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Abstract

PVM and other message-passing libraries facilitate parallel processing on worksta-

tion clusters. However, the intertask communications latency often limits the achiev-

able speedup. This thesis studies the intertask communications latency in PVM

computations. The PVM message library is instrumented to generate traces which

are in turn used to drive a simulator. This approach provides a flexible method

to evaluate the performance improvement which newer high-speed networks could

provide to a workstation cluster. This thesis presents the results of this analysis for

the NAS parallel benchmarks on workstations interconnected by 10 Mbps and 100

Mbps Ethernets.
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Chapter 1

Introduction

Scientific and technical research demands a great deal of computer power. In many

cases, a single workstation cannot provide enough system resources to conduct a

realistic computation, but a researcher’s access to supercomputers is limited and

such resources are expensive. A much less expensive alternative is the use of net-

works of less powerful computers, operating in cooperation on a single task.

Parallel Virtual Machine (PVM) provides such an environment [1]. PVM

is a system that allows a programmer to treat a heterogeneous collection of com-

puters as one ”virtual” machine. PVM programs use the message-passing model to

link resources together across a network so that components of a user’s task can

be processed in cooperation on several machines at once. In this manner, a com-

putation takes advantage of the processing power of several machines rather than

one. The performance of this virtual parallel computer on the task can be deter-

mined from three factors: the processing power of the machines participating in

the computation, the efficiency of the division of tasks among the processors, and

speed and efficiency of intertask communication. In this thesis, we address the less-

widely studied intertask communication and its impact on the overall execution of

PVM programs. Our work here is different from many previous performance studies

[16, 17, 18, 19] in that we consider both aspects of intertask communications in our

performance analysis: PVM message processing and network travel time.

1
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Network efficiency is usually expressed in terms of speed, bandwidth, and

latency. The resulting numbers provide a means for making comparisons among

different types of networks, but do not directly translate into a measure of the per-

formance improvement an application would experience on a different type of net-

work. The speeds of local area networks (LANs) used to interconnect workstations

have increased by orders of magnitude over the last 20 years; from Ethernet at a

nominal 10 Mbps, through FDDI (Fiber Distributed Data Interface) at 100 Mbps, to

HiPPI (High- Performance Parallel Interface) at up to 1.6 Gbps. If a user of a work-

station cluster suspects that her parallel application would run faster with a higher

speed network, there is no mechanism to confirm or deny this opinion based on the

application’s performance on a low speed network.

The purpose of this project is to provide a tool to help a PVM programmer

predict the performance of his PVM application on a workstation cluster connected

by a LAN other than the existing one. We do this by collecting traces of PVM appli-

cations running on a baseline network. We then run the traces through simulations

of different network types so that the user may see what performance improvement,

if any, can be expected on that type of network. To test this process, we traced the

execution of seven sample applications and simulated their execution first on 10

Mb/sec Ethernet, then on a conceptual 100 Mb/sec network. We selected seven of

the eight Numerical Aerodynamic Simulation (NAS) Parallel benchmarks to use in

these tests [9]. These benchmarks incorporate a variety of challenging and complex

communications profiles, and provide insight into the communication actions of a

real environment.

A PVM programmer would use these tools to predict PVM application per-

formance by recompiling his application and linking to our instrumented libpvm li-

brary. The resulting executable is then run on a network testbed, generating traces

of the application’s communications events. The trace files are converted into sim-

ulation input and applied to the Ethernet simulations (Figure 1.1).

The rest of this thesis is organized as follows. In Chapter 2, we provide
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background information on the PVM message model, including a discussion of its

data structures and the functions called both internally and by an externally- in-

terfacing user-level process. Chapter 3 describes how we instrumented PVM source

code to generate traces of PVM applications. The simulations are presented in Chap-

ter 4. In Chapter 5, we describe the test applications used in this report and the test

network configuration. The results of testing, simulation, and analysis are described

in Chapter 6. In Chapter 7, we present conclusions and ideas for future work.



