
DESIGN OF MULTICAST SWITCHES FOR SANS

APPROVED BY SUPERVISING COMMITTEE:

Dr. Rajendra V. Boppana, Supervising Professor

Dr. Turgay Korkmaz

Dr. Weining Zhang

Accepted:

Dean of Graduate Studies

DESIGN OF MULTICAST SWITCHES FOR SANS

by

RAJESH BOPPANA, B.Tech

THESIS
Presented to the Graduate Faculty of

The University of Texas at San Antonio
in Partial Fulfillment
of the Requirements
for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT SAN ANTONIO
College of Sciences

Department of Computer Science
May 2003.

Acknowledgements

I would like to thank Dr. Rajendra V. Boppana, my supervisor for guiding me throughout this thesis.

His problem solving and analysis set an example to me and influenced my approach to the problem. I

also learned a lot from his simple and creative presentation.

I express my gratitude to the Computer Science Division and its staff for extending excellent co-

operation at all the times.

May 2003

iii

DESIGN OF MULTICAST SWITCHES FOR SANS

Rajesh Boppana, M.S.
The University of Texas at San Antonio, 2003

Supervising Professor: Dr. Rajendra V. Boppana

As desktop workstations become more and more powerful and demand for network bandwidth in-

creases, switch-based networks of workstations are becoming a popular choice for high performance

computing as well as other applications such as web servers, multimedia servers, data mining, graphics

and visualization. The success of such architectures depends on the capabilities of the switches used in

the network. With the increased use of multicast applications, it becomes necessary for the switches to

be able to handle multicast traffic efficiently in addition to the unicast traffic.

In this thesis we describe an input-output buffered switch based on a banyan typeΩ network that

uses a simple round robin type scheduling. The switch is based on multiple copies ofΩ network as

switch fabric and employs a hardware cell scheduling mechanism. There is no restriction on the fanout

of the multicast cell. The hardware complexity of the switch isO(NlogN) for an N × N switch

and compares favourably withO(N2) complexity of a crossbar based switch design. Our architecture

is better than the other multistagenetworks in terms of switching elements used as well as maximum

sustainable throughput.

Using extensive simulations, we show that our switches provide as much as 50% higher throughput

than known crossbar based switches. We also simulated switched storage area networks using the pro-

posed multicast switch as the building block and demonstrate 50% or more throughput can be achieved

compared to crossbar based switched networks.

iv

Contents

Acknowledgements . iii

Abstract . iv

List of Figures . vii

1 Introduction . 1
1.1 Organization . 4

2 Background . 5
2.1 Scheduling Policies For Crossbars . 9

3 Ω switch . 12
3.1 Switch Design . 12

3.1.1 Scheduling Cells . 14
3.1.2 Output Queuing . 21
3.1.3 Design Issues . 21

4 Simulator . 24
4.1 Program Structure . 24
4.2 Simulation of large Switches . 28
4.3 Simulation of Traffic Patterns . 29

5 Performance Analysis . 31
5.1 Simulations . 31

5.1.1 Multicast Traffic Simulations . 32
5.1.2 Mixed Traffic . 40

5.2 Multicycle Scheduling . 42
5.2.1 Performance Analysis of Large Switches . 44

6 Switched Networks . 48
6.1 Performance Evaluation . 51

6.1.1 Network 1 . 51
6.1.2 Network 2 . 55

v

7 Conclusions . 58

Bibliography . 60

Vita

vi

List of Figures

1.1 An example Ehternet and Storage networking architecture. 2

2.1 Example of WBA on a 4x4 Crossbar Switch. The rectangular blocks indicate multicast
cells at the inputs. 10

3.1 An Omega network. 14
3.2 Switch architecture. The switch constitutes of input and output queues, control network

and data network. The control network is made up of a Omega network that only needs
to be bit routable and acts as input scheduler. The data network consists ofk copies
Omega networks for routing the cells through the switch. (k is a small value like 2 or 3). 15

3.3 Example of multicast cell selection. The diagram shows the selected input ports and
their paths through the corresponding data networks. Blocked lines reperesent paths
established through the data networks. 16

3.4 The diagram shows the accepted and rejected requests through data network 1 and 2,
with blocked lines representing accepted requests and dashed ones rejected for the ad-
ditional round of scheduling. 16

3.5 Example of multicast cell selection with cell splitting. The diagrams show the accepted
and rejected requests through data network 1 and 2, from left to right,respectively, with
blocked lines representing accepted requests and dashed ones rejected for the additional
scheduling involving splitting. 18

3.6 Example of unicast cell selection. The rectangular blocks indicate the cells (with num-
bers indicating their destinations) queued at switch inputs. The numbers at the inputs
of the first stage of switching elements indicate the destinations of the cells that inputs
wish to send. Shaded cells indicate winning inputs and the cells selected; thick-lined
cells indicate inputs with rejected requests. In a switching element, dashed lines in-
dicate rejected connections and solid lines accepted connections. Inputs with rejected
connections select new outputs for future rounds. Inputs with accepted connections use
the same outputs for later rounds. 20

4.1 Program structure . 25
4.2 Input file for an8× 8Ω switch. 26
4.3 N state markov process depicting the state of the input port 29

vii

5.1 Performance of8 × 8 switches for uncorrelated multicast traffic with variable fanout.
We use the following abbreviations for all plots. Omega : The round robin policy which
schedules two multicast cells per slot time overΩ based switch fabric. Omega2 :The
round robin scheme and an additional round of selection for multicast cells overΩ based
switch fabric. split : The round robin scheme and fanout splitting overΩ based switch
fabric. WBA: The WBA multicast scheduling policy over crossbar based switches. . . 32

5.2 Performance of8× 8 switches for correlated multicast traffic with variable fanout. . . 33
5.3 Performance of16× 16 switches for uncorrelated multicast traffic with variable fanout. 33
5.4 Performance of16× 16 switches for correlated multicast traffic with variable fanout. . 34
5.5 Performance of64× 64 switches for correlated multicast traffic with variable fanout. . 34
5.6 Performance of8× 8 switches for uncorrelated multicast traffic with fixed fanout of 2. 35
5.7 Performance of8× 8 switches for correlated multicast traffic with fixed fanout of 2. . . 36
5.8 Performance of16× 16 switches for uncorrelated multicast traffic with fixed fanout of 2. 36
5.9 Performance of16× 16 switches for correlated multicast traffic with fixed fanout of 2. 37
5.10 Performance of64× 64 switches for correlated multicast traffic with fixed fanout of 2. 37
5.11 Performance of16× 16 switches for uncorrelated multicast traffic with fixed fanout of 4. 38
5.12 Performance of16× 16 switches for correlated multicast traffic with fixed fanout of 4. 38
5.13 Performance of64× 64 switches for correlated multicast traffic with fixed fanout of 4. 39
5.14 Performance of64× 64 switches for correlated multicast traffic with fixed fanout of 8. 39
5.15 Multicast latency, utilization with correlated arrivals of variable fanout, 25% Unicast load. 40
5.16 Unicast latency, utilization with correlated arrivals of variable fanout, 25% Unicast load. 40
5.17 Multicast latency, utilization with correlated arrivals of fixed fanout 2, 25% Unicast load. 41
5.18 Unicast latency, utilization with correlated arrivals of fixed fanout 2, 25% Unicast load. 41
5.19 Multicast latency, utilization with correlated arrivals of fixed fanout 4, 25% Unicast load. 41
5.20 Unicast latency, utilization with correlated arrivals of fixed fanout 4, 25% Unicast load. 42
5.21 Effect of pipelining on8 × 8 switches for correlated multicast traffic with fixed fanout

of 2. 43
5.22 Performance of512× 512 switches for correlated multicast traffic with fixed fanout of 2. 45
5.23 Performance of512× 512 switches for correlated multicast traffic with fixed fanout of 4. 45
5.24 Performance of1024 × 1024 switches for correlated multicast traffic with fixed fanout

of 2. 46
5.25 Performance of1024 × 1024 switches for correlated multicast traffic with fixed fanout

of 4. 46

6.1 Topology of the simulated network 1. 49
6.2 Topology of the simulated network 2. 49
6.3 Input file for Switch 0 in network 6.2. 50
6.4 Performance of the switched network in Figure 6.1 for uncorrelated multicast traffic

with fixed fanout of 2 . 51
6.5 Performance of the switched network in Figure 6.1 for correlated multicast traffic with

fixed fanout of 2 . 51
6.6 Performance of switch based network for topology in Figure 6.1 for uncorrelated multi-

cast traffic with fixed fanout of 4 . 54

viii

6.7 Performance of switch based network for topology in Figure 6.1 for correlated multicast
traffic with fixed fanout of 4 . 54

6.8 Performance of the switched network in Figure 6.2 for uncorrelated multicast traffic
with fixed fanout of 2 . 55

6.9 Performance of the switched network in Figure 6.2 for correlated multicast traffic with
fixed fanout of 2 . 56

6.10 Performance of the switched network in Figure 6.2 for uncorrelated multicast traffic
with fixed fanout of 4 . 56

6.11 Performance of the switched network in Figure 6.2 for correlated multicast traffic with
fixed fanout of 4 . 57

ix

Chapter 1

Introduction

The last few years have seen explosive growth of network applications such as teleconferencing, mul-

tiplayer games and streaming continuous media by Internet radio. With the Ethernet technology pacing

towards tens of gigabits per second line rates and current CMOS technologies providing lower trans-

mission delays, the future of distributed computing environment seems to be provided by clusters of

off-the-shelf computers interconnected by high speed switches (gigabit LANs). The widespread prolif-

eration of cheap and powerful handheld devices with less memory is paving the way for architectures

with separate computing and storage devices. Storage area networks (SANs) based on this trend have

already gained popularity. SANs differ from local area networks (LANs) in terms of delay constraints

and traffic patterns. In a typical SAN, read requests from clients are unicast (one-to-one) messages,

writes by clients are correlated multicast (one-to-any) messages and the response to the read requests

are correlated unicast messages.

Workstation clusters may be designed by interconnecting computing and storage devices through

broadcast-oriented shared medium or point-to-point switches 1.1. In contrast to networks that use a

broadcast physical medium such as the ethernet, a switched LAN/SAN offers (a) aggregate network

bandwidth that is much larger than the throughput of single link, (b) the ability to add throughput

incrementally by adding extra switches and links to match network-load requirements, and (c) a more

1

CHAPTER 1. INTRODUCTION 2

flexible approach to the availability using multiple redundant paths between hosts. Brocade, Qlogic,

JNI, Inrange, SUN, IBM are some of the SAN switch vendors. Current technology provides throughput

of up to 2Gbps per port and up to 32Gbps with inter switch links and switch sizes vary from 8 to 224

ports.

Backup

�����
�����
�����
�����

�����
�����
�����
�����

Backup

�����
�����
�����
�����

�����
�����
�����
�����

Switch

Switch

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

Storage network

nodes

Servers

Ethernet

�������
�������
�����
�����

	�	�	
	�	�	
	�	�	

�
�

�
�

�
�

�����
�����
�����

�����
�����
�����

��
��
��

�����
�����
�����

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�������
�������
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

Figure 1.1: An example Ehternet and Storage networking architecture.

Low-cost, high-speed switches are critical for the proliferation of such systems and applications.

These switches in addition to handling unicast traffic should also handle multicast traffic efficiently.

However, the current switched network designs are based on switches that can not handle multicast

traffic. Multicast traffic was handled at the software level by the host adapters [42, 45]. The problem of

routing multicast cells is more complex than routing unicast cells. Since multicast cells from different

inputs could request same outputs, the conflicts for the outputs increase. Hence, in addition to deter-

mining the input ports to deliver cells we also need to decide upon the number of destinations of the cell

each input port should deliver simultaneously so that lower cell latencies and high switch utilization are

CHAPTER 1. INTRODUCTION 3

achieved. A number of different architectures have been proposed for multicast switches.

A key component of these switch designs is the switch fabric or data path used to move cells from

input to output ports. Earlier designs are based on time or space division multiplexing switch fabrics.

In designs based on time division multiplexing switch fabrics, the inputs share the switch fabric which

could be a bus, in a round-robin fashion for a fixed amount of time. In shared memory architectures the

inputs and outputs write and read cells to a common memory. Shared medium (either the bus or memory)

should operateN times the line rate for anN × N switch. So the medium becomes a bottleneck as

the size of the switch increases or the line rate increases. Space division fabrics are based on crossbar

or multistage interconnection networks. For crossbar based designs [11, 18, 13] the cost complexity

measured in terms of crosspoints increases atO(N2) for anN × N switch. To minimize the cost of

switch fabric researchers looked into designs based on multistage interconnection networks such as the

banyan network [1, 2, 3]. The banyan networks are self routing in nature and have lower hardware

complexity. However, these switch fabrics can not support all possible permutations of input-to-output

connection patterns due to their low hardware complexity. So they introduce additional complexity to

the cell scheduling problem, which is the need to schedule cells that do not conflict for paths through

switch fabric as well as output ports.

