be faulty. So, faulty nodes do not generate messages.

We model multiple simultaneous faults, which could be connected or disjoint. We assume that
the mean time to repair faults is quite large, a few hours to many days, and that the existing fault-
free processors are still connected and should be used for computations in the mean time. We de-
velop fault-tolerant algorithms that can work with only local fault information—each node knows
only the status of links incident on it and on its neighbors reachable via its fault-free links.

Before defining solid faults, we need to define cross sections of networks and faults. Each con-
nected fault set describes a subnetwork of the original mesh. Given a subnetwork or network, all
of its nodes that match with one another in all but one component of their n-tuple representations
and the links among them form its 1-D cross section. For example, in a 2D mesh, each row and
each column is a 1-D cross section of the network. The column cross sections of /& in Figure 1
are {(4,1),(3,1)<(4,1),(4,1)~(5,1)} and {(3,2),(2,2)<+(3,2),(3,2)<+(4,2) }, and its row cross sections are

{(2,2)<(2,3)}, {(3,2),(3,1)++(3,2),(3,2)<+(3,3)}, and {(4,1),(4,0)<+(4,1),(4,1)<+(4,2)}. Sometimes a 1-D
cross section of afault contains just asingle faulty link. In asimilar manner, 2D and higher-dimension
cross sections can be defined.

With local knowledge of fault information, handling situations where a message has to travel
on a path and retract because it reached a dead-end is complicated. Such situations occur when the
node connectivity of a 2D cross section of the network is one. (Node connectivity is the minimum
number of nodes that need to be removed to disconnect a network.) This situation can be identified
and corrected by disabling the pendant nodes in each 2D cross section. (A pendant node in a 2D
plane has only one good link.) A pendant node marks itself faulty. This may result in more pendant
nodes in the network. Then the new ones will mark themselves faulty. This can be repeated several
times, bounded by the diameter of the network. At the end, we have a connected network with
each node having two or more working links in each 2D cross section. Henceforth, we assume that
when faults occur appropriate nodes mark themselves faulty as needed so that the resulting node
connectivity of the network is greater than one.

A node fault is equivalent to making the links incident on that node faulty. Therefore, given a
set F" with one or more node faults and some link faults, we can represent the fault information by
a set F; which contains all the links incident on the nodes in F and all the links in F. Two faulty
links @ = <>y and b = u«sv in Fj are adjacent if one of the following conditions hold:

1. a and b have different dimensions and are incident on a common node,
2. node z can be reached from « in one hop and node y from v in one hop, or
3. node z can be reached from v in one hop and node y from « in one hop.

A pair of links adjacent by the above definition are said to be connected. Two nonadjacent links
ay,a, € Fpare connected if there exist links ay, ..., a,_1 € Fj;such that a; and a;4,, for 1 < ¢ <
p, are adjacent. A faulty node and a faulty link « are connected if there is at least one link inci-
dent on the faulty node to which link « is connected. A set with a single faulty link represents a
trivially connected fault set. A set of faulty links £ with two or more components is connected if
every pair of links in F; is connected. A set F' of faulty nodes and links is connected, if the cor-
responding set F; of faulty links is connected. The fault sets 5 = {(1,0)«(1,1),(0,1)(1,1)},
Fy, = {(0,4)(0,5), (1,4)(1,5)}, F5 = {(2,2)<(2,3),(3,2),(4,1)},and Fy = {(4,4)} in Figure
1 are examples of connected fault sets. F3 is an example of the connected fault based on the last
two adjacency rules given above.

A connected fault-set F', with all of its links given by the set F;, indicates a solid fault region, or
f-region, if the following condition is satisfied.

If two links a, b € Fj are in the same 1-D cross section, then all the nodes between « and b
in the same 1-D cross section are also faulty.

A set of faults is valid if each connected fault in the set is a solid fault. All the faults in Figure 1
are examples of solid faults. The faults F5 and F, are also examples of convex (rectangular block-
shaped) faults. The faults F; and F3 are not convex faults.