Chapter 2

The PVM Message Model

Parallel Virtual Machine (PVM) was developed through a collaborative effort by the

Oak Ridge National Laboratory, Emory University, the University of Tennessee, and

Carnegie Mellon University as part of their Heterogeneous Network Computing En-

vironment (HeNCE) research project. PVM and its salient features are well described

in many articles and books [1, 2, 3]. In this chapter, we describe in detail the aspects

of PVM that are used most in our experiments. PVM provides a parallel computing

environment to the user through incorporation of a functionally complete message

passing model. The PVM system was designed to be run on a heterogeneous net-

work of computers and has been ported to a variety of computer types, such as the

DEC Alpha, Sequent Balance, BBN Butterfly, 80386/486 machines running Unix,

Thinking Machines CM-2 and -5 series, Crays, Silicon Graphics, and Sun.

PVM is being used for a variety of applications, including computer-aided

tomography at Lawrence Livermore Laboratory, seismic migration applications at

the Colorado School of Mines, parallel solvers for nonsymmetric partial differential

equations at the University of Utah, and Computational Fluid Dynamics problems

at NASA Ames Research Center [3].

The parallel machine created by PVM consists of one or more nodes. Each

node is a real computer, such as a workstation, Massively Parallel Processor (MPP),

or Symmetric Multiprocessor (SMP). Each computer in PVM hosts a PVM daemon,

5
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pvmd, and zero or more PVM tasks. The number of tasks that can be supported by

a PVM daemon depends on limits imposed by the operating system of the host. The

first PVM daemon is designated the master, and starts slave pvmds on other ma-

chines in the network as they are added to the PVM virtual system. Tasks interface

with the PVM daemon and other PVM tasks via the libpvm library. Libpvm in C and

C++ and libfpvm in Fortran provide functions for packing, unpacking, sending, and

receiving messages, as well as service requests for the PVM daemon.

2.1 Overview of PVM Communications

PVM communications mechanisms are described extensively in various books and

articles [1]. For the remainder of this chapter, we describe in depth the communica-

tions aspects of PVM that are not readily available in the literature but are necessary

for this project. Our descriptions are based on study of the PVM source code, exper-

imental results, and bits and pieces of information collected from other sources.

In general, PVM daemons and tasks use a message-passing model in their

communications. Figure 2.1 lists communications and supporting functions that

are employed by PVM tasks in message exchange. These functions are included in

libpvm and libfpvm, which are linked to user-level applications to provide message

passing services.

PVM tasks communicate via sockets, using the mechanisms native to their

host computers. Messages are of arbitrary length; if a message length is not sup-

ported by the communications protocol in use, PVM divides the message into smaller

fragments. PVM uses asynchronous send: when sending a message, the sender does

not wait for acknowledgment from the receiver, but continues as soon as the mes-

sage buffer is ready for reuse. A variety of receive operations are supported. The

receiver of a message may choose to block or not, or may probe the receive buffer to

see if a message has arrived. PVM also provides a receive function with time-out, so

a process can be prevented from waiting indefinitely.
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byte
complex array
double precision complex array
double
float
integer
unsigned integer
long integer
unsigned long integer
short integer
unsigned short integer
string
specified by printf()like format string

pvm_upkbyte
pvm_upkcplx
pvm_upkdcplx
pvm_upkdouble
pvm_upkfloat
pvm_upkint
pvm_upkuint
pvm_upklong
pvm_upkulong
pvm_upkshort
pvm_upkushort
pvm_upkstr
pvm_upackf

pvm_barrier
pvm_bcast
pvm_mcast
pvm_nrecv
pvm_precv
pvm_probe
pvm_psend
pvm_recv
pvm_reduce
pvm_send
pvm_sendsig
pvm_trecv
pvm_scatter
pvm_gather
msendrecv

Blocks the calling process until all processes in a group have called in.
Broadcasts the data in the active message buffer.
Multicasts the data in the active message buffer to a set of tasks.
Checks for non-blocking message with matching label.
Receivs a message directly into a buffer.
Checks whether message has arrived.
Packs and sends data in one call.
Receives a message.
Performs a reduce operation over members of the specified group.
Sends the data in the active message buffer.
Sends a signal to another PVM process.
Receives with timeout.
Performs a scatter of messages to each member of a group.
Performs a gather of messages from each member of a group.
Internal function to send and receive a message to/from one task.

pvm_send, pvm_recv
pvm_mcast
mroute
mroute
pvm_recv
mroute
pvm_send
mroute
pvm_send
mroute
msendrecv
mroute
pvm_send, pvm_recv
pvm_send, pvm_recv
mroute