In this thesis, we focus on designing multicast switches that can handle multicast traffic efficiently

without compromising the unicast traffic. Our design uses a multistage network, specifically an Omega

network, as the switch fabric, with input and output buffers and hardware based cell selection [10].

The switch has the cost complexity ofO(N log N) for anN × N switch. We determine the cells that

would not have conflicts in the switch fabric by the hardware selection method and deliver them to their

respective outputs. The switch has buffers at the inputs as well as the outputs but not inside the switching

elements unlike some of the earlier designs that use multistage networks [1, 9]. This design handles

both unicast and multicast traffic and there is no limitaion on the fanout of the multicast cell.

We also look into the performance of the switches interconnected to form a high-speed storage area

CHAPTER 1. INTRODUCTION 4

network. We use the proposed switch as a building block for the switched networks. We simulate two

network topologies, one in which a larger switch is simulated by interconnecting smaller switches and

the other is a general network formed by interconnecting the switches randomly. Our emphasis is on

the performance evaluation of our proposed switch fabric with respect to crossbar based designs in the

context of switched networks.

1.1 Organization

The remainder of the thesis is organized as follows. We summarize the existing multicast switch

designs in Chapter 2. We describe our switch architecture and the scheduling algorithms in Chapter 3.

We describe the simulator used in Chapter 4 and present the simulation results in Chapter 5. Chapter

6 talks about the switched networks and simulation results of two network topologies and Chapter 7

concludes the thesis.

Chapter 2

Background

In this chapter we summarize the existing multicast switch designs, outlining our proposed design.

First, we describe the terminology used.

1. N ×N switch: A generic switch has input and/or output buffers to hold the cells, a swich fabric,

the data-path to move cells from the inputs to the outputs, and a scheduler to arbitrate and allocate

paths through the switch fabric. A switch withN input andN output lines is referred to asN×N

switch.

2. slot time: Time is divided into slots. In the absence of contention or queuing, a cell may be sent

completely from inputs to outputs of the switch fabric in a slot time.

3. cell/packet: The cell or packet contains the message or data that is to be routed by the switch from

the input lines to the output lines. It could be a unicast cell, in which case it has one destination

to be delivered to or a multicast cell, which has more than one destinations. In this thesis we

consider cells of fixed size.

4. line rate: Line rate is the speed at which the input or output lines connected to the switch, transfer

the data (cells).

5

CHAPTER 2. BACKGROUND 6

5. conflicts: Two or more cells (unicast or multicast) from different inputs could request the same

outputs. These are called output conflicts. Some cells which do not have output conflicts could

have conflicts for the data paths within the switch fabric. Such switch fabrics are called blocking

switch fabrics and switches based on such switch fabrics are blocking switches.

6. scheduling: The process of deciding the cells that could be sent through the switch fabric by each

of the input ports so that high throughput and low latencies are achieved is scheduling.

Location of the cell buffers, topology of the switch fabric and the mechanism to resolve the contention

for output ports or paths through the switch fabrics are the critical aspects of the switch design that

influence the cost and performance.

The main design choices for a switch fabric can be classified as time-division multiplexing and space-

division multiplexing. In time-division switch fabrics, the fabric, which is often a bus or memory, is

shared among the inputs for a fixed amount of time in a round robin fashion. For example in shared

memory designs each input writes one after another consecutively to the shared memory and in shared

medium architectures each input sends its data onto the common medium consecutively in turns. Hence

the inputs and outputs need to operate atN times the link speed for anN ×N switch. Although such

designs are attractive in terms of simplicity of design and performance achieved, they are expensive to

implement and are not scalable.

Most of the research for the past few years has been on space-division multiplexing as they provide

more bandwidth within the switch. These switch designs are based on crossbar, multistage interconnec-

tion networks or fully interconnected networks. Input buffering in which the cells are queued at the input

ports is widely used in crossbar based designs [11, 18, 13]. In crossbar switches with input buffering,

broadcasting an input cell to multiple output ports is straightforward. The cell could be delivered to all

its destinations by setting up the paths to required outputs. When two or more multicast cells compete

CHAPTER 2. BACKGROUND 7

for a common set of outputs it becomes necessary to allow some of the destinations of a multicast cell to

be delivered during one slot time and the remaining destinations to be reachable in subsequent slot times

by keeping a copy of the cell in the input queue until it reaches all of its destinations to achieve high

throughput [32]. This is called fanout or cell splitting. Weight Based Algorithm (WBA) on crossbar

with input buffering proposed by Balaji et al. [11] is known to achieve high throughput.

However, the cost of crossbars in terms of crosspoints increases atO(N2). In order to reduce

the high cost of crossbars, many researchers have explored various architectures [1, 2, 9] based on

multistage interconnection networks like banyan networks [33] and delta networks [34]. However,

there is not enough bandwidth inside the switch fabric to support all posssible input-to-output connection

patterns. So even when several cells request distinct outputs, these networks may not be able to route all

the cells simultaneously. Hence, complex scheduling is required to resolve the conflicts for data paths

in addition to the conflicts for outputs.

Sort-Banyan networks are proposed to overcome the blocking nature of banyan networks [36] which

have a sorting network like Batcher’s bitonic sorting network [35] to reorder the cells in increasing

order of destinations. The cells so ordered can be routed without path conflicts to the outputs by Banyan

networks. These designs can be classified as copy-route networks. They make multiple physical copies

of the cell in the switch fabric by using copy networks [1, 2, 9]. Hence, in effect, they routek ∗N cells

through the fabric rather thanN cells, wherek is a function of the multiplicity of physical copies made.

This increases the size of the switch fabric and also the scheduling complexity by a factor of at leastk.

Arbitrating the conflicts among these replicated cells requires additional paths in the network which is

obtained by using extra stages of switching elements or by recirculating them within the fabric. Another

possibility is to buffer the excess or undeliverable cells, internally at the switch elements.

Buffers can be placed at the input, output or within the switch fabric or a combination of these three

locations. Input buffering is commonly used in the designs based on crossbars. But, cells at the head

of the queue having output conflicts do not allow other cells behind in the queue, which do not have

CHAPTER 2. BACKGROUND 8

output conflicts to pass through the switch fabric. This is called head-of-line blocking and restricts the

performance of such designs to 58.6% for uniformly distributed unicast traffic [14]. Various techniques

like multi-queue buffers [17], virtual output queuing [26], elaborate cell scheduling policies [13, 18, 22]

have been proposed to overcome this problem. With output queuing, it is assumed that all cells at the

inputs are delivered to output queues by the switch fabric. Output queuing gives better throughput and

delays, but the switch fabric should be capable of delivering multiple cells per slot time to the outputs.

Also, either the output buffers must operate at higher speeds than the line rate or there should be multiple

buffers at each output. In both cases, the throughput and scalability are limited, either by the speedup

factor or by the number of buffers. The Knockout switch [15] and Gauss switch [25] are examples of

designs employing output queuing. Buffers can also be placed inside the switching elements in a multi

stage interconnect switch fabric [1, 16] or inside the crosspoints in a crossbar [29, 30, 31]. Internal

buffers introduce random delays within the switch fabric, causing undesirable cell delay variation and

are expensive to implement [5].

To summarize, crossbar based designs do not make multiple physical copies of the cell in the switch

fabric. Only one copy of the cell resides at the input buffer of the switch until its delivered to all

its destinations. This keeps the design of the switch fabric simple, limiting the design complexity to

scheduing cells for each slot time. This modular approach makes the switch adaptable to very high

line rates. A major drawback of crossbar based designs is the cost which makes them impractical for

medium to large scale sized switches. Another problem is cell-splitting is complex and promotes head-

of-line blocking, especially for correlated traffic. We try to simplify the designs based on multistage

interconnection networks by taking advantage of pre-schedulng the cells as in crossbar based designs,

thereby lowering hardware complexity of the switches.

CHAPTER 2. BACKGROUND 9

2.1 Scheduling Policies For Crossbars

In this section we present two well known scheduling policies on crossbars.The WBA proposed by

Balaji et. al. [11] for scheduling multicast cells and Parallel iterative matching algorithm (PIM) pro-

posed by Thomas E. Anderson [13] for unicast cell scheduling. These hardware cell selection methods

facilitate faster cell selection over software approaches and the switch is scalable to higher line rates. In

these algorithms, a special hardware based on a fully connected bipartite topology is used for schedul-

ing. A network is bipartite if it can be divided into two subsets such that all the interconnections in the

network have one end in one subset and the other end in the other subset.

Weight Based Algorithm: Weight Based Algorithm (WBA)[11] algorithm works by assigning weights

to input cells based on their age and fan-out, where age is the number of cell slot times an input cell

has to wait at the input before being transmitted and fan-out is the number of destination ports to which

the cell is to be delivered. Inputs send their weights to output ports. Among all the inputs competing

for a particular output, the output port chooses the heaviest input port. Incase of multiple requests with

same highest weight, the outout chooses an input randomly. Based on their previous experience, they

found that to achieve fairness a positive weight has to be given to the age and a negative weight to the

fan-out (the older the heavier and the larger the lighter). Iff is the weight assigned to fan-out anda is

the weight assigned to age, then no cell waits at the input port for more thanM + fN
a − 1 cell times.

WhereM is the number of input ports andN is the number of output ports. Mathematically,

w = a× age− f × fanout

where,w is the weight of the cell,age is the number of slot times the cell is at the head of its queue and

fanout is the number of destinations of the cell.

Figure 2.1 shows the working of WBA on a 4x4 crossbar switch. A weight of1 is given to the age

and a weight of2 is given to the fan-out, that is,a = 1, f = 2. Initially port 4 gets a chance to transmit

CHAPTER 2. BACKGROUND 10

3

3 4

3

1 2 3 4

3 4

2 3 4

crossbar

4 x 4

crossbar

4 x 4

slot 4slot 3

slot 2slot 1

2 3 4

12

No Cell

No Cell

−4

−1

0

2 3 4

4

3

No Cell

−3

−1

−5

−2

−8

−4

−6

weight

multicast cell

dest vector

No Cell

crossbar

4 x 4

−42 4

crossbar

4 x 4

Figure 2.1: Example of WBA on a 4x4 Crossbar Switch. The rectangular blocks indicate multicast cells
at the inputs.

its cell as it has the maximum weight−2 among all the competing inputs. In the next slot time it injects

new cell from its input queue. In slot1 node3 could reach only one destination1. The cell is split as

two cells, one with destination vector<1> and the other with destination vector<2,3,4>. The first cell

is transmitted and the second cell remains in the queue and competes with the other cells in the next slot

time.

Parallel Iterative Matching algorithm: Parallel Iterative Matching algorithm for scheduling unicast

cells uses parallelism, randomness and iteration to find a conflict free pairing of outputs quickly. The

following three steps are iterated to find a matching pair. Initially all inputs and outputs are unmatched.

CHAPTER 2. BACKGROUND 11

1. Each unmatched input sends a request to every output for which it has a buffered cell. This notifies

an output of all its potential partners.

2. If an unmatched output receives any requests, it chooses one randomly. The output notifies each

input whether its request was granted.

3. If an input receives any grants, it chooses one and notifies the output of its acceptance.

Each of these steps occur independently and in parallel at each input/output port. After a fixed

number of iterations, the result of the matching is used to setup the crossbar for the next time slot.

Chapter 3

Ω switch

In this chapter, we describe theΩ switch, which will be used as a building block for storage area

networks. Boppana and Raghavendra presented theΩ switch for unicast traffic [10]. Gunuganti en-

hanced it to handle mulitcast traffic [47]. We have revised the design and extended it for use in switched

networks.

3.1 Switch Design

Our design attempts to simplify the design complexity of switch fabric and output ports at the cost of

more complex cell scheduling. We use a combination of input and output buffers and multiple copies of

the Omega network (Figure 3.1) as the switch fabric. Figure 3.2 shows the block diagram ofΩ switch.

The cells arriving from the input lines are buffered at the input port buffers. Once a cell is in the

input buffer, it is guaranteed to reach all of its destinations (switch outputs). Hence there is no cell loss

within the switch fabric or output buffers. Cells are lost only when they arrive at the switch and are

rejected by the input ports. This happens when the switch is saturated. Based upon the header of the

cell, the destinations of the cell are determined by table lookup and a routing tag is assigned for routing

through the switch fabric. For now, we may consider routing tag to be anN bit vector with each bit

denoting an output port. A cell is destined to an output port if its corresponding bit in the vector is set.

12

CHAPTER 3. Ω SWITCH 13

Routing tags could be precomputed or prepared as a cell is placed in an input buffer or when a virtual

circuit between sender and destination is set up. We consider only data routing here, not the signaling

aspects.