2.2 Faultrings

For each connected fault region of the network, it is feasible to connect the fault-free components
around the fault to form a ring or chain. This is the fault ring, f-ring, for that fault and consists

O O @
F1 Eo
o U
F3 Fa4
o o
O O
5,0 55

Figure 1: Examples of solid faults in a mesh. Faulty nodes are shown as filled circles, and
faulty links are not shown. Thick lines indicate the corresponding fault rings.

of the fault-free nodes and channels that are adjacent (row-wise, column-wise, or diagonally) to
one or more components of the fault region. For example, the f-rings for the various solid faults in
Figure 1 are shown with thick lines. It is noteworthy that a fault-free node is in the f-ring only if it is
at most two hops away from a faulty node. There can be several fault rings, one for each f-region, in
a network with multiple faults. Fault rings provide alternate paths to messages blocked by faults.

A set of fault rings are said to overlap if they share one or more links. For example, the f-rings
of I'; and Fj in Figure 1 overlap with each other on link (3, 3)«<+(4, 3). Also, if a nonfaulty node has
both links in a dimension faulty, overlapping f-rings are formed. (if = is not faulty and has both
links in a dimension are faulty, then it results in overlapping f-rings). Forming a fault-ring around
an f-region is not possible when the f-region touches one or more boundaries of the network (e.g.,
F, in Figure 1). In this case, a fault chain, f-chain, rather than an f-ring is formed around the f-region.
In this paper, we do not consider solid faults that form f-chains or overlapping f-rings.

2.3 Formation of fault rings

Fault-rings are used to route messages around a fault region. Messages can be routed on an f-ring
in one of two directions: clockwise (immediate boundary of the corresponding fault region is to the
right of a message’s path on the fault ring), and counter-clockwise. A node on an f-ring identifies
its neighbors for each direction of traversal. For f-rings formed around solid faults, the neighbors
are the same for both directions. In a general case, however, these neighbors can be different. Fault-
rings can be constructed for each fault-region using a two-step distributed algorithm.

To see this, consider a single fault region in a 2D mesh.

In step 1, if a node has a DIMp faulty link incident on it, then it sends this information to its
DIM; neighbors, and vice versa. It is noteworthy that if a node is fault-free and has both links in a
dimension faulty, then it results in overlapping f-rings, which are not considered in this paper.

Table 1: Determining the neighbors of a node on an f-ring. Let = be the node whose neighbors are
to be determined. N, F,, S.., W, denote the nodes adjacent to = in the North, East, South, and West
directions, respectively.

| Faulty Links | Neighbors |

East & South links of z Ny, W,
East & North links of = Seys W
West & South links of z N, E,
West & North links of « Sy Ey

East or West link of z (no faulty column links) | N, .S,

North or South link of = (no faulty row links) | F., W..
North link of £, or East link of NV, N, E,
South link of £, or East link of S, Se, Ey

North link of W, or West link of N, N, W,
South link of W, or West link of S, Sz, W

In step 2, each node that has a faulty link or received a ‘fault information’ message from a neigh-
bor determines its position on the f-ring using the rules given in Table 1. The first four cases apply
when there are exactly two faulty links are incident on z, the node trying to determine its f-ring
neighbors. The next two apply when there is exactly one faulty link incident on xz. The remaining
cases apply when z has no faulty links.

Even with nonoverlapping f-rings, a node may appear in up to 2 f-rings in a 2D mesh with solid
faults. For example, nodes (2,1) and (1,2) appear in the f-rings of /{ and F35 in Figure 1. There can be
at most two faulty links incident on a fault-free node even with multiple f-regions. If multiple faults
occur simultaneously, a node may send or receive messages about multiple f-regions. Using the
faulty link direction and dimension provided in each fault status message, it is feasible to separate
the messages on faults for different f-regions. For multidimensional meshes, each solid fault creates
multiple fault rings, one for each 2D cross section of the fault. In summary, f-rings are formed for
any connected fault set using only near-neighbor communication among fault-free processors.

The definition of solid faults can be used to check if a fault can be characterized as a solid fault.
In a 2D mesh, the boundary of a solid fault crosses each row and each column exactly zero times or
twice. A special type of shape-finding message can be circulated around an f-ring and the number of
times the worm crosses each row and column can be counted. If any row or column is visited more
than twice, then the corresponding fault is not a solid fault; otherwise it is a solid fault. If a fault is
not a solid fault, then disabling selected nodes and links so that the result is a solid fault requires
more than local knowledge. Some techniques to do this are discussed in Appendix A.