Function Action

pvm_pkbyte
pvm_pkcplx
pvm_pkdcplx
pvm_pkdouble
pvm_pkfloat
pvm_pkint
pvm_pkuint
pvm_pklong
pvm_pkulong
pvm_pkshort
pvm_pkushort
pvm_pkstr
pvm_packf

Function Reciprocal Function

Calls

Data Type

Table 2-1a:  PVM Communications Functions

Table 2-1b:  PVM Packing and Unpacking Functions

Figure 2.1: PVM Communications and Communications Support Functions
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The process of sending a message involves several steps. The sender must

first initialize a send buffer using pvm initsend or pvm mkbuf. The message is packed

into the buffer using the pvm pk* functions (see Figure 2.1b). The application then

calls pvm send, pvm mcast, pvm bcast, or another send function (see Figure 2.1a).

The destination process receives the message through a call to pvm recv, pvm nrecv,

pvm trecv, or other receive operation. The receiving task must unpack the data in

the same order it was packed, using the corresponding pvm upk* functions.

Messages can be tagged with a user-specified, integer type designator. The

receiver may choose to receive messages only from a particular source task, or with

a particular message tag, or both, or may receive all messages regardless of source

task or tag.

2.2 Communications Between PVM Tasks

The PVM system as a whole supports two dissimilar sets of communications util-

ities, one for PVM daemons and another for tasks. Both PVM daemons and tasks

manage message buffers but use different messaging utilities in their communica-

tions. PVM daemons use the User Datagram Protocol (UDP) [4] to communicate with

other PVM daemons, and Transmission Control Protocol (TCP) [5] to communicate

with its supported tasks. PVM tasks use TCP to communicate with their daemon

and in direct communications with other tasks.

2.2.1 Pvmd to Pvmd Communications

A PVM daemon communicates with PVM daemons on other machines and with tasks

on its own machine. Whenever communication with a foreign task (hosted on an-

other machine) is necessary, the PVM daemon send the message to the foreign task’s

home pvmd, which acts as a repeater. Pvmd to pvmd communications take place

using UDP. UDP is an unreliable delivery service, so acknowledgments are required

at the pvmd level to ensure the delivery of each message. UDP also limits packet
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frag
list

len
tag
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wid
...

struct
mesg

current
frag

struct
frag
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Figure 2.2: Message Storage in Pvmd [1]

length, so messages are fragmented. UDP was chosen over TCP for pvmd to pvmd

communications for better scalability and fault tolerance, and lower overhead [1].

A pvmd message structure is shown in Figure 2.2. Each message structure

contains the true source and destination task IDs (tids), message length, and other

useful values. Pvmd supports a lot of messaging functions, most of which manage

queues but do not participate in actually transferring a message over the network.

These functions are shown in Figure 2.3 and explained below.

Messages to be sent by the pvmd are added to an outgoing message queue

in the sendmessage function. This function is used for messages to local tasks, re-

mote pvmds, and even for the local pvmd. If the message is directed to a local task,

sendmessage calls mesg to task, which adds the message to the send queue for that

task. If the message is directed to the local pvmd, sendmessage calls netentry, which

calls the service function associated with the code attached to the message. If the

message is directed to a remote pvmd, sendmessage packetizes the message frag-
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Figure 2.3: Relationship of Pvmd Messaging Functions

ments and calls pkt to host, which adds the packets to the send queue for a host.

The PVM daemon executes in a loop named work (Figure 2.4). Each time

through work, pvmd calls netoutput to send out any queued messages, and net-

input to receive any messages waiting on its socket. Netinput uses the UDP func-

tion recvfrom to read packets from its socket. If the packet is received without error,

netinput places an acknowledgment on the outgoing message queue and passes the

fragments to netinpkt. Netinpkt restores the fragments into a message, and calls

netentry. Also each time through the work loop, the pvmd calls netoutput to send

any queued messages. Netoutput uses the UDP function sendto to send the message

packets on to the network. Each packet contains a sequence number, and messages

are retained and retransmitted if not acknowledged within a certain time duration.

2.2.2 Pvmd to Task Communications

The PVM daemon handles messages to and from local tasks in a similar manner.