We select cells in such a way that there are no path conflicts within the switch fabric. Our cell selec-

tion scheme is based on the hardware cell selection mechanism proposed by Boppana and Raghavendra

[10]. As the scheduling mechanism is hardware based the switch can operate at very high speeds. Be-

cause cells are carefully selected to eliminate path conflicts there is no need for buffering at any of the

switching elements inside the switch fabric. We believe that, by moving all the necessary buffering

away from the data path of the switch, we can simplify the switch fabric design.

The input scheduler determines the inputs and the cells they need to send through the data network.

Contention for paths within the switch fabric and outputs affect the performance of the switch. When

crossbars are used as switch fabrics, there is no contention for data paths through the switch fabrics. It is

a severe problem when blocking switch fabrics like Omega network are used. On the other hand using

crossbars could be expensive. To alleviate this, we use multiple copies say,k, of the Omega network in

the switch fabric. So conflicts for a path in the switch fabric can be handled by sending contending cells

through different copies of the network. This increases the bandwidth inside the switch and achieves

high throughput. Since we havek copies of the data network, each output could receive up tok cells

during a single slot time. Hence the output buffers need to operate atk times the line speed. We can

restrict the maximum number of cells sent to an output port in a single slot time to somel, wherel ≤ k.

Whenk is small, it is simpler to havel = k. In each slot time, one cell is sent out of the output port.

Excess cells are buffered in the output queues. This would achieve high switch utilization since any

output that did not receive a cell due to blocking nature of the switch fabric could send out a cell as

long as its buffer is not empty. This is particularly useful for correlated traffic in which the demand

for an output tends to be bursty. Although, we use multiple copies of Omega network we limit the

complexity or speedup requirements of output buffers by controlling the output port contention through

CHAPTER 3. Ω SWITCH 14

Inputs Outputs

1

3

4

5

6

7

0

6

5

4

3

7

2

1

0

2

Figure 3.1: An Omega network.

cell scheduling so that the switch is scalable.

3.1.1 Scheduling Cells

It is known that multistage interconnection network based switches need elaborate cell selection tech-

niques to achieve high throughput. Software based cell selection schemes do not work well for high line

rates or large switches. We use the idea of hardware specific selection technique proposed by Boppana

and Raghavendra [10]. In this method we use a copy of the underlying network (Omega network itself)

as the control network to aid the selection of cells. However this control copy of the network only needs

to route the routing tags of the cells for scheduling purposes. The routing tag has at mostN bits for an

N × N switch. The control copy does not route the data packets. In each slot time, several rounds of

selection are performed. The cells that can be sent in a slot time are selected by the scheduler in the

previous slot time. Thus scheduling and moving data through the switch fabric are pipelined to avoid

increasing the slot time to accomodate scheduling time.

Mulitcast Scheduling

Round-Robin scheduling: The simplest way to schedule multicast cells is to allow one or more input

ports to send their multicast cells in a round-robin fashion during each slot time. Since our proposed

switch hask data networks, its intuitive to selectk input ports to route their multicast cells through the

CHAPTER 3. Ω SWITCH 15

Output buffer N−1

Output buffer 1

Output buffer 0

Input buffer N−1

Input buffer 1

Input buffer 0

k copies of omega network
Data Network

(copy of omega)
Control Network

Input Scheduler

k

2
1

Figure 3.2: Switch architecture. The switch constitutes of input and output queues, control network and
data network. The control network is made up of a Omega network that only needs to be bit routable
and acts as input scheduler. The data network consists ofk copies Omega networks for routing the cells
through the switch. (k is a small value like 2 or 3).

CHAPTER 3. Ω SWITCH 16

1 3 6

3 4 5

Input Buffers Output buffers

Priority
Inputs

data network 2

data network 1

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

	�	
	�	
	�	
	�	
	�	
	�	
	�	

�

�

�

�

�

�

�

���
���
���
���
���
���

���
���
���
���
���
���

�
�
�
�
�
�

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

6143

2 14

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

Figure 3.3: Example of multicast cell selection. The diagram shows the selected input ports and their
paths through the corresponding data networks. Blocked lines reperesent paths established through the
data networks.

43

rejected requests)accepted , (
Scheduling for data network 1

round 2

54

63

3

1

5

(accepted ,

6

rejected requests)

1 3

Scheduling for data network 2

1 63 4

2 4 1

1 63 4

2 4 1

Figure 3.4: The diagram shows the accepted and rejected requests through data network 1 and 2,
with blocked lines representing accepted requests and dashed ones rejected for the additional round
of scheduling.

CHAPTER 3. Ω SWITCH 17

k data networks (one through each copy).

Hence, the simplest scheduling policy is a sort of prioritized round robin algorithm in which during

each slot a particular input port has the priority and can send its multicast cell unrestricted through a

copy of the data network. The next input port (selected in a circular fashion) that has a multicast cell can

send its multicast cell unrestricted through another copy of the network and so on. If a prioritized input

port doesn’t have a multicast cell the next input port (in a circular fashion) gets a chance. The priority

to the input ports during a slot time is given in a round-robin manner.

Figure 3.3 shows an example of multicast scheduling. The first stage shows the simplest scheduling

scheme where input ports 3 and 4 have priority. Since input port 4 does not have any cell to send, the

priority is passed on to the next input port which is indicated by a dashed arrow. This policy basically

routesk multicast cells through the switch during each slot time. So switch utilization with simple

round-robin scheme is

k × f

N

, wherek is number of copies of daa network,f is the fanout of the multicast traffic andN is the size

of the switch. This scheme does not work well iff is small andN is large.

Scheduling additional cells: To improve the performance, we attempt to schedule more thank mul-

ticast cells during each slot time. That is, some data networks send two or more multicast cells without

path conflicts. This can be achieved by performing a round of selection for additional multicast cells

that could go through each data network. In this scheduling policy, after determining thek input ports

that would send their multicast cells through thek data networks, using the round-robin scheduling, we

let the remaining input ports send their output requests (routing tags) through the control network and

determine if any other multicast cells could be scheduled through each of the data networks without

conflicting with the internal route of the earlier selected multicast cell. Hence there is one round of

CHAPTER 3. Ω SWITCH 18

543

Scheduling for data network 1
accepted , (rejected requests)

1 3 6

round 2

4 5

63

3

1

Scheduling for data network 2
rejected requests)accepted , (

1 63 4

4 1

3 4 1 6

2 2 4 1

Figure 3.5: Example of multicast cell selection with cell splitting. The diagrams show the accepted
and rejected requests through data network 1 and 2, from left to right,respectively, with blocked lines
representing accepted requests and dashed ones rejected for the additional scheduling involving splitting.

selection for each of thek copies. It is noteworthy that this additional scheduling improves the switch

utilization by using additional data paths. Each input request is either satisfied or rejected in entirety.

That is there is no cell splitting.

Figure 3.4 shows forwarding of additional multicast cells through the two copies of the data network.

In this example, additional cells could not be scheduled due to conflicts with paths allocated to cells

already selected by the round-robin scheme. If the fanout of the multicast cells is high, the probability

of finding a cell which uses paths that do not conflict with those of an already selected multicast cell

(using round-robin scheme) decreases and this scheduling does not achieve any improvement over the

simple round-robin policy. So for multicast traffic with larger fanout, it becomes necessary to split the

cell to achieve high switch utilization. We therefore consider fanout splitting which is also used in the

crossbar designs discussed in Chapter 2.

Scheduling additional cells with fanout splitting: In this policy after determining thek input ports

that would send their multicast cells through thek data networks, the remaining input ports send their

CHAPTER 3. Ω SWITCH 19

routing tags through the control network to determine if any other multicast cells could be scheduled

through each of the data networks without conflicting with the internal routes of earlier selected mul-

ticast cells. But in this case if a multicast cell is able to obtain paths to reach some but not all of its

destinations, we split the destination list and let a copy of the multicast cell go to the available outputs

while retaining a copy with the remaining destinations at the input. Once an input port obtains paths

for one or more destinations for its multicast cell, it will not compete for paths in the other copies of

the data network. When a cell is plit the cell with reduced destination list will be treated as a normal

multicast cell for scheduling in later slot times.

Figure 3.5 shows an example of the cell scheduling with cell splitting. The cell from input port 0

with destiantion set 3, 4, 1 and 6 is able to reach the outputs 1 and 3 through first copy of data network.

As the cell from input port 0 is able to reach some of its destinations through the first copy it is not

considered for scheduling through the second copy of the network. However, it was considered in

Figure 3.4 as splitting is not allowed there.

For mixed traffic patterns where both multicast and unicast traffic are present, first, multicast cells

are scheduled by one of the three policies and the remaining unused paths in the data networks are used

for unicast cells. Unicast scheduling is described in the next Section.

Unicast Scheduling

The scheduling of unicast cells is described in [10]. During each cell slot time we determine the

inputs and the cells that they send in the following time slot. Multiple rounds of selection are performed

over the control network for achieving high throughput. In the first round, all inputs send their requests

(the routing tags of the cells at the head of their queues). The round concludes by notifying the inputs

whose requests have been routed successfully through the network. In further rounds, those inputs

whose requests were not granted will compete with a different cell (that is the next cell in the queue

with a destination different from those that were rejected earlier) for the remaining outputs and internal

CHAPTER 3. Ω SWITCH 20

Round 1

3 4 1 6

4 7 0

2 3 7 7

4

3 6

1

1 0

4 5 3 6

2

6

0

1

0

6

4

7

3 4 1 6

4 7 0

2 3 7 7

4

3 6

1

1 0

4 5 3 6

2

6

0

4

7

3

3

4

3
Round 2

5 5

6

43 1 6

4 7 0

2 3 7 7

4

3 6

1

1 0

4 5 3 6

2

6

0

4

7

3

2

2

5
Cells Round 3

5

5 55

Figure 3.6: Example of unicast cell selection. The rectangular blocks indicate the cells (with numbers
indicating their destinations) queued at switch inputs. The numbers at the inputs of the first stage of
switching elements indicate the destinations of the cells that inputs wish to send. Shaded cells indicate
winning inputs and the cells selected; thick-lined cells indicate inputs with rejected requests. In a
switching element, dashed lines indicate rejected connections and solid lines accepted connections.
Inputs with rejected connections select new outputs for future rounds. Inputs with accepted connections
use the same outputs for later rounds.

switch paths, while the inputs that have succeeded send the same cell again. Conflicts at the switching

elements are broken randomly, however, a request that has been successful in earlier rounds (that is the

winning cell) always wins in the case of conflict. After few such rounds we know the inputs and the

cells that they need to route through the network.

Figure 3.6 gives an example of unicast cell selection. Initially, each input requests for the output

specified by its first cell in the queue. In the example, inputs 0, 3, and 6 (when counted from top starting

with 0), win in the first round and have paths to their destinations 6, 4, and 0, respectively, established.

These paths are not disturbed in further rounds (2 and 3). In round 2 inputs 1, 2, 3, 5 and 7 choose next

cell in their queues whose destinations are not 6, 4, or 0 (that is those outputs to which paths have been

established in earlier rounds) and those destinations that were tried in earlier rounds (for example, input

1 will select a cell whose destination is not 0, as it was tried in earlier rounds and hence will not succeed

in further rounds either). In round 2 two more inputs win and in round 3 one more input wins.

CHAPTER 3. Ω SWITCH 21

3.1.2 Output Queuing

We use output buffers to store cells to accomodate multiple cells arriving at an output in a slot time.

So the output queues could could overflow and result in high cell loss. To prevent this, a back pressure

mechanism is used. If the output queue size exceeds a threshold it accepts only one cell during each slot

time until the number of cells at the output is less than the threshold. This is achieved by not granting

an output with too many cells to more than one cell during the scheduling phase.

Queue length number of cells accepted by outputs
< threshold upto k multicast cells
> threshold only one multicast cell

0 upto k multicast cells or 1 unicast cell

Although output queuing is used, atmost one unicast cell is scheduled to an output port in each

slot time. Moreover only those unicast cells are scheduled whose destination output ports have empty

buffers (i.e., no outstanding cells to be drained out to the output lines). This policy makes sure that in the

presence of both multicast and unicast traffic, multicast traffic does not experience further delays due to

unicast traffic. However, the relative priorities of unicast and multicast traffic can be easily changed by

modifying the thresholds.

3.1.3 Design Issues

Switch Fabric

The switch fabric described has one control network andk copies of data network. With such an

architecture the total time to transmit cells from input port to output port is equal to the sum of delays

of scheduling the cells for the k copies over the control network (which isk times the delay of a con-

trol network) and the delay due to transmitting cells from the inputs to the outputs through thek data

networks simultaneously.