If a fault is a solid fault, the routing techniques described in the remainder of the paper can be
used to route messages without any further network reconfiguration.
3 Fault-Tolerant Nonadaptive Routing

We first show how to enhance the well-known e-cube routing algorithm to handle solid faults in 2D
meshes. The e-cube routes a message in a row until the message reaches a node that is in the same

Procedure Set-Message-Type(M)
/* Comment: The current host of M is (a1, ag) and destination is (b1, bg). When a message is
generated, it is labeled as EW if ¢y > by and as WE otherwise. */
If M is an EW or WE message and ay = by,
change its type to NS if a; < b; or SN if &y > b;.

Procedure Set-Message-Status(M)
/* Comment: Determine if the message M is normal or misrouted.
The current host of M is (ay, ag) and destination is (b1, bg). */

1 If M isarow — EW or WE — message and its e-cube hop is not blocked, then set the status
of M to normal and return.

2 If M is a column — NS or SN — message and a, = bg, and its next e-cube hop is not on a
faulty link, then set the status of M to normal and return.

3 Set the status of M to misrouted,
determine using Table 2 the f-ring orientation to be used by M for its misrouting.

Figure 2: Procedures to set the status and type of a message.

column as its destination, and then routes it in the column. For fault-free meshes, the e-cube pro-
vides deadlock-free shortest-path routing without requiring multiple virtual channels to be simu-
lated. At each point during the routing of a message, the e-cube specifies the next hop, called e-cube
hop, to be taken by the message. The message is said to be blocked by a fault, if its e-cube hop is
on a faulty link. The proposed modification uses four virtual channels, @, ¢, ¢2 and ¢3, on each
physical channel and tolerates multiple solid faults with nonoverlapping f-rings.

To route messages around f-rings, messages are classified into one of the following types us-
ing Procedure Set-Message-Type (Figure 2): EW (East-to-West), WE (West-to-East), NS (North-to-
South), or SN (South-to-North). A message is labeled as either an EW or WE message when itis gen-
erated, depending on its direction of travel along the row. Once a message completes its row hops,
it becomes a NS or a SN message depending on its direction of travel along the column. Thus, EW
and WE messages can become NS or SN messages; however, NS and SN messages cannot change
their types. These rules are summarized in procedure Set-Message-Type. EW and WE messages
are collectively known as row messages and NS and SN as column messages.

In addition to its type, each message also provides its current status information: normal or
misrouted. A row message is termed normal, if its e-cube hop is not blocked by a fault. A column
message whose head flit is in the same column as its destination is normal if its e-cube hop is not
blocked by a fault. All other messages are termed misrouted. Procedure Set-Message-Status in
Figure 2 gives these rules.

3.1 Modifications to the routing logic

Normal messages are routed using the base e-cube algorithm. A normal message blocked by a fault
is treated as a misrouted message and routed on the corresponding f-ring using the logic given in
Figure 5 until it becomes normal again. Sometimes a message may travel on the f-ring before being

WE Messages EW Messages
%—X
NS Messages SN Messages

ot

L N

l T

Figure 3: Routing of misrouted messages around fault rings.

blocked by the fault contained by the f-ring. In such cases, the message is forced to use the f-ring
orientation compatible with its travel on the f-ring up to that point. For example, a WE message
may be blocked at node y in Figure 3 after traversing a hop on the f-ring. In that case, the message
should traverse the f-ring in the clockwise orientation (Rule 4 in Table 2) to get around the fault.

In other cases, a message is blocked the first time it arrives at a node on an f-ring (for exam-
ple, node z for a WE message in Figure 3). In such cases, a message may use clockwise or counter
clockwise orientation depending on other conditions. The orientations and conditions are given in
Table 2.

If a message takes a normal hop on a link that is not on an f-ring, then the virtual channel to
be used is given by the base e-cube algorithm. Under the e-cube, a message may use any virtual
channel in its normal hop without deadlocks. (In fact, with e-cube routing, there can be only one
type of messages using each physical channel that is neither faulty nor part of an f-ring.) Sometimes
amessage may travel on an f-ring using the base e-cube algorithm because its normal hop is on the
f-ring. In addition, a message may travel on an f-ring because it is blocked by the corresponding
fault. In both cases, messages traveling on f-rings can use only the following virtual channels: EW
messages use ¢, for all hops on f-rings, WE messages use ¢, NS messages use ¢; and SN messages
use cs.