Each time through work, the pvmd executes loclinput to see if there are messages

from local tasks pending. Loclinput accepts packets from the local task’s TCP con-
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work

netoutput

sendto

netinput

recvfrom

(to network) (from network)

Figure 2.4: Pvmd Messaging

nection to its pvmd and passes it to loclinpkt. If the message is for the local pvmd, it

is restructured into a complete message and passed to schentry or loclentry. If it is

for a local task, the packets are added to the send queue for that task. If the message

is for a remote task, pkt to host is called to attach the message to the send queue for

that task. If the message is for a remote pvmd, the packets are reassembled into a

message using sendmessage. Loclentry and schentry, like netentry, call the service

function associated with the received message type. Locloutput is called each time

through work to pass on messages received locally to other local tasks. Locloutput

calls write directly for its TCP service.

2.2.3 Task to Pvmd and Task to Task Communications

PVM tasks (applications using libpvm functions) use TCP in their communications,

regardless of whether those communications are directed to another task or their

pvmd. Message structures in libpvm are similar to those used by pvmd, except that

libpvm uses a message ID (mid) to index messages in the message heap (Figure 2.5).

PVM preferentially passes pointers to messages rather than the messages themselves

to reduce inter-task communications. PVM tasks may send messages through a de-

fault route, or by directly routing the message through TCP to the recipient. In the

default route, the message is passed by the sending task to its local pvmd using a

TCP protocol. The local pvmd passes the message to the pvmd on the receiver’s host
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Figure 2.5: Message Storage in libpvm [1]

using UDP. The message is then sent via TCP from the receiver’s pvmd to the receiv-

ing task. In direct routing, the sending task sends to the receiver through a TCP

connection (Figure 2.6). The default route is used to negotiate the connection the

first time a direct route is established between two tasks.

PVM tasks use the same functions for both the direct and default routes

(Figure 2.7). The heart of the communications function is mroute, which passes

communications requests to mxfer. If a direct route is needed, mroute will send a

short message to the destination task requesting the direct route, and wait for a

response. To send a message, mxfer packetizes the message and makes multiple

calls to the Unix function write [6] to send out the packets. To receive a message,

mxfer calls mxinput, which in turn calls the Unix function read [6] to accept incom-

ing packets. TCP is a reliable protocol; it guarantees all packets are received and in

the correct order.
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Figure 2.6: Direct and Default Message Routing

2.3 PVM Group Server

PVM supports a limited set of collective communications primitives using its group

functions. The PVM group functions are enabled through the cooperation of a group

server, named ”pvmgs”. The group server is started automatically when a PVM task

requests to join a group. Groups are formed dynamically, and tasks may be mem-

bers of several groups. Each task in a group has a unique instance number. The

group functions supported by PVM include pvm barrier, pvm bcast, pvm scatter,

pvm gather, and pvm reduce.

2.4 An Example of PVM Communications

We illustrate the handling of communications in PVM using a simple example in

which a token is passed around a ring of processes. Figure 2.8 shows a four-machine

PVM configuration. Each machine hosts one PVM daemon. The ”ring” application is
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pvm_send pvm_recv

mroute

mxfer
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mroute
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(to network) (from network)

Figure 2.7: Libpvm Messaging Functions

started on one machine, and spawns copies of itself on three others. Each ring task

uses pvm joingroup to join the group named ”foo”. A PVM group server, ”pvmgs”,

is started when the first ring task requests to join the group. Each ring task uses

its number in the group to determine its neighbors. The first ring task creates a to-

ken of 4032 bytes and sends it to one neighbor. Each subsequent ring task waits

for the token using pvm recv, and passes it to a neighbor, using pvm send, until the

token has been passed the specified number of times. The activities of the four PVM

tasks during the execution are shown in Figure 2.10. In Figure 2.8, processes with

the PVM task ids 40000, 80000, c0000, and 100000 are PVM daemons, processes

40002, 80002, c0001, and 100001 are instances of ”ring”, and process 80001 is the

group server. Pseudocode for the ring application is listed in Figure 2.9.