Hence the time taken for transmitting the cells across the switch fabric isk ∗ d whered is the delay

CHAPTER 3. Ω SWITCH 22

of transmitting N bits through the control network and selecting multicast cells. LetD be the delay in

transmitting the cells through the data network. Then the proposed scheduling can be achieved in one

slot time ifkd ≤ D.

Estimation of d

In anΩ switch fabric with 2 x 2 switching elements, a cell can reach any of the outputs through a

switching element in stage 1 and only one half of the outputs through a switching element in stage 2 and

one eighth of the outputs through those in stage 3 and so on. More specifically a cell can reach the first

half of the outputs through the upper outputs of the switching elements in stage 1 and the second half of

the outputs for the switch through the lower output port of a switching element. We therefore need to

send only one half the bits of the bit map vector to the next stage. In other words switching elements in

stage 2 need only half the bits to make their scheduling decision. Similarly switching elements in stage

3 need only one-fourth the bits to make a routing decision and so on. Let us assume that the control

network is implemented using bit-serial lines. Ift is time taken to transmit one bit across the switching

element, the delay incurred for a round of scheduling is

N × t +
N

2
× t +

N

4
× t + ... + 2 = 2(Nt− 1).

This is particularly attractive for large switches as the hardware required to implement switching

decisions are bit-wise functional units (bit comparators) and can be very fast.

Multicast addressing

Until now we have assumed the addressing of multicast cells as a bit map vector ofN bits for an

N × N switch with one bit corresponding to each output port. In this case each switching element

would keep a bit map vector for each of its output links indicating all the destinations reachable through

it. So when a cell comes in, the routing tag is compared to the switching element’s bit map vector to

CHAPTER 3. Ω SWITCH 23

determine if it is to be sent out through that output link of the switching element. The complexity of

this addressing scheme in bits per routing tag isO(N). Although this scheme works well for switches

of small size, it may not be viable for large switches with N≥ 512.

To reduce the number of bits in the bit map vector of large switches, we can group the outputs and

assign a group number. The routing tag would now consist of the group number and the bit map vector

to identify the destinations with in that group. The number of bits used to address is sum of the number

of outputs in each group and number of bits required to identify the groups (which is log(no. of groups)).

For example for 256 x 256 switch divided into 16 groups we need 4 bits to address each group and 16

bits to identify each output in a group which requires 20 bits in total.

Alternatively, we could use the header information of the incoming cell like the VCI and VPI of an

ATM cell and by table look-up, set the corresponding switching elements to route the cell. But this

scheme does not give the flexibility to split the cells as in the bit-map-vector method. It also increases

the complexity of input scheduler as well as the switch fabric as it has to send control signals to all the

switching elements in the fabric.

Multicast addressing is a major issue by itself and much work needs to be done in this area. However,

any good scheme can be easily incorporated into our design with little or no changes.

Chapter 4

Simulator

In this chapter we describe the simulator used to analyze the proposed designs. The simulator is

written in java programming language.

4.1 Program Structure

The program is a time driven model and takes in the number of ports, number of switching elements,

unicast traffic load, multicast traffic load, fanout of multicast cell, size of correlation train, size of

input and output queues and the type of scheduling policy to be used as arguments from the user. The

basic structure of the program is shown in 4.1. It has various classes like Omega.java, Inport.java,

Outport.java, Switchelmnt.java to simulate the effect of the scheduler, the input ports , output ports and

the switching element of the switch, respectively.

Omega.java: This class simulates the effect of the switch fabric and the scheduler. It has the main

method and hence is the starting point of the simulation. It initializes all the necessary data structures

and calls the respective methods of all the other classes acting as a controller. It reads the topology

information about the switching elements in the fabric from an input file. This file contains information

regarding the interconnections among the switching elements and the output ports one could reach

through each of these switching elements’ outputs. The input ports, switching elements and the output

24

CHAPTER 4. SIMULATOR 25

Inport in[];
Outport out[];
S witchelmnt S[];

main()
...

Vector inq:
Vector minq;
...

void putmcast(){
..
}
void putunicast(){
...
}

void fillbuf(){
...
}

...

Omega.java

Inport.java Switchelemnt.java

Message inbuf[];
Switchelmnt nbs[];
long masks[];

void fillbuf(Message m){
inbuf[count++] = m;
...
}

void route(){
...
}

boolean decide(int outport, Message m)
{
...
}

Outport.java

Vector outputq;
int recv,mrecv...utotdelay..;

void fillbuf(Message m){
...
}

void setvalid(){ ...}

void setdestused(){...}

void split(){...}

void rmvfrominput(){...}

void drain(){ ...}

Message.java

int src;
Vector destv;
int timein;

int type;
boolean validflag;
long rtag;

...

Figure 4.1: Program structure

ports are numbered as shown in 3.1.

The input file for an8× 8 Ω is shown in fig. 4.2. The second line of the input file gives an ordered

list of the switching elements to which input ports 0, 1, 2, 3, 4, 5, 6 and 7 are connected. The remaining

rows list the ids of the neighboring switching elements and their masks. For example line 4 indicates

that the upper output port of switching element 0 is connected to switching element 4 and its lower

output is connected to switching element 5. The next 2 columns are the masks of switching element

0. A bit 1 in the mask field indicates a reachable output port. The most significant bit indicates output

port 7 and least significant bit output port 0. They signify that through the upper output of the switching

element 0, a cell can reach output ports 0, 1, 2 and 3 and through the lower output a cell can reach output

CHAPTER 4. SIMULATOR 26

11 6 7 01000000 10000000
10 4 5 00010000 00100000

7 	10 11 00110000 11000000

5	 10 11 00110000 11000000
4 8 9 00000011 00001100

9	 2 3 00000100 00001000
8	 0 1 00000001 00000010

6	 8 9 00000011 00001100

3	 6 7 00001111 11110000
2	 4 5 00001111 11110000
1	 6 7 00001111 11110000
0	 4 5 00001111 11110000
sweid nbr0 nbr1 upper mask lower mask
0 1 2 3 0 1 2 3
 (8x8) neighbours to input ports:

Figure 4.2: Input file for an8× 8Ω switch.

ports numbered 4, 5, 6 and 7. These values are stored in the switching element class asmasks[], with

mask[0]for the upper output andmask[1]for the lower output.

Inport.java: This class models the function of the input ports. The fields,inq andminqof type vector

simulate the effect of an input queue for unicast and multicast cells respectively. The field,nbr is a

reference to its neighbouring switching element. The methods,putunicast(),putmcast()send an unicast

or a multicast cell respectively to its neighbouring switching element andfillbuff() injects a new unicast

or multicast cell into the switch by placing it in the appropriate queue (inq or minq).

Outport.java: This class models the output ports of the switch. The field,outputqof type vector

simulates the effect of the output queue The fieldsrecv, mrecv and mcellrecv, utotdelayandmtotdelay

keep count of unicast and multicast cells received and their delays. The method,drain() removes one cell

from the output queue every slot time. The output port receives a cell from the neighbouring switching

element through the methodfillbuf(message m)which is then put into the field,outputq.

Switchelmnt.java: This class models the switching element of the switch and is the heart of the switch

in routing the cell through the fabric. The method,fillbuf(message m)receives cells from its neighbour-

ing switching elements. When a cell comes in, the methodboolean decide(int outport, Message m)

determines if a messagem should be sent to outport of the switching element by performing a bitwise

CHAPTER 4. SIMULATOR 27

and of the routing tag of the cell (rtag) and the output mask of the switching element (masks[0] or

masks[1]). And the methodroute() using this methoddecide()determines which cell and to which

output ports of the switching element the cell is to be routed depending on the scheduling policy used.

Conflicts between the cells could occur when two multicast cells request both the outputs or when one

multicast cell requests one of the outputs and another multicast cell requests both the outputs of the

switching element. In such cases one of the cell is randomly dropped and in conflicts between a unicast

and multicast cell, the unicast cell is dropped. Several random number streams with different seeds are

used to improve randomness. When the scheduling policy used is non fanout splitting a multicast cell

either goes to all or none of its requested output ports of the switching element. Whereas in fanout

splitting, a cell would be split such that it could go to any number of its requested output ports of the

switching element.

Message.java: This class defines the structure of the unicast or multicast cell. It has fields to keep

track of the source, the time the cell entered the switch, the routing tag, the destinations it has to go etc.

We consider the routing tag of the cell as an N bit vector. It is represented in this class as a long type

variable namedrtag. Each bit in the routing tag represents an output port. The corresponding bits of

the rtag are set to 1 if a multicast cell has destinations to particular output ports. The bits from least

significant bit to the most significant bit correspond to output ports numbered 0 to N-1 respectively. For

an example if a multicast cell has 2 and 4 as its destinations then its routing tag would be00010100for

an8× 8 port switch.

Table.java: This class is for statistical purposes that has methods to calculate the mean and variance.

It is used in recording the statistics of each batch of the simulation like delays, utilization, load.

The program used to simulate the crossbar also has similar structure as described above. However,

it doesn’t have the Switchelmnt.java class and also doesn’t need to read any topology information from

CHAPTER 4. SIMULATOR 28

an input file. The simulation of the WBA design has Wba.java, Inport.java, Outport.java to simulate

the effect of the scheduler, the input port and the output port. It aslo has other helper classes like

Message.java, Table.java discussed earlier.

4.2 Simulation of large Switches

Since the data type long in java is represented as 64 bits we can only simulate32×32 Ω by the above

method. In order to simulate large switches we modify the program as follows.

We create another class named Dlong which has a field named v of type vector. The idea is to store

32 bits of routing tag as Long type object in the vector v. Suppose we wanted to simulate64 × 64 Ω

we will store the first 32 bits (which correspond to lower numbered output ports) of the routing tag as a

Long type object in the first position of the vector v, v.elementAt(0) and the next 32 bits in the second

position of the vector v, v.elementAt(1). Hence for anN × N switch there are (dN
32e) elements in the

vector v. The bits in the higher indexed elements of the vector represent the higher numbered output

ports.

We also define the necessary operations for this data type like bitwise and and bitwise exclusive or

through the methods boolean and(Dlong d) and void xor(Dlong d) respectively.

The data files for large switches are generated by an another program. The generated data file is

the same as the input file described earlier. However, the 2 masks are chopped into 32 bit chunks as

explained above and represented as long type binary numbers consecutively. For example a sample line

for a 64 port switch would look like this. Though in the actual file the masks are binary numbers we

show them here as hexadecimal numbers for convenience.

0 32 33 0x0000000000000000 0xffffffffffffffff
0xffffffffffffffff 0x0000000000000000

CHAPTER 4. SIMULATOR 29

0 1 2 n

1 11−p
p 1

1−p

p

Figure 4.3: N state markov process depicting the state of the input port

4.3 Simulation of Traffic Patterns

The multicast traffic can be simulated as uncorrelated or correlated arrivals. For this purpose, the

injection of cells at inputs is simulated by an arrival process.

Uncorrelated Arrivals: At the beginning of each cell time, a cell arrives at each input with probability

independent of the arrival of the previous cell time.

Correlated Arrivals: Cells are generated using an n-state Markov process with n consecutive busy

states and one idle state (see Figure 4.3). When the arrival process is in busy state a cell is injected into

the queue with probability 1 and process goes to the next state. The destinations of a cell are selected

randomly in state 1 and used repeatedly in states 2 to n.When in the idle state a transition to busy state

occurs with probabilityp or remains in the same idle state otherwise.

p = cellrate
(cellrate+(1−cellrate)×n) ,

where cell rate is the average number of cells per slot time per input port.

cellrate = unicastload + (multicastload
fanout),

where unicast load and multicast load are specified by the user as a fraction in the range [0 , 1]. In state

CHAPTER 4. SIMULATOR 30

1 a cell is determined as unicast or multicast type with probability

q =
unicastload

unicastload + multicastload

and1 − q, respectively. All the multicast cells in a correlated train have the same set of destinations.

That is the multicast cells generated in the n consecutive busy states have same destinations.

In light of self-similarity of the magnitude of traffic transmitted on local and wide area networks

[48], [49], correlated arrivals model the network characteristics more accurately than uncorrelated

arrivals.

Multicast fanout For both types of traffic, simulations were carried out with arriving multicast cells

having a constant fanout and variable fanout.

Constant fanout In this kind of traffic the fanout of all the multicast cells is fixed and is specified by

the user as an input argument at the beginning of the simulation. We consider constant fanout multicast

traffic because in a typical network fanout of multicast cells are ususally small. For example in a storage

area network multicast traffic are due to write requests to a few fixed number of servers and hence this

kind of traffic will facilitate realistic analysis of the switches for SAN traffic.

Variable fanout In this type of traffic the number of destinations of arriving multicast cells is uni-

formly distributed in the range of [1 , N] for an N port switch. This type of distribution is known as

Bernoulli distribution. The average fanout of the cells in this distribution isN+1
2 . We use this variable

fanout distribution to serve as a basis of comparison with other works in the literature.