Consider amessage M from (3,0) to (4,5) in the mesh with two solid faults in Figure 4. M begins
as a WE message and is routed to (3,1), where its e-cube hop is blocked by the faulty node (3,2). It
is misrouted in the counter-clockwise orientation to (4,1) to be compatible with its previous hop,
which is on the f-ring. After routed by the base e-cube from (4,1) to (4,4), it is blocked by the faulty
link (4, 4)<+(4,5), and is misrouted in the (randomly chosen) clockwise orientation. M is routed as
an NS message for its final hop. The use of virtual channels per the enhanced routing logic is as
indicated. The hop from (4,3) to (4,4) is by the e-cube on a link not on any f-ring; so, any of the four
classes of virtual channels may be used for this hop as per the e-cube.

0,0 05
O O
cl .3‘2 cl

3,0
cl cl c2
Y
cl cl
15
O O
5,0 55

Figure 4. Example of nonadaptive fault tolerant routing.

If a message is destined to a faulty node, then it can be detected and removed from the network
using our misrouting logic. A message, say, M, destined to a faulty node will eventually become
a column message, say, an NS message, with our misrouting logic. Upon further routing, M will
reach a point where it has just completed misrouting by reaching a south row of the f-ring, but its
destination is directly above its current host node and its e-cube hop is on the faulty North link of its
current host node. Upon detecting this anomaly, the message M can be removed from the network.

3.2 Proof of deadlock and livelock freedom

Lemma 1 Thealgorithm Fault-Tolerant-Route routes messages in 2D meshes with solid faults and nonover-

lapping f-rings free of deadlocks and livelocks.

Procedure Fault-Tolerant-Route(Message M) /* Specifies the next hop of M */
1. Set-Message-Type(M).

2. Set-Message-Status(M).

3. If M is normal, select the hop specified by the base algorithm.
4. If M is misrouted, select the hop along its f-ring orientation.
5

. If the selected hop is on an f-ring link, route the message using virtual channel ¢ if M’s
type is EW, ¢ if WE, ¢, if NS, or ¢35 if SN.

6. If the selected hop is not on an f-ring link, route the message using the virtual channel
specified by the base algorithm.

Figure 5: Fault-tolerant routing algorithm.

Table 2: Directions to be used for misrouting messages on f-rings.

Rule Message Traversed on Position of F-Ring
No. Type the f-ring Destination Orientation
la WE No In a row above Clockwise
its row of travel
1b WE No In a row below Counter Clockwise
its row of travel
1c WE No In the same row Either orientation
2a EW No In a row above Counter Clockwise
its row of travel
2b EW No In a row below Clockwise
its row of travel
2c EW No In the same row Either orientation
| 3 | NSorSN | No | (don’tcare) Either orientation
4 | Any message Yes Don’t care Choose the orientation that
is being used by the message

Proof. Each type of messages (EW, WE, SN, and NS) uses a distinct class of virtual channels. This
can be easily seen for the virtual channels simulated on physical channels forming f-rings. For each
physical channel not on any f-ring, there can be only one type of message using that physical chan-
nel because of e-cube routing. Therefore, in all cases, each message type has an exclusive set of vir-
tual channels for its hops. Furthermore, row messages (EW and WE) can become column messages,
but not vice-versa. Thus, deadlocks among two different types of messages cannot occur, since NS
and SN messages do not depend on any other message type. Hence, to prove deadlock-freedom, it
is sufficient to show that there are no deadlocks among messages of a specific type.

Deadlocksamong NS messages. Deadlocks can be among NS messages waiting for virtual chan-
nels at nodes on a single f-ring only or at nodes on multiple f-rings. (The NS messages waiting
for virtual channels at other nodes will be routed by the deadlock-free e-cube and cannot be part
of deadlocks.) Furthermore, a NS message may use counter clockwise or clockwise orientation to
travel on an f-ring. The set of physical channels used for each orientation are disjoint. Misrouted
NS messages with clockwise orientation never use the channels on the west-most column of an
f-ring. (For example, the link (2, 0)«+(3, 0) constitutes the west-most column of the f-ring for A in
Figure 4.) Similarly, NS messages misrouted counter clockwise on an f-ring never use the east-most
column of the f-ring (for example, the two links between nodes (2,3) and (4,3) for the f-ring of K
in Figure 4). Therefore, the paths used by NS messages on an f-ring are acyclic. So, a single f-ring
does not cause deadlocks among NS messages.