Figure 2.11 shows how the internal functions called by PVM to send or

receive data actually interact. In this scenario, process 40002 sends a message to

process 80002 on another machine, and process 80002 returns a message. In each

case, the sender calls pvm send, which calls the internal function mroute, which

in turn calls mxfer. Mxfer queries the socket’s availability using the Unix function

select [6]. When the socket is able to receive data, the process writes the message to
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boar 40000 SUN4SOL2 1000
dog 80000 SUN4SOL2 1000
sol c0000 SUN4SOL2 1000
moon 100000 SUN4SOL2 1000

a)  System configuration

b) PVM configuration reported by conf

80001

Figure 2.8: Example PVM System

ring()
{
join group
if I am the first ring process
        spawn more copies of myself
wait at barrier for other processes
+------------------barrier------------------+
determine my neighbors in the ring
initialize send buffer
pack token into message buffer
if I am the first ring process
        send token
        receive token
        send token
        receive token
otherwise
        receive token
        send token
        receive token
        send token
leave group
exit
}

Figure 2.9: Pseudocode for Ring Application
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Figure 2.10: Sample Application Trace Results

the socket and returns. PVM function calls necessary to prepare the message and

message buffer (e.g. pvm initsend and pvm pkint) are not pictured. These activities,

along with the rest of the computation the machine is conducting, can be considered

to proceed in the shaded areas of the timeline. The receive operations proceed in a

similar manner, with Unix read retrieving the message in pieces when the socket

reports the message has arrived.

In running these experiments, we observed a few implementation details of

PVM communications that deserve note. When receiving data, mxfer always receives

each message in at least two parts, as illustrated by the select-read-select-read se-

quence in Figure 2.11. The first action reads 16 bytes from the receiving socket; the

second and subsequent actions read the remainder of the data as it becomes avail-

able in the TCP buffer. Because Ethernet has a maximum data packet size of 1500

bytes, TCP processing will break messages down to packets on the sending end, add

its own header, and reconstruct the message on the receivingend. Thus, a PVM mes-
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Figure 2.11: PVM Implementation of Communications Functions

sage of greater than 1460 bytes will actually flow through the network as multiple

packets of up to 1500 bytes (1460 data bytes plus 20 TCP header plus 20 IP header

bytes). We also observed that as the network and the TCP handling process become

idle or busy, the PVM task may be able to collect the data from the TCP buffer all at

once, or packet by packet, or by groups of packets. This means that a single write

of 4032 bytes by the sender may result in two to four read actions by the receiver,

as illustrated in Figure 2.12.

The specific pattern of the receive operation seen in the trace output ap-

peared to depend primarily on the speed of the computer. For the slower comput-

ers, such as the Sun Sparcstation ELCs we used initially to instrument and test the

trace generation, almost all receive operations resembled case A. For the Sun Sparc

5 computers used in the testbed, many receive traces resembled case C. On the send

side, the number of write actions executed depends on the buffer capacity of the host

machine.

The mxfer function handles this varying number of reads and writes nec-

essary by executing in a loop each time called (Figure 2.13). In this loop, mxfer will

check all active file descriptors, reading any data waiting to be received and writing

to the appropriate socket any data waiting to be sent.

The loop enables mxfer to send and receive any number of packets in one
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Process A
(sender)

Process B
(receiver)

send 4032 bytes to B

A.  The entire message is waiting to be read:

read 16 bytes
read 4016 bytes

B.  Part of the message has arrived:

read 16 bytes
read 2904 bytes
wait for data
read 1112 bytes

C.  The process must wait on each packet:

read 16 bytes
read 1444 bytes
wait for data
read 1460 bytes
wait for data
read 1112 bytes

send 4032 bytes to B

send 4032 bytes to B

Figure 2.12: Multi-Packet Message Receipt Scenarios

function call, but also results in a confusing variety of actions. Because mxfer will

always look to see if there is any data to be received, a call to pvm send sometimes

results in receives as well as sends, and a call to pvm recv sometimes results in a

send as well as one or more receives. This latter case can be observed when PVM

tasks negotiate a direct connection. In that instance, the PVM task requesting the

direct connection sends a message to the destination PVM task via the PVM daemons

using the default route. Upon receiving the request, the destination task generates

a response and sends it back to the requester in the same mxfer call that resulted in

receiving the request. Such a scenario is depicted in Figure 2.14. Here both 80001

and c0001 send messages that arrive at 40002 almost simultaneously. In this ex-

ample, the message from c0001 caused an automatic response from 40002 back to

that process.

All network communications on this network configuration originate within

a PVM task, and go through the TCP/IP protocol stack before using the network. We
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mxfer()
{

.

.

.
while (more to send or receive) {

.

.

.
select()
.
.
.
mxinput()
.
.
.
write()
.
.
.