Chapter 5

Performance Analysis

5.1 Simulations

We evaluated the performance of the proposedΩ switch design using the simulator described in

Chapter 4. We also simulated WBA on crossbar to serve as baseline in our comparisons. For mixed

traffic patterns we used WBA for multicast scheduling and PIM for unicast scheduling on crossbar

based switches.

We simulated a8×8, 16×16 and64×64 Ω- based and crossbar-based switches with separate buffers

for unicast and multicast traffic. While each input queue of crossbar can buffer up to 256 multicast cells

and 256 unicast cells,Ω can buffer 128 unicast cells and 128 multicast cells at the input and 128 cells at

the output. So the total buffer space used was the same for both designs. The control network of theΩ

switch used two rounds for multicast (one for each copy) and eight rounds for unicast (four rounds for

each copy) per slot. A weight of 1 for the age and -2 for fanout was used for WBA simulations.

Each simulation was run for 100,000 cycles as one batch with a warmup of 50,000 cycles until

the mean value of the unicast and multicast latencies of all the batches fell within the 95% confidence

interval. We use the following notations for all the plots. Omega, Omega2 and Omega-split denote,

respectively, the simple round-robin, round-robin with one round of scheduling and Omega2 with fanout

splitting. WBA denotes the weight based algorithm [11] over crossbar based switch fabric.

31

CHAPTER 5. PERFORMANCE ANALYSIS 32

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t l
at

en
cy

load

 8*8 multicast traffic

Wba
Omega

Omega2
Omega-split

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t u
til

iz
at

io
n

load

 8*8 multicast traffic

Wba
Omega

Omega2
Omega-split

Figure 5.1: Performance of8×8 switches for uncorrelated multicast traffic with variable fanout. We use
the following abbreviations for all plots. Omega : The round robin policy which schedules two multicast
cells per slot time overΩ based switch fabric. Omega2 :The round robin scheme and an additional round
of selection for multicast cells overΩ based switch fabric. split : The round robin scheme and fanout
splitting overΩ based switch fabric. WBA: The WBA multicast scheduling policy over crossbar based
switches.

5.1.1 Multicast Traffic Simulations

In this section we present the simulations of multicast traffic. This type of traffic simulates the suit-

ability of the switch for multicasts.

Multicasts with variable fanout

We present the simulation of multicast traffic with Bernoulli distribution of destinations here. Figure

5.1 shows the delay and utilization of various designs for uncorrelated arrivals for an8× 8 switch. We

see that Omega, Omega2, and Omega-split achieve nearly 100% utilization and WBA achieves about

95% utilization. Also, the latency curves for Omega, Omega2 and Omega-split are similar and slightly

lower than that of WBA.

Figure 5.2 shows the delay and utilization of various designs for correlated arrivals on an8 × 8

switch. The input queued WBA design achieved only 78% utilization due to prolonged and increased

contention for output ports because of correlated arrivals. However, Omega, Omega2, and Omega-split

achieve about 95% utilization because of their abiltity to buffer cells at the output. Also, the latency

CHAPTER 5. PERFORMANCE ANALYSIS 33

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t l
at

en
cy

load

 8*8 multicast traffic

Wba
Omega

Omega2
Omega-split

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t u
til

iz
at

io
n

load

 8*8 multicast traffic

Wba
Omega

Omega2
Omega-split

Figure 5.2: Performance of8× 8 switches for correlated multicast traffic with variable fanout.

curves for Omega, Omega2 and Omega-split are similar and lower than that of WBA, although higher

than that of uncorrelated arrivals.

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t l
at

en
cy

load

 16*16 multicast traffic

Wba

Omega
Omega2

Omega-split

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t u
til

iz
at

io
n

load

 16*16 multicast traffic

Wba

Omega
Omega2

Omega-split

Figure 5.3: Performance of16× 16 switches for uncorrelated multicast traffic with variable fanout.

Figure 5.3 and 5.4 show the performance of a16×16 switch for uncorrelatd and correlated multiacst

traffic, respectively. We see that the performance is similar to that of an8× 8 switch.

Figure 5.5 shows the performance of a64 × 64 switch for correlated multicast traffic. Comparing

Figures 5.2, 5.4 and 5.5 we see that while the utilization of Omega, Omega2 and Omega-split are almost

identical, WBA shows a slight increase in utilization as the switch size is increased from 8 ports to a

64 ports. This is due to the decrease in the effect of correlated traffic with increasing port size of the

switch. Since the correlation train size is 16 in all our simulations, on an average the number of new

CHAPTER 5. PERFORMANCE ANALYSIS 34

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t l
at

en
cy

load

 16*16 multicast traffic

Wba

Omega
Omega2

Omega-split

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t u
til

iz
at

io
n

load

 16*16 multicast traffic

Wba

Omega
Omega2

Omega-split

Figure 5.4: Performance of16× 16 switches for correlated multicast traffic with variable fanout.

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t l
at

en
cy

load

 64*64 mulitcast traffic

Wba

Omega
Omega2

Omega-split

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t u
til

iz
at

io
n

load

 64*64 mulitcast traffic

Wba

Omega
Omega2

Omega-split

Figure 5.5: Performance of64× 64 switches for correlated multicast traffic with variable fanout.

cells (with possibly different destination list) at the head of the input queue are more in a 64 port switch

than in a 16 port switch by a factor of64
16 = 4. So the output conflicts tend to be randomized better for

larger switches. The buffering at output queues in Omega switch reduces the impact of the correlation

and thus does not benefit from better randomization of cell destinations.

Constant fanout

In these simulations, the number of destinations (outputs of a switch) that an incoming multicast cell

has is fixed. Since the Omega design with round-robin scheduling sends one multicast cell through each

CHAPTER 5. PERFORMANCE ANALYSIS 35

copy of its data network, the maximum utilization achieved by it is given by the following formula.

ρ =
k × f

N
(5.1)

whereρ is utilization,k is number of data network copies used inΩ switch andf is multicast cell fanout.

For an 8 port switch of fanout 2, the maximum utilization achieved by Omega is2×2
8 = 0.5. Sim-

ilarly, for 16 port switch with fanout 2 utilization is 0.25 or 25%and for fanout 4 it is 0.50 or 50% for

both correlated and uncorrelated traffic.

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t l
at

en
cy

load

 8*8 multicast traffic

Wba
Omega

Omega2
Omega-split

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t u
til

iz
at

io
n

load

 8*8 multicast traffic

Wba
Omega

Omega2
Omega-split

Figure 5.6: Performance of8× 8 switches for uncorrelated multicast traffic with fixed fanout of 2.

Fanout of 2: Figure 5.6 shows the delay and utilization of various designs for uncorrelated arrivals

for an 8 port switch. Here, Omega saturates at 50%. Omega2 saturates at around 86% and Omega-split

nearly achieves 100%. Splitting the cells makes efficient use of the data paths in the switch fabric. When

splitting is not used, the data paths used by some of the cells that could reach the output ports are wasted

as all the destinations of these cells could not be satisfied due to output conflicts and hence the cells that

could reach their destinations also are not sent. WBA saturates at about 76%. Omega2 and Omega-split

have lower delay compared to WBA, specifically, when the loads are in the range 60% - 90%.

Figure 5.7 presents the results for correlated traffic. WBA saturates at about 64% while Omega2 can

attain upto 80% and Omega-split saturates at 86%. We notice that correlated arrivals bring down the

CHAPTER 5. PERFORMANCE ANALYSIS 36

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t l
at

en
cy

load

 8*8 multicast traffic, fanout 2

wba

omega2
split

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t u
til

iz
at

io
n

load

 8*8 multicast traffic, fanout 2

wba

omega2
split

Figure 5.7: Performance of8× 8 switches for correlated multicast traffic with fixed fanout of 2.

switch utilization of all the four designs. The delay curves for Omega2 and Omega-split are significantly

lower than that of WBA when the loads are in the range 50% to 90%.

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t l
at

en
cy

load

 16*16 multicast traffic

Wba

Omega
Omega2

Omega-split

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t u
til

iz
at

io
n

load

 16*16 multicast traffic

Wba

Omega
Omega2

Omega-split

Figure 5.8: Performance of16× 16 switches for uncorrelated multicast traffic with fixed fanout of 2.

Figure 5.8 and 5.9 show the performance of a16×16 switch for uncorrelatd and correlated multiacst

traffic, respectively. Omega-split saturates at about 93%, WBA at about 72%, Omega2 at about 62%

for uncorrelated arrivals. For correlated traffic, Omega-split saturates at about 80%, WBA at about 62%

and Omega2 at about 61%.

Figure 5.10 shows the performance of a64×64 switch for correlated multiacst traffic. Here, Omega-

split saturates at about 64%, Omega2 at 35% and Omega at 6.25%. On the other hand WBA’s utilization

is at 60% The utilization achieved by Omega based scheduling policies decrease from an 8 port switch

CHAPTER 5. PERFORMANCE ANALYSIS 37

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t l
at

en
cy

load

 16*16 Network of switches fanout 2

wbapim
omega 2

omega split

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t u
til

iz
at

io
n

load

 16*16 Network of switches fanout 2

wbapim
omega 2

omega split

Figure 5.9: Performance of16× 16 switches for correlated multicast traffic with fixed fanout of 2.

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t l
at

en
cy

load

 64*64 mulitcast traffic

Wba

Omega
Omega2

Omega-split

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t u
til

iz
at

io
n

load

 64*64 mulitcast traffic

Wba

Omega
Omega2

Omega-split

Figure 5.10: Performance of64× 64 switches for correlated multicast traffic with fixed fanout of 2.

to 64 port switch more than that of WBA for multicast traffic with fixed fanout. With increase in number

of ports, the cells are routed through an extra stage of switching elements in Omega networks and the

probability of path conflicts increases thereby decreasing the switch utilization.

Fanout of 4: Figure 5.11 and 5.12 show the performance of a16 × 16 switch for uncorrelatd and

correlated multiacst traffic with fixed fanout of 4, respectively. We see from figure 5.11 that Omega-split

achieves nearly 100% utilization, WBA about 82%, Omega2 at about 55% for uncorrelated arrivals. For

correlated traffic, Omega-split saturates at about 87%, WBA at about 64% and Omega2 at about 55%.

Omega saturates at 50% for both kinds of traffic as predicted by equation 5.1.

Figure 5.13 shows the performance of a64 × 64 switch for correlated multiacst traffic with fixed

CHAPTER 5. PERFORMANCE ANALYSIS 38

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t l
at

en
cy

load

 16*16 multicast traffic

Wba

Omega
Omega2

Omega-split

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t u
til

iz
at

io
n

load

 16*16 multicast traffic

Wba

Omega
Omega2

Omega-split

Figure 5.11: Performance of16× 16 switches for uncorrelated multicast traffic with fixed fanout of 4.

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t l
at

en
cy

load

 16*16 Network of switches fanout 4

wbapim
omega 2

omega split

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t u
til

iz
at

io
n

load

 16*16 Network of switches fanout 4

wbapim
omega 2

omega split

Figure 5.12: Performance of16× 16 switches for correlated multicast traffic with fixed fanout of 4.

fanout of 4. Here, Omega-split saturates at about 74%, WBA at about 63%, Omega2 about 19% and

Omega achieves 12.5% utilization.

Fanout of 8: Figure 5.14 shows the performance of a64 × 64 switch for correlated multiacst traffic

with fixed fanout of 8. Here, Omega-split saturates at about 82%, WBA at about 65% and both Omega

and Omega2 achieve 25% utilization.

Comparing Figures 5.5, 5.10, 5.13 and 5.14 we see that with increasing fanout, the switch utilization

increases. WBA achieves about 60% for fanout 2, 63% for fanout 4, 65% for fanout 8 and about 83%

for variable fanout (withN+1
2 destinations on an average). Omega-split achieves about 64% for fanout

2, 74% for fanout 4, 82% for fanout 8 and about 93% for variable fanout. However, Omega2 gives an

CHAPTER 5. PERFORMANCE ANALYSIS 39

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t l
at

en
cy

load

 64*64 mulitcast traffic

Wba

Omega
Omega2

Omega-split

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t u
til

iz
at

io
n

load

 64*64 mulitcast traffic

Wba

Omega
Omega2

Omega-split

Figure 5.13: Performance of64× 64 switches for correlated multicast traffic with fixed fanout of 4.

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t l
at

en
cy

load

 64*64 mulitcast traffic

Wba

Omega
Omega2

Omega-split

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t u
til

iz
at

io
n

load

 64*64 mulitcast traffic

Wba

Omega
Omega2

Omega-split

Figure 5.14: Performance of64× 64 switches for correlated multicast traffic with fixed fanout of 8.

utilization of about 35% for fanout 2, but achieves only about 19% for fanout 4 and 25% for fanout 8.