Let us define a relation R on the set of f-rings as follows. Given two f-rings f and f2, fi Rf; if
there exists a DIM; (column) cross section of the network containing nodes on both f-rings and the
top-most node f; is above that of f5.

If fiRf, and f>Rf, then (a) both f-rings have the same top node in a DImM; cross section or (b)
there exists two DIM; cross sections such that in one cross section the top node of f is above that
of f, and in the other f; has its top node above that of f;. Case (a) is feasible if f; overlaps with f;,

which is prohibited, or fi = f». Case (b) is feasible if the f-region contained by £ wraps around (in
one or more columns) that of f;. This is impossible, since faults are solid. So R is antisymmetric.

Suppose fiRf; and fyRfs, for three f-rings fi, f2, and f5. If both f; and f; have a common
column, then f; R fs, since faults are solid. If fi and f; do not have a common column, however,
then f; R fs and fs I f1. This shows that R is a subset of some partial-order.

NS messages always use f-rings as per the relation given by R. So, f-rings are used acyclically
by NS messages.

Livelock freedom and correct delivery. A message is misrouted only by a finite number of hops
on each f-ring, and it never visits an f-ring more than twice (at most once as a row message and once
as a column message). So, the extent of misrouting is limited. This together with the fact that each
normal hop takes a message closer to the destination proves that messages are correctly delivered
and livelocks do not occur. |

3.3 Extension to multidimensional meshes

We now consider solid faults with nonoverlapping f-rings in a (k, n)-mesh and show how to en-
hance the e-cube to provide communication. The e-cube orders the dimensions of the network and
routes a message in dimension 0, until the current host node and destination match in dimension 0
component of their n-tuples, and then in dimension 1, and so on, until the message reaches its desti-
nation. From the definition of solid faults in Section 2.1, it is easy to verify that each 2D cross section
(consists of all nodes that match in all but two components of their n-tuples and the links among
them) of a solid fault in a (k, »)-mesh is a valid solid fault in a 2D mesh. Therefore, fault-tolerant
routing in a (k, n)-mesh is achieved by using our results for 2D meshes and the planar-adaptive
routing technique [6].

The routing algorithm to handle nonoverlapping f-rings still needs only four virtual channels
per physical channel. Let A;, where 0 < ¢ < n, denote the set of all 2D planes (2D cross sections of
the (k, n)-mesh) formed using dimensions 7 and ¢ + 1 (mod 7).

A normal message that needs to travel in DIM;, 0 < ¢ < n, as per the e-cube is a DIM; message.
A DIM; message that completed its hops in dimension DIM; becomes a DIM; message, where j > ¢
is the next dimension of travel as per the e-cube algorithm. A message blocked by a fault uses the
f-ring in an appropriate 2D plane that contains the current host node for misrouting. So a DIM
message, 0 < ¢ < n—2, uses a 2D plane of type A; for routing and virtual channels of class ¢ (imod2)
OF C3(imod2)+1 depending on its direction of travel in DIM;. A DIM,_; message will use an A4,_;
plane; it will use virtual channels of classes ¢, or ¢5 if n is even, or ¢y Or ¢4 in DIM,,_; and ¢, OF ¢3 in
DIMg, otherwise.

Table 3 indicates the types of planes and virtual channels used in routing various types of mes-
sages by the routing algorithm. For n = 2, this usage is the same as described before in this section.

There is a partial-order on the planes used and the sets of virtual channels used for these planes
are pairwise disjoint. To see this, consider the following ranking of sets of virtual channels. Letn
be even and v (i, j) denote the set of virtual channels of class j on bDim; links.

{v(0,0),v(0,1),v(1,0),v(1,1)} < {r(1,2),r(1,3),r(2,2),r(2,3)} <
{r(2,0),r(2,1),v(3,0),v(3, 1)} < {r(3,2),r(3,3),r(4,2),v(4,3)} < ...
<A{v(n—-1,2),v(n-1,3),v(0,2),v(3,3)}

10

Table 3: Use of planes and virtual channels by various messages in an nD mesh by the fault-tolerant
routing algorithm. First of the two virtual channels specified for each message type is used for hops
in the ‘+’ direction of the corresponding dimension and the second virtual channel class for hops
in ‘-” direction.

Message type | Plane type | Virtual channel classes

DIMg A071 co and ¢
DIMy ALQ ¢ and c3
DIMs Ays co and ¢

DIM,_1, n even Anip ¢ and c3
DIM,,_, n odd An—l,O coand ¢; in DIM,,_1, ¢o and ¢3 in DIMg

The virtual channels in each set above indicate the channels used by a particular dimension message
in a 2D plane. Since the 2D plane routing is based on the 2D mesh routing given earlier, each set of
virtual channels are used without creating cyclic dependencies. A rigorous proof of deadlock free
routing is straight forward and is omitted.

4 Fault-Tolerant Adaptive Routing

The adaptive fault-tolerant routing algorithm described in this section uses the technique devel-
oped in the previous section. The fault intolerant version of the algorithm is based on the general
theory developed by Duato [10]. The particular one we use here can provide adaptive routing with
as few as two virtual channels: one for deadlock free e-cube routing and another for adaptive rout-
ing. Since we need four virtual channels for deadlock free routing under faults, we describe the
base adaptive algorithm, A, for fault-free networks using four channels (Figure 6). At any point of
routing, a message has two types of hops: the e-cube hop and adaptive hops. The e-cube hop is the
same as before: the hop specified by the e-cube algorithm. The adaptive hops are all other hops
that take the message closer to its destination. Algorithm A first tries to route a message M using
an adaptive channel—eq, c2, or ecs—along any of the dimensions that take M closer to the destination
(Step 2). If this fails, A tries to route M using the non-adaptive channel ¢ on its e-cube hop (Step
3). If this step also fails, the same sequence of events is tried after a delay of one cycle.

To enhance this algorithm for fault-tolerant routing, we classify messages into normal and mis-
routed categories, as before. While normal messages may have adaptivity, misrouted messages do
not. The top level description of our fault-tolerant adaptive routing is the same as that for the non-
adaptive case in Figure 5, with the algorithm in Figure 6 as the base routing algorithm. An impor-
tant amendment to the routing logic is for normal messages: (a) if a message’s e-cube hop is on an
f-ring, then adaptive hops cannot be used; or (b) if message’s e-cube hop is not on an f-ring, but one
or more of its adaptive hops are on f-rings, then those adaptive hops cannot be used. A message
with its e-cube hop on a link that is faulty or part of an f-ring is routed exactly the same as in the
e-cube case, because e-cube routing is the basis for deadlock freedom in the adaptive routing. The
adaptivity is used only when the message does not have to travel on f-rings. Further, whenever a
message travels on an f-ring, it reserves virtual channels as specified in Table 3; when a message is
not traveling on an f-ring, it uses channel ¢ as the nonadaptive channel, and channels ¢, ¢;, ¢3 as

11

Procedure Adaptive-Algorithm(M, z, d)
/* Current host is z and destination d, d # . */

1 Determine all the neighbors of x that are along a shortest path from = to d. Let S be the set of
such neighbors.

2 If avirtual channel in the set {¢|, ¢y, ¢35} is available from z to a neighbor y € S, route M from
x to y using that virtual channel; return.

3 If virtual channel ¢ is available from z to a neighbor =z along the e-cube hop of M, route M from
x t0 z using cp; return.

4 Return and try this procedure one cycle later.

Figure 6: Pseudocode of the adaptive algorithm enhanced for fault-tolerance.

0,0 05

@ 9

c2

Y

15
O O
5,0 55

Figure 7: Example of fault-tolerant adaptive routing.

adaptive channels as in the original adaptive routing.

Once again the virtual channel allocation is crucial for deadlock avoidance. In the fault-tolerant
adaptive routing, channels ¢ to c3 are used for messages around f-rings. Virtual channels on links
that are not on f-rings are used for normal routing by Adaptive-Algorithm. The four virtual chan-
nels on physical channels not on f-rings are partitioned into nonadaptive and adaptive subsets. The
channels in the nonadaptive category are ¢ channels, which are used to ensure deadlock free rout-
ing. Furthermore, only one type of messages may use the nonadaptive channel on a physical chan-
nel not an f-ring. Thus, no virtual channel can be used for normal fault-free routing by one message
and for misrouting routing by another message. Therefore, each message type has an exclusive set
of virtual channels for deadlock free routing. Given this argument, the proof of deadlock-freedom
is similar to that of the nonadaptive case. Figure 7 gives an example of our method. The message
uses specific channels for its hops on the f-ring links (1, 1)<(1,2), (3,4)<(3,5), and (3, 5)<(4, 5).
For its other hops, the message uses virtual channels as per the original adaptive algorithm.