Omega2, which acheived higher utilization when the fanout was 2, suffers because with increase in the

fanout, the probability of conflicts among the multicast cells with common destinations increases and

since a multicast cell is selected only if it could be routed completely to all its destinations in the same

slot, hardly more than 2 multicast cells selected by round-robin scheme can be routed in a single slot

time. In fact, the extra round of scheduling is not helping Omega2 for multicasts with higher fanouts.

So fanout splitting is crucial for traffic with high fanout.

CHAPTER 5. PERFORMANCE ANALYSIS 40

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t l
at

en
cy

load

 64*64 25% fixed unicast varying multicast traffic

Wba+PIM

Omega
Omega2

Omega-split

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t u
til

iz
at

io
n

load

 64*64 25% fixed unicast varying multicast traffic

Wba+PIM

Omega
Omega2

Omega-split

Figure 5.15: Multicast latency, utilization with correlated arrivals of variable fanout, 25% Unicast load.

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

un
ic

as
t l

at
en

cy

load

64*64 25% fixed unicast varying multicast traffic

Wba+PIM

Omega
Omega2

Omega-split

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

un
ic

as
t u

til
iz

at
io

n

load

 64*64 25% fixed unicast varying multicast traffic

Wba+PIM

Omega
Omega2

Omega-split

Figure 5.16: Unicast latency, utilization with correlated arrivals of variable fanout, 25% Unicast load.

5.1.2 Mixed Traffic

In this section we present the simulations of64× 64 switch with 25% unicast traffic and varying the

multicast traffic. This type of traffic determines the ability of the switch to handle unicast and multicast

traffic simultaneously. We simulated8 × 8, 16 × 16 switches also, and the results are similar to those

obtained for64× 64 switches.

Figures 5.15, 5.16, 5.17, 5.18, 5.19 and 5.20 show the performance of various designs for correlated

multicast traffic with variable fanout and fanout of 2 and 4 for a64× 64 switch in the presence of 25%

unicast traffic. We see that all the scheduling policies make use of the remaining bandwidth left after

scheduling multicast traffic for the unicast traffic.

CHAPTER 5. PERFORMANCE ANALYSIS 41

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t l
at

en
cy

load

 64*64 25% fixed unicast varying multicast traffic

Wba+PIM

Omega
Omega2

Omega-split

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t u
til

iz
at

io
n

load

 64*64 25% fixed unicast varying multicast traffic

Wba+PIM

Omega
Omega2

Omega-split

Figure 5.17: Multicast latency, utilization with correlated arrivals of fixed fanout 2, 25% Unicast load.

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

un
ic

as
t l

at
en

cy

load

64*64 25% fixed unicast varying multicast traffic

Wba+PIM

Omega
Omega2

Omega-split

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

un
ic

as
t u

til
iz

at
io

n

load

 64*64 25% fixed unicast varying multicast traffic

Wba+PIM

Omega
Omega2

Omega-split

Figure 5.18: Unicast latency, utilization with correlated arrivals of fixed fanout 2, 25% Unicast load.

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t l
at

en
cy

load

 64*64 25% fixed unicast varying multicast traffic

Wba+PIM

Omega
Omega2

Omega-split

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t u
til

iz
at

io
n

load

 64*64 25% fixed unicast varying multicast traffic

Wba+PIM

Omega
Omega2

Omega-split

Figure 5.19: Multicast latency, utilization with correlated arrivals of fixed fanout 4, 25% Unicast load.

CHAPTER 5. PERFORMANCE ANALYSIS 42

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

un
ic

as
t l

at
en

cy

load

64*64 25% fixed unicast varying multicast traffic

Wba+PIM

Omega
Omega2

Omega-split

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

un
ic

as
t u

til
iz

at
io

n

load

 64*64 25% fixed unicast varying multicast traffic

Wba+PIM

Omega
Omega2

Omega-split

Figure 5.20: Unicast latency, utilization with correlated arrivals of fixed fanout 4, 25% Unicast load.

5.2 Multicycle Scheduling

At very high speeds, it may not be possible to complete the scheduling of the cells for anΩ-switch

in a single slot time as the scheduling involves multiple rounds. Instead of increasing the slot time to

accommodate the scheduler, we can pipeline the scheduling of the cells, thereby keeping the scheduler

in sync with the line rates and switch fabric capacity. Hence, the scheduler takes multiple slot times to

schedule the cells. This enables us to deliver the cells at line rates though it takes multiple cycles in

making a decision to schedule them.We have considered the following scenario to evaluate the effect of

pipelining on the latency and throughput of the switch.

A simple way to implement a pipelined effect is to assume that there are as many stages in the

pipeline as the number of copies ofΩ network in the data path of the switch fabric. During each slot

time the inputs send their requests to the scheduler. Aftern slot times, the inputs would know the

outcome of their requests and those successful would send those cells which match the granted requests

through the data network of the switch fabric in that time slot, which itself can be considered as another

stage in the pipeline. Hence, at any timet the scheduler would be processing requests fromn previous

time slots, that is requests fromt− n to t− 1 slots, wheren is the length of the pipeline.

By this, subsequent requests by the inputs are pipelined and once the succesfull requests are known

CHAPTER 5. PERFORMANCE ANALYSIS 43

the input ports choose those cells that match the granted requests and route them through the data

network.

In order to be conservative in simulating the effect of pipelining the scheduler on the throughput

and latency, we cancel all the subsequent requests of an input port whose requests are not granted due

to blocking nature ofΩ network at any of the stages in the pipeline. That is, if an input port sends its

request to the scheduler at timet and the request is denied due to conflicts in the pipeline, all requests

made after timet are cancelled and considered again after timet + n. This would delay the internal

scheduling conflicts to later slots. Though this might increase the latency of the cells, we do not expect

much change in the utilization of the switch.

We have simulated the pipeline effect with correlated traffic of fixed fanout 2 for an 8 port switch

for camparing it with the original8 × 8 Ω switch with multicast traffic. The delay seen by a cell in an

otherwise empty switch increases from 2 slots (1 for scheduling and 1 for routing) in earlier simulations

to n+1 slots. For WBA the cell delay is still 2 slots in the absence of contention or waiting. Figure 5.21

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t l
at

en
cy

load

 8*8 multicast traffic, fanout 2

Wba

Omega2
Omega-split

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t u
til

iz
at

io
n

load

 8*8 multicast traffic, fanout 2

Wba

Omega2
Omega-split

Figure 5.21: Effect of pipelining on8 × 8 switches for correlated multicast traffic with fixed fanout of
2.

shows the effect of pipelining on Omega2, Omega-split for an8 × 8 Ω switch. Referring to fig. 5.7,

we see that latency increases at lower loads by 10 - 20% but for higher loads the latencies are similar.

However, the increase in the latency at lower loads is not considerable because its less than 10 time

CHAPTER 5. PERFORMANCE ANALYSIS 44

slots. At higher loads,buffering time of cells overlaps with the extra time spent on scheduling. So the

impact of increased scheduling time is muted. The throughput is slightly lower because of the increased

cell scheduling time.

5.2.1 Performance Analysis of Large Switches

In this section we present the simulations of multicast traffic for large switches i.e., switches with

ports 512 and 1024. We also examine the effect of the number of data networks in the switch fabric.

We have simulated512×512 and1024×1024 Ω- and crossbar-based switches with separate buffers

for unicast and multicast traffic. While each input queue of crossbar can buffer up to 256 multicast cells

and 256 unicast cells, input queues ofΩ can buffer 128 unicast cells and 128 multicast cells at the input

and 128 cells at the output. All the graphs are for correlated traffic. In these simulations, we vary the

number of copies of data network inΩ-switch designs to determine the benefit of more copies of data

network. Since Omega-split is the only Omega design that appeared competitive as the ratiofanout
switchsize

decreased, we simulated only Omega-split design for 512 and 1024 port switches.

The simulation for 512 and 1024 port switches were run for 3000 cycles (averaged over 10 runs)

with a warmup of 1000 cycles.We use the following notations for all the plots in this section.

Split k : The scheduling policy using fanout splitting withk copies of Omega network. The mini-

mum cell latency isk + 1 slot times.

WBA: The WBA multicast scheduling policy over crosbars[11].

Observations

We observe that Split-3 and Split-4 behave similarly for both 512 and 1024 port switches, that is, there

is very little increase in utilization with 4 copies over 3 copies. However, the utilization is improved by

20 percentage points when 3 copies (split-3) are used instead of 2 (split-2). The differences in the

performance of 3 and 4 copies decrease with increasing fanout. For fanout 8 and above they are almost

CHAPTER 5. PERFORMANCE ANALYSIS 45

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

 la
te

nc
y

load

Wba

Split 2
Split 3
Split 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

 u
til

iz
at

io
n

load

Wba

Split 2
Split 3
Split 4

Figure 5.22: Performance of512× 512 switches for correlated multicast traffic with fixed fanout of 2.

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

 la
te

nc
y

load

Wba

Split 2
Split 3
Split 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

 u
til

iz
at

io
n

load

Wba

Split 2
Split 3
Split 4

Figure 5.23: Performance of512× 512 switches for correlated multicast traffic with fixed fanout of 4.

identical. Hence the difference is prominent only in fanout 2 and 4.

High throughput for 3 copies is achieved because there were many input ports that did not deliver

their multicast cells to any of its destinations through the 2 copies because of internal path conflicts.

There is no significant improvement with 4 copies over 3 copies because of the following reasons.

1. All or most of the input ports were able to send their multicast cell to atleast one of their destina-

tions with 3 copies.

2. The remaining input ports (i.e., those which didn’t send its multicast cell to any of their destina-

tions through the 3 copies) have output conflicts with the cells already sent. That is, they may be

requesting same output ports as the cells that have already reached the output ports using the 3

copies. And hence, they would be rejected once the output buffers saturate or would be buffered

CHAPTER 5. PERFORMANCE ANALYSIS 46

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

 la
te

nc
y

load

Wba

Split 2
Split 3
Split 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

 u
til

iz
at

io
n

load

Wba

Split 2
Split 3
Split 4

Figure 5.24: Performance of1024 × 1024 switches for correlated multicast traffic with fixed fanout of
2.

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

 la
te

nc
y

load

Wba

Split 2
Split 3
Split 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

 u
til

iz
at

io
n

load

Wba

Split 2
Split 3
Split 4

Figure 5.25: Performance of1024 × 1024 switches for correlated multicast traffic with fixed fanout of
4.

at the output and hence do not increase the switch utilization.

Performance could be improved for 4 copies if we consider those input ports that have split their

cells during scheduling and have succeeded in sending some of their destinations through a copy of the

network for routing through the remaining copies of the data network also.

We also see that the Split-3 and Split-4 have lower latencies than Split-2. This is directly related to

high throuput for 3 and 4 copies over 2 copies. Because of high switch utilization, cells get delivered

faster and hence latencies are low.

CHAPTER 5. PERFORMANCE ANALYSIS 47

We notice that the fanout splitting policies overΩ switch require 3 data networks to outperform WBA

for larger switches of size 512 and above. In terms of number of crosspoints Split-3 requires fewer than

11% (
3× 512

2
×9×4

512×512) of the crosspoints required by a crossbar.

Chapter 6

Switched Networks

Most published studies evaluate proposed switch designs as single components, but do not evaluate

their part in a networked environment. We used Omega and WBA switches as building blocks to form

a switched network by interconnecting multiple switches. We have evaluated the performance of the

complete switched network built with each type of switch. In particular, we analyzed the performance

of the switches for 2 network topologies shown in Figures 6.1 and 6.2. Figure 6.2 presents a general

topology for SANs. On the other hand the topology in figure 6.1 provides the functionality of a16×16

switch. We have chosen Figure 6.1 for comparison with the single switch results presented earlier.

Simulation

We have modified the simulator to simulate the interconnected switches. The program takes the

number of switches, input ports, output ports, the size of the switch, the traffic loads as a fraction in the

range [0,1] and the type of scheduling policy and the type of switch design to be used as parameters.

Each switch also reads in a file as an input which describes its interconnection and hence defines the

topology of the network. We modified the Omega.java and Wba.java described in Chapter 4 to exist as

independent objects. We developed another main class called Network.java which simulates the network

by initializing all the switches and passing control to each of them appropriately.

48

CHAPTER 6. SWITCHED NETWORKS 49

Switch 0

Switch 1

Switch 2

Switch 3

1

2

3

4

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

5

6

7

9

10

11

12

13

14

15

0

8

Inputs

Outputs

0

Figure 6.1: Topology of the simulated network 1.

13

14

15

3

2

1

0

Switch 3

Switch 2

Switch 1

Switch 0

12

Outputs
Inputs

12

15

14

13

11

10

9

8

7

6

5

4

3

2

1

0

11

10

9

8

7

6

5

4

Figure 6.2: Topology of the simulated network 2.