12

5 Concluding Remarks

We have presented atechnique to enhance the nonadaptive and adaptive algorithms for fault-tolerant
wormbhole routing in mesh networks. This technique works with local knowledge of faults, handles
multiple faults, and guarantees livelock- and deadlock-free routing of all messages. We have used
the solid fault model, which generalizes the convex fault model used in previous studies. In the
convex fault model, any 2D cross section of the fault has the shape of a rectangle. In the solid fault
model, additional fault shapes such as +, T, L, and ¢ can be handled. Thus, the definition of solid
faults includes the convex fault model as a special case. With the current technology, a block of pro-
cessors can be laid out on a single board. If a board fails or if adjacent boards fail, such failures can
be modeled using the convex fault model. Our algorithms can handle any number and combina-
tion of convex faults as long as they faulty components do not lie on the boundary of the network.
Our algorithms can be extended (using more virtual channels) to handle overlapping f-rings and f-
chains in a straight forward manner. Our techniques can thus tolerate a significant number of fault
patterns in mesh networks.

The concept of fault-rings is used to route around the fault regions. The main costs of the pro-
posed fault-tolerant routing technique are (a) a special bit in message header to indicate the mis-
routed status, (b) additional routing logic, which is used by the nodes on f-rings, and (c) additional
virtual channels to avoid deadlocks around f-rings. Also, some processing overhead is incurred in
forming f-rings.

Our technique extends to related networks such as tori. The number of virtual channels re-
quired for tori is doubled, however, because of the wraparound connections. Designing routing
algorithms that use more than local information and require fewer virtual channels will be an in-
teresting direction for further work. Currently, we are evaluating the performance of the proposed
technique and extending the results to more complex fault shapes and for more general network
topologies.

A Making an Arbitrary Fault into a Solid-Fault Region

If a fault is not a solid fault, it can be converted into one by disabling selected processors and links.
We present below simple rules to detect and correct situations where a fault is not solid, is on the
boundary of the network, or results in overlapping f-rings. To simplify our discussion, we consider
2D meshes.

Handling pendant nodes. A pendant node has only one fault-free link incident on it. Such a
node marks itself faulty, since it will result in a nonsolid fault otherwise.

Handling faults on network boundaries. The boundaries of a 2D mesh are top and bottom rows,
and left-most and right-most columns.

If a processor has a faulty link on the network boundary, then it sends a special ”boundary fault-
marker” message on the opposite direction of the faulty link. Soon, all the processors on the bound-
ary where fault occurred will have the information and mark themselves faulty. The 1-D cross sec-
tion containing the neighbors of the disabled processors forms the new boundary.

When a corner node of the mesh becomes faulty, it triggers this two-step procedure in both
dimensions of the network. This results in one row and one column disabled, while it is sufficient

13

if either the row or column containing the faulty processor is marked faulty. This situation can be
detected and rectified by enabling one of the two old boundaries minus the faulty node.

Handling overlapping fault-rings. Overlapping f-rings can be detected using a simple rule. Ifa
node has a faulty link, say, in dimension 0, and it or its neighbors (reachable in one hop) in dimen-
sion 1 have a faulty link in the opposite direction of dimension 0, then overlapping f-rings occur.
When this is detected a node can disable itself.

Handling nonsolid faults. We simply use the characterization of solid faults—all the nodes be-
tween two faulty links of a 1-D cross section of the fault are faulty—to remedy this situation. Let
us define a corner of an f-ring as the node where a misrouting message changes the dimension of
travel. An f-ring has two types of corner nodes: convex and concave corners. The nodes with links
in both dimensions faulty form concave corners of an f-ring. The nodes with no links faulty but are
on an f-ring form its convex corners.

If a message traverses on the boundary of a fault starting from a concave corner node and the
first corner node it encounters is concave, then the entire path traversed is part of a concave fault,
or all or some of the path is part of two overlapping f-rings. In either case, all the nodes in entire
path can be marked faulty. The actual procedure to achieve this is as follows.