The topology of the network is described by several input files (one per switch), which specify how

each switch is connected to its neighbors. Each input file specifies the inputs of the switch that can inject

cells into the network which are the network inputs. The file also specifies the neighboring switch and

port each of its output port is connected to. A sample input file for Switch 0 in network Figure 6.2 is

shown in Figure 6.3.

In the above example, the first line specifies the number of ports, switching elements, input and

output buffer size, number of network outputs reachable through switch 0 and the numerically least id

of the reachable network outputs. The second line specifies the switch inputs that are also the network

inputs. Although the above format represents reachable destinations by each switch to be contiguous, it

can be modified to remove the restriction. The switches themselves are simulated to handle any com-

CHAPTER 6. SWITCHED NETWORKS 50

8 12 64 64 16 0 // specifies the no. of ports,switching elements, input and output queue length and no. of reachable destinations

4 5 6 7 : 12 13 14 15
0 1 2 3 4 5 6 7 : 4 5 6 7 8 9 10 11
0 1 2 3 : 0 1 2 3
lookup table
2 3
2 2
2 1
2 0
1 7
1 6
1 5// output port is connected.
1 4 // id of the switch and the port no in it to which each
output connections
0 1 2 3 4 5 6 7// ids of the ports that could inject cells

switch 0//indicates the id of the switch

Figure 6.3: Input file for Switch 0 in network 6.2.

bination of outputs. Consecutive lines in the input file under the heading output connections specifies

the neighboring switch and port number each of Switch 0’s output port is connected to. For the above

example, output port 0 of switch 0 is connected to input port 4 of switch 1. A−1− 1 in this line means

that the output port of the switch is also a network output. That is, for Switch 2 and Switch 3 all lines

under output connections will have−1− 1 as they are the network outputs.

The lookup table describes all the network outputs that can be reached through the local outputs of

the switch. For example, input file in Figure 6.3 specifies that Switch 0 can reach network outputs 0, 1,

2 and 3 through its local outputs 0, 1, 2 or 3. Similarly network outputs 4, 5, 6, 7, 8, 9, 10 and 11 can be

reached by going to either 0, 1, 2, 3, 4, 5, 6 or 7 of that particular switch.

We have grouped the network outputs based on the switches they are connected to. Each cell has the

list of all the destinations it want to go to in its header. When a cell comes into a switch input port, we

determine the different groups its destination vector is comprised of and then for each group it chooses

one local output port of that particular switch randomly from the table. For example, if we had a cell

with destinations 2, 7 and 9 we see that network output 2 belongs to group 1 and 7, 9 belong to group

2. Now the cell randomly picks the outputs it would use to go to these groups 1 and 2. One possibility

is it picks switch output 1 for group 1 and switch output 2 for group 2. another possibility is it picks

switch output 1 for both groups. (There are numerous such possibilities.) This routing scheme doesn’t

CHAPTER 6. SWITCHED NETWORKS 51

minimize the number of switch outputs used.

6.1 Performance Evaluation

We present the simulations of two networks for multicast traffic of fanout 2 and 4 in this section.

Omega designs use two copies of data network and the scheduling time is 2 cycles, while that of WBA

is 1 cycle.

6.1.1 Network 1

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t l
at

en
cy

load

Wba

Omega 2
Omega split

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t u
til

iz
at

io
n

load

Wba

Omega 2
Omega split

Figure 6.4: Performance of the switched network in Figure 6.1 for uncorrelated multicast traffic with
fixed fanout of 2

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t l
at

en
cy

load

Wba
Omega 2

Omega split

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t u
til

iz
at

io
n

load

Wba
Omega 2

Omega split

Figure 6.5: Performance of the switched network in Figure 6.1 for correlated multicast traffic with fixed
fanout of 2

Figures 6.4 and 6.5 present the network utilizations and latencies achieved by the switches for net-

CHAPTER 6. SWITCHED NETWORKS 52

work in 6.1 for multicast traffic of fanout 2. From Figures 6.4 and 6.5 we see that Omega2 performs

similar to Omega-split for both correlated and uncorrelated traffic in terms of throughput and latency.

Comparing the results with a single16 × 16 port switch from Figures 5.8 and 5.9 we see that Omega2

achieves a utilization of over 80% for uncorrelated multicast traffic of fanout 2, before starting to lose

cells whereas a single16 × 16 switch gives about only 60% utilization with Omega2. For correlated

traffic it achieves about 70% utilization whereas in a single switch it gives about 60% utilization. The

latency curve for Omega2 almost traces the latency curve for the Omega-split design. Also, Omega-split

design performs similarly in terms of throughput and latency for a single16 × 16 switch as well as for

interconnected switches as in Figure 6.1.

The network utilization depends on utilization achieved by each of the switches in the network. By

arranging the switches in stages we have reduced the effective fanout of the cells passing through each

stage of the switches. With fanout 2, a cell at Switch 0 may need to use only one output of Switch 0

(because both of its destinations are connected to the same switch in the next column) or two outputs of

Switch 0 (because one destination is reachable through Switch 3 and the other through Switch 4). The

probability of former is 7
15 and that of the later is815 . So the effective fanout of cells seen by Switch 0

and Switch 1 is1× 7
15 + 2× 8

15 = 23
15 = 1.53. And the effective fanout of cells seen by switches 2 and

3 is 2
1.53 = 1.3. This attributes to the increase in performance of Omega2 as there are cells of fanout 1

and 2, whereas in single large switch, all cells have fanout of 2. Omega-split is not effected because it

already employs fanout splitting and in a steady state there would be cells with multiple fanouts. By the

above argument, the network utilization for multicast traffic of fanout 2 is dependent on the performance

of an8 × 8 switch with multicast traffic of fanout23
15 . We see that the network utilization achieved for

the network in Figure 6.1 is in fact comparable to the performance of an8 × 8 switch with multicast

traffic of fanout 2 in Figure 5.7.

WBA based network in Figure 6.1achieves about 70% utilization for uncorrelated traffic which

CHAPTER 6. SWITCHED NETWORKS 53

is the same as that of a single16 × 16 switch. However, it achieves only 40% switch utilization for

correlated traffic while that of a single16 × 16 WBA switch is about 60%. Since the effective fanout

of cells at switches 0 and 1 is 1.53 we know that each multicast cell at the input of switches 0 or 1

becomes 1.53 cells at the inputs of switches 2 and 3. The input buffers at switches 2 and 3 are not

able to accommodate the number of multicast cells delivered by switches 0 and 1 due to this expansion.

The simulations show that large number of cells are lost as they could not enter the input buffers of

switches 2 and 3, although they were delivered by switches 0 and 1. For example, in the simulation of

the network with a network load of 0.6, fanout 2 and correlation train of size 16, we saw that for 100,000

slots around 480,000 multicast cells were injected into switches 0 and 1 and 735,000 are delivered by

switches 0 and 1 to switches 2 and 3. However, out of these 735,000 cells only 568,000 cells enter the

input buffers of switches 2 and 3 and the remaining 167,000 cells are lost. Switches 2 and 3 deliver all

the cells in their buffers, which is around 738,000 cells that account for only 46% utilization.

For a mulitcast load of 0.4 with fanout 2 on network in Figure 6.1, the cell rate (rate at which cells

are injected in to the inputs) at switches 0 and 1 is0.4
2 = 0.2. Since the effective fanout at these switches

is 1.53, the cell rate at switches 2 and 3 is2 × 1.53 = 0.31. This is the cell rate that a single8 × 8

switch having a load of 0.64 multicast traffic with fanout 2 also starts to lose cells. This shows the

inherent limitaion on the cell rate that the WBA can sustain on the crossbars irrespective of the fanout

for correlated traffic.

When the cell rate at the inputs is high, the fanout of the cells is very low as cell rate and fanout

are inversely related. The low fanout brings up the head-of-line problem for crossbar designs. The

theoretical limits for head-of-line problem is 58% for uncorrelated traffic. Correlated traffic exacerbates

the head-of-line problem and further reduces the achievable utilization. Hence, we see that the utilization

achieved by WBA is only about 40% for network in Figure 6.1 for correlated trffic of fanout 2 while

that of a single8× 8 switch is around 64%.

This clearly demonstrates the inherent weakness of input buffered crossbar designs for correlated

CHAPTER 6. SWITCHED NETWORKS 54

traffic. This also illustrates the advantage of using limited output buffering, especially for correlated

multicast traffic. For this reason, theΩ switch designs take advantage of reduced effective fanout in the

traffic that occurs as cells go through multiple switches.

The latency curve for uncorrelated traffic is similar to that of a single16×16 switch but the latencies

in Figure 6.5 are higher than that of a single switch in Figure 5.9.

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t l
at

en
cy

load

Wba

Omega 2
Omega split

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t u
til

iz
at

io
n

load

Wba

Omega 2
Omega split

Figure 6.6: Performance of switch based network for topology in Figure 6.1 for uncorrelated multicast
traffic with fixed fanout of 4

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t l
at

en
cy

load

Wba
Omega 2

Omega split

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t u
til

iz
at

io
n

load

Wba
Omega 2

Omega split

Figure 6.7: Performance of switch based network for topology in Figure 6.1 for correlated multicast
traffic with fixed fanout of 4

Figures 6.6 and 6.7 present the network utilizations and latencies achieved by the switches for net-

work in 6.1 for multicast traffic of fanout 4. From Figures 6.6 and 6.7 we see that Omega2 performs

similar to that of Omega-split for both correlated and uncorrelated traffic in terms of throughput and

latency. Comparing the results with a single16 × 16 port switch from Figures 5.11 and 5.12 we see

CHAPTER 6. SWITCHED NETWORKS 55

that Omega2 achieves a utilization of over 80% for uncorrelated multicast traffic of fanout 4, before

starting to lose cells whereas a single16 × 16 switch gives about only 58% utilization with Omega2.

For correlated traffic it achieves about 75% utilization whereas in a single switch achieves about 58%

utilization. The latency curve for Omega2 almost traces the latency curve for the Omega-split switch

based network. Also, Omega-split design performs similarly in terms of throughput and latency for a

single16× 16 switch as well as for interconnected switches as in Figure 6.1. WBA achieves about 78%

utilization for uncorrelated traffic which is the same as that of a single16 × 16 switch. For correlated

traffic , however, WBA achieves only 50% switch utilization while it achieves 64%utilization if a single

16×16 switch is used. The reasons for underperformance are the same as those explained for fanouts of

2. The latency curve for uncorrelated traffic is similar to that of a single16× 16 switch but the latencies

in Figure 6.7 are higher than that of a single switch in Figure 5.12.

6.1.2 Network 2

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t l
at

en
cy

load

Wba

Omega 2
Omega split

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t u
til

iz
at

io
n

load

Wba

Omega 2
Omega split

Figure 6.8: Performance of the switched network in Figure 6.2 for uncorrelated multicast traffic with
fixed fanout of 2

Figures 6.8 and 6.9 present the network utilizations and latencies achieved by the switches for net-

work in 6.2 for multicast traffic of fanout 2. From Figure 6.8 we see that the Omega-split, Omega2,

WBA scheduling policies acheive about 80%, 70%, 60% utilization for uncorrelated multicast traffic of

fanout 2 before they start losing cells. For correlated traffic of fanout 2, Omega-split, Omega2, WBA

CHAPTER 6. SWITCHED NETWORKS 56

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t l
at

en
cy

load

Wba
Omega 2

Omega split

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t u
til

iz
at

io
n

load

Wba
Omega 2

Omega split

Figure 6.9: Performance of the switched network in Figure 6.2 for correlated multicast traffic with fixed
fanout of 2

achieve a utilization of 60%, 60% and 40% before they start losing cells, see Figure 6.9.

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t l
at

en
cy

load

Wba

Omega 2
Omega split

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t u
til

iz
at

io
n

load

Wba

Omega 2
Omega split

Figure 6.10: Performance of the switched network in Figure 6.2 for uncorrelated multicast traffic with
fixed fanout of 4

Figures 6.10 and 6.11 show the network utilizations and latencies achieved by the switches for

network in 6.2 for multicast traffic of fanout 4. From Figure 6.10 we see that the Omega-split, Omega2,

WBA scheduling policies achieve about 80%, 70%, 70% utilization for uncorrelated multicast traffic of

fanout 4 before they start losing cells. For correlated traffic of fanout 4, Omega-split, Omega2, WBA

achieve a utilization of 60%, 60% and 40% before they start losing cells, ref Figure 6.11. It can also be

seen that Omega2 and Omega-split behave similarly in terms of throughput and latency for correlated

traffic.