1. Each concave corner node sends a special fault-marker message on each of its good links.

2. If a node receives a fault-marker message and has a faulty link incident on it forwards the
message to the next node (if exists) in the message’s path.

If a node could not forward a fault-marker message because its link to be used for forwarding
the message is faulty, then it removes the message and sends its own fault-marker message (if
not sent already) in the opposite direction.

If a node receives a fault-marker message and has no faulty links incident on it, it removes the
message from the network and sends an acknowledgement to the sender of the fault-marker
message.

3. If a node receives fault-marker messages from both directions in a dimension, it marks itself
faulty. For this purpose, the sender of a fault-marker message is assumed to have received its
message and propagated it.

When a fault occurs, it may be result in a pendant node, boundary fault, or overlapping f-rings.
So one or more of the above procedures may be triggered in addition to the f-ring formation algo-
rithm in a distributed manner, when a fault occurs. Eventually, the network reaches a stable state
where no more nodes are marked faulty, at which point the f-rings formed are suitable for fault-
tolerant routing described in this paper.

References

[1] A. Agarwal et al. The MIT Alewife machine: A large-scale distributed-memory multiproces-
sor. In Proc. of Workshop on Scalable Shared Memory Multiprocessors. Kluwer Academic Publish-
ers, 1991.

[2] K. Bolding and L. Snyder. Overview of fault handling for the chaos router. In Proceedings of the
1991 IEEE International Workshop on Defect and Fault Tolerance in VLSI Systems, pages 124-127,
1991.

14

[3] R. V. Boppana and S. Chalasani. Fault-tolerant wormhole routing algorithms for mesh net-
works. IEEE Trans. on Computers, 44(7):848-864, July 1995.

[4] Y. M. Bouraand C. R. Das. Fault-tolerant routing in mesh networks. In Proc. 1995 Int. Conf. on
Parallel Processing, pages 1.106-109, Aug. 1995.

[5] S. Chalasani and R. V. Boppana. Adaptive fault-tolerant wormhole routing algorithms with
low virtual channel requirements. In Proc. Int’l Symp. on Parallel Architectures, Algorithms and
Networks, pages 214-221, Dec. 1994,

[6] A. A. Chien and J. H. Kim. Planar-adaptive routing: Low-cost adaptive networks for multi-
processors. In Proc. 19th Ann. Int. Symp. on Comput. Arch., pages 268-277, 1992.

[7] Cray Research Inc. Cray T3D System Architecture Overview, Sept. 1993.

[8] W. J. Dally and H. Aoki. Deadlock-free adaptive routing in multicomputer networks using
virtual channels. IEEE Trans. on Parallel and Distributed Systems, 4(4):466-475, April 1993.

[9] W. J. Dally and C. L. Seitz. Deadlock-free message routing in multiprocessor interconnection
networks. IEEE Trans. on Computers, C-36(5):547-553, 1987.

[10] J. Duato. A new theory of deadlock-free adaptive routing in wormhole networks. IEEE Trans.
on Parallel and Distributed Systems, 4(12):1320-1331, Dec. 1993.

[11] P. T. Gaughan and S. Yalamanchili. A family of fault-tolerant routing protocols for direct mul-
tiprocessor networks. IEEE Trans. on Parallel and Distributed Systems, 6(5):482-497, May 1995.

[12] C.J. Glass and L. M. Ni. Fault-tolerant wormhole routing in meshes. In Twenty-Third Annual
Int. Symp. on Fault-Tolerant Computing, pages 240-249, 1993.

[13] Intel Corporation. Paragon XP/S Product Overview, 1991.

[14] M. D. Noakes et al. The J-machine multicomputer: An architectural evaluation. In Proc. 20th
Ann. Int. Symp. on Comput. Arch., pages 224-235, May 1993.

[15] C. L. Seitz. Concurrent architectures. In R. Suaya and G. Birtwistle, editors, VLSI and Parallel
Computation, chapter 1, pages 1-84. Morgan-Kaufman Publishers, Inc., San Mateo, California,
1990.

[16] Y.-J. Suh, B. V. Dao, J. Duato, and S. Yalamanchili. Software based fault-tolerant oblivious rout-
ing in pipelined networks. In Proc. 1995 Int. Conf. on Parallel Processing, pages 1.101-105, Aug.
1995.

15