CHAPTER 6. SWITCHED NETWORKS 57

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t l
at

en
cy

load

Wba
Omega 2

Omega split

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

m
ul

tic
as

t u
til

iz
at

io
n

load

Wba
Omega 2

Omega split

Figure 6.11: Performance of the switched network in Figure 6.2 for correlated multicast traffic with
fixed fanout of 4

Chapter 7

Conclusions

The increasing demand for network bandwidth for various multicast applications requires storage

area networks based on high-speed multicast switches. These switches should handle both unicast and

multicast traffic efficiently. In this thesis, we have presented the design of a multicast switch based on

multistage interconnection network with input and output buffers. Being based on multistage network,

the design is cost effective and scalable. To overcome the possible contention for paths through the

switch fabric, we used multiple copies of the well known Omega network. We have used a limited form

of output queueing to handle ouput conflicts. To resolve contention for paths through the switch fabric,

we have used a hardware based cell selection strategy. The proposed design simplifies the switch fabric

and ouput queueing and makes the cell selection at inputs more complex.

We have illustrated three possible designs based on the cell selection policy. They are Omega which

has a simple round-robin scheme, Omega2 which has an additional round of scheduling in addition to

the round-robin scheduling, and Omega-split which is basically Omega2 with cell splitting. We have

developed a modular simulator in java to evaluate the performance of the switches for the proposed

scheduling policies. The program can simulate the above three scheduling policies over Omega network

and crossbar based WBA for various switch sizes and traffic types. We have observed that the Omega-

split outperforms WBA on crossbar for smaller switch sizes like8× 8, 16× 16 and64× 64. It achieved

58

CHAPTER 7. CONCLUSIONS 59

almost 100% utilization for mixed traffic, that is in the presence of both unicast and multicast traffic.

We have also analyzed the effect of the number of the data networks for Omega based switches

with large number of ports. For switches with 512 and 1024 ports, Omega based designs needed 3

data networks to outperform WBA on crossbar. All the scheduling policies performed similarly with

multicast traffic of variable fanout. However, the scheduling policies reached their limitations in the

presence of low fanout multicast traffic.

We have analyzed the performance of the switches in the context of switched networks for two

network topologies. In particular, we simulated a16× 16 switch by interconnecting four8× 8 switches

and observed that the throughput achieved is more than that of a single16 × 16 switch for Omega

based designs. Moreover, Omega2 switches performed as well as the Omega-split switches in terms

of utilization and latency. Another network topology we have simulated is a general topology which

represents a more realistic interconnection of switches especially for SANs. Another contribution of

our study is that WBA which uses crossbars as switch fabrics suffers as its not able to sustain the cell

rate for low fanout multicast traffic that occurs as cells go through multiple switches in a network.

Future work

The proposedΩ designs are atttractive in terms of cost, performance and scalability compared to

current designs. One of the common deficiencies of current studies is that single switch design is studied

and conclusions are drawn. As our simulations of networks indicate, this could lead to misleading

conclusions. So it is important to conduct realistic simulation. Future work in this direction will be to

simulate larger switched networks with more realistic traffic. For example, a multicast from servers to

storage devices followed by a unicast confirmation for each recipient storage unit to the sender of the

multicast. We plan to study these aspects in future.

Bibliography

[1] J. turner, “Design of a broadcast packet switching network,” IEEE Trans. Commun., vol. 36, 1988,
pp. 734-743.

[2] T. Lee, “Nonblocking copy networks for multicast packet switching,” IEEE J. Select. Areas of
Commun., vol. 6, 1988, pp. 1455-1467.

[3] S. Shimamoto, W. Zhong, Y. Onozato and J. Kaniyil, “Recursive copy networks for large multica
st ATM switches,” IEICE Trans. Commun., vol. E75-B, 1992, pp. 1208-1219.

[4] K. Schrodi, B. Pfeiffer, J. Delmas and M. DeSomer, “Multicast handling in a self-routing switch
architecture,” Proc. of ISS’92, pp. 156-160.

[5] J. Chao and B. Choe, “A large-scale multicast output buffered ATM switch,” Proc. of GLOBE-
COM’93, pp. 34-41.

[6] R. Cusani and F. Sestini, “A recursive multistage structure for multicast ATM switching,” Proc. of
INFOCOM’91, pp. 1289-1295.

[7] J. Turner, “An optimal nonblocking multicast virtual circuit switch,” Proc. of INFOCOM’94, pp.
298-305.

[8] J. S. Turner, “Design of a Broadcast Packet Switching Network,” IEEE Trans. Commun. vol. 36,
pp734-743, June 1998.

[9] Y. Xiong and L. Mason “Multicast ATM switches using buffered MIN structure: A performance
study,” INFOCOM’97 vol. 3 pp. 924-931.

[10] Rajendra V. Boppana, C. S. Raghavendra, “Designing efficient Benes and Banyan based input
buffered ATM switches,” ICC’91.

[11] Balaji Prabhakar, Nick McKeown, Ritesh Ahuja, “Multicast Scheduling for Input-Queued
Switches,” IEEE Journal on Selected Areas in Communications, vol 15, No. 15, pp. 885-866,
June 1997.

[12] Nick McKeown and Balaji Prabhakar, “Scheduling Mulitcast cells in an Input-Queued Switch,”
INFOCOM ’96 vol. 1 pp. 271-278.

[13] T. Anderson, S. Owicki, J. Saxe, and C. Thacker, “High Speed Switch Scheduling for Local Area
Networks,” ACM Transactions on Computer Systems 11, 4, November 1993, pp. 319-352.

60

BIBLIOGRAPHY 61

[14] M. J. Karol, M. G. Hluchyj, S. P. Morgan, “Input Versus Output Queueing on a Space-division
Packet switch,” IEEE Transactions on Communications, December 1987, pp. 1347-1356.

[15] Y. Yeh, M. Hluchyj, and A. Acampora, “The Knockout Switch: A Simple, Modular Architecture
for High-Performance Packet Switching,” IEEE Journal on Selected Areas in Communications,
Vol SAC-5, No. 8, October 1987, pp. 1274-1283.

[16] H. S. Kim and Alberto Leon-Garcia, “A self routing multistage switching network for broadband
ISDN,” IEEE J. Select. Areas Commun., vol. 8, No. 3, Apr. 1990.

[17] Tamir. Y., G. Frazier, “High-performance Multi-queue buffers for VLSI Communication
Switches,” Proc. of 15th Ann. Symp. on Computer Architecture, June 1988.

[18] N. McKeown, “iSLIP: A Scheduling Algorithm for Input-Queued switches,” IEEE Transactions
on Networking, Apr. 1999.

[19] K. L. E. Law and A. Leon-Garcia, “A large scalable ATM multicast switch,” IEEE J. Selected
Areas Commun., vol15, no. 5, pp. 844-854, 1997.

[20] H. S. Kim, “Design and Performance of Multinet Switch: A Multistage ATM switch architecture
with Partially Shared Buffers,” IEEE/ACM Trans. Networking, vol. 2, pp. 571-580, December
1994.

[21] J. N. Giacopelli, J. J. Hickey, W. S. Marcus, W. D. Sincoskie and M. Littlewood, “Sunshine: A
High Performance Self-routing Broadband Packet Switch Architecture,” IEEE J. Selected Areas
Commun. vol. 9, October 1991.

[22] N. McKeown, V. Anantharam, J. Walrand, “Achieving 100% Throughput in an Input-Queued
Switch,” Proc. INFOCOM 96, pp. 296-302.

[23] M. J. Karol and M. G. Hluchyj, “The Knockout Switch: Principles and performance,” in Proc.
12th Conf. on Local Computer Networks, 1987, pp 16-22.

[24] K. Y. Eng, M. G. Hluchyj and Y. S. Yeh, “Multicast and Broadcast Services in a knockout Packet
switch,” INFOCOM ’88, pp. 29-34, 1988.

[25] Rein J. F. de Vries, “ATM Multicast connections using the Gauss switch,” in Proc. GLOBECOM
’90, pp. 211-217.

[26] Mekkittikul, A and McKeown, N “A Starvation-free algorithm for Achieving 100% Throughput in
an Input-Queued Switch,” Proc. of ICCCN ’96, October 1996, pp. 226 - 231.

[27] D. X. Chen and J. W. Mark, “Multicasting in SCOQ Switch,” INFOCOM ’94, pp. 290-297, 1994.

[28] H. J. Chao and B. S. Choe, “Design and Analysis of large-scale multicast output buffered ATM
switch,” IEEE/ACM Trans. Networking, vol. 3, pp. 126-138, April 1995.

[29] R. Bakka and M. Dieudonne, “Switching circuit for digital packet switching network,” U. S. Patent
4 314 367, Feb. 2, 1982.

BIBLIOGRAPHY 62

[30] S. Nojima et al., “Integrated services packet network using bus matrix switch,” IEEE J. Select.
Areas Commun., vol. SAC-5, pp. 1284-1292, Oct. 1987.

[31] Y. Kato et al., “ Experimental broadband ATM switching system,” in Proc. GLOBECOM ’88,
Hollywood, FL, Nov, 1988, pp. 1288-1292.

[32] J. Y. Hui and T. Renner., “Queueing Analysis for Multicast Packet Switch,” IEEE Transactions on
Communications, vol. 42, no. 2/3/4, pp 723-731, Feb 1994.

[33] L. R. Goke and G. J. Lipovski, “Banyan networks for partitioning multiprocessor systems,” in
Proc. 1st Annu. Int. Symp. Computer Architecture, Apr. 1979, pp. 168-177.

[34] J. H. Patel, “Processor-memory interconnections for multiprocessors,” in Proc. 6th Annu. Int.
Symp. Computer Architecture, Apr 1979, pp. 168-177.

[35] K. E. Batcher, “Sorting networks and their applications,” in proc. Spring joint Comput. Conf.,
AFIPS, 1968, pp 307-314.

[36] A Huang and S Knauer, “Starlite: A wideband digital switch,” in Proc. GLOBECOM ’84, Atlanta,
GA, Dec. 1984, pp 121-125.

[37] Duncan H. Lawrie, “Access and Alignment of Data in an Array Processor” IEEE Transactions on
Computers, Dec. 1975, pp 1145-1155.

[38] Michael D. Schroeder et. al., “Autonet: A High-Speed, Self-Con figuring Local Area Network
Using Point-to-Point links,” IEEE Journal of selected areas in communications. vol. 9. no.8, Oct.
1991.

[39] N. J. Boden et. al., “Myrinet: A Gigabit-per-second local area network,” IEEE Micro, pages 29-36,
Feb. 1995.

[40] Ram Kesavan and Dhabaleswar K. Panda, “ Efficient multicast on irregular switch-based cut
through networks with up-down routing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 12, no. 8, Aug. 2001.

[41] F.J. Alfaro, A. Bermudez, R Casado, F. J. Quiles, J.L Sanchez and J. Duato, “ On the Performance
of Up*/Down* routing,”

[42] Mario Gerla, Prasanth Palnath, Simon Walton, Emilo Leonardi, Fabio Neri, “Multicasting in
Myrinet - A High-Speed, wormhole-routing network,” IEEE 1996.

[43] Mario Gerla, Prasanth Palnath and Simon Walton, “Multicasting protocols for High-Speed,
Wormhole-Routing Local Area Networks,” Technical Report 960010, Computer Science Dept.,
UCLA, February 1996.

[44] S. Owicki and A. R. karlin, “Factors in the performance of the AN1 computer Network,” Technical
report 88, Digital Equipment Corporation Systems Research Centre, Palo Alto, CA, June 1992.

[45] Kees Verstoep, Koen Langendoen, Henri Bal, “ Efficient reliable multicast on Myrinet,” IEEE
International conference on Parallel Processing, 1996.

BIBLIOGRAPHY 63

[46] Ming-Huang Guo and Ruay-Shiung Chang, “Multicast ATM switches: Survey and Performance
Evaluation,” ACM SICOMM Computer Communication Review, Volume 28, Issue 2, April 1998.

[47] Ramakanth Gunuganti, “Ω Switch, A high speed atm switch for multicast and unicast.” Masters
thesis, University of Texas at San Antonio, Aug. 2000.

[48] W. E. leland, M. S. Taqqu, W. Willinger and D. V. Willson, “On the self-similar nature of Ethernet
traffic (extended version),” IEEE/ACM Transactions on Networking, vol. 2, pp 1-15, Feb. 1994.

[49] V. Paxson and S. Floyd, “Wide area traffic: The failure of Poisson modeling,” IEEE/ACM Trans-
actions on Networking, vol. 3, pp. 226-244, June 1995.

Vita

Rajesh Boppana was born in Andhra Pradesh, India on July 24, 1977, the son of Koteswara Rao and

Rajyalakshmi. In 2000, he graduated from Jawaharlal Nehru Technological University, receiving the

Bachelor of Technology with a major in Computer Science and Engineering. He entered the graduate

program at UTSA in 2000.

He can be reached atrajesh bin@yahoo.com.