}

}

mxinput()
{

.

.

.
read()
.
.
.

}

Figure 2.13: Pseudocode for mxfer and mxinput Functions
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Figure 2.14: More Complicated Receive Operation

assume that this TCP processing is executed in by a kernel-level process on the same

machine, and that at most one instance of TCP execution is active at any given time.

Based on our observations, we modeled the TCP processing such that for writes of

more than 1460 bytes, subpackets of 1460 bytes are created on-the-fly and sent

through the network. This means that packets actually enter the network while the

write operation is still going on, as shown in Figure 2.15.

2.5 Data Sending and Encoding Options

To facilitate communications between different types of machines, PVM provides an

option to encode data in the message buffer in a machine-independent format (Sun’s

External Data Representation, or XDR). Alternatively, if the destination machine is

the same type as the sending machine, the application can send data in its native for-

mat, using ”PvmDataRaw”. If ”PvmDataInPlace” is selected, the message buffer con-

tains sizes and pointers to the items to be sent. Then when pvm send is called, those

data items are copied directly out of the computer’s memory. A PVM task specifies

one of these encoding options when it initializes the send buffer with pvm initsend.

To send a message, a PVM task must pack data into a buffer and call the

function pvm send. PVM offers a short-cut with the pvm psend and pvm precv func-

tions. The pvm psend function takes a destination task id, the data, and an indi-

cator of the data type, packs the message and sends it in one operation. The re-
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ciprocal operation, pvm precv, receives and unpacks the data using one function

call. Pvm psend packs data into the send buffer by counting the number of bytes

to be packed and calling pvm pkbyte. As indicated in Figure 2.1a, pvm psend and

pvm precv call pvm send and pvm recv respectively to actually send or receive the

message.

The particular encoding option and send/receive scheme selected affect

how the computer treats the message, both in PVM buffering and writing to the

socket. While reviewing traces of various PVM applications, we observed that when

pvm send is used with either PvmDataDefault or PvmDataRaw encoding, the com-

puter will write messages longer than 4080 bytes to the socket 4080 bytes at a time.

If pvm psend or PvmDataInPlace is selected, then long messages are written to the

socket without being subdivided.

Casanova et al explain how PVM handles messages on MPPs for each of

the possible encodings options and send/receive schemes [7]. When pvm send is

used with default encoding, the packing functions translate the data into XDR for-

mat while copying it to a send buffer in PVM space. If PvmDataRaw is selected as

the encoding option, PVM copies the data in its native format rather than translat-

ing to XDR. When PvmDataInPlace is selected, the system merely keeps a pointer

to the data in its current location. When the time comes to send the data, PVM

first sends the 32-byte header so that the destination machine can reserve enough

buffer space to hold the arriving data. Casanova et al report that when pvm psend

is used, the data is neither translated nor copied to PVM space, but sent directly

to the next system. Through examination of our traces, we noticed that pvm psend

calls pvm pkbyte, which suggests that the data is actually copied to another buffer.

We also noticed that using pvm psend also causes the sender to send the 32-byte

header separately from the rest of the message, which suggests that in this case as

well, the system must prepare the destination machine for the arriving data. These

differences might result from the differences of the MPP and the SUN4SOL2 imple-

mentations of PVM.
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2.6 The PVM Trace Facility

The PVM system offers a tracing capability for all libpvm functions [8]. Each libpvm

function comprising the application interface begins and ends with code that gath-

ers relevant information, packages it into a message, and sends it to the task desig-

nated to receive trace events. A user-controlled trace mask determines which events

are monitored. Trace events are sent by calling mroute directly, so they do not con-

tribute to other traceable events when pvm send is being monitored.

The standard PVM trace facility is useful primarily for debugging and de-

termining obvious performance bottlenecks in user programs. Because it provides

only coarse-grained timing and performance information, it is not suitable for de-

tailed analysis of computation and communication aspects of user programs and

provides little insight into the messaging overhead and latencies of the network used

to interconnect the machines that are part of the PVM environment.
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Figure 2.15: PVM Send and Receive Via TCP



Chapter 3

Instrumentation of PVM Message
Library

In this chapter, we discuss how we instrumented PVM and convert the trace files to

simulator input. Though we investigated other trace generation systems as a pre-

cursor to this effort, none of those systems were suitable for this project. The other

trace generation environments we researched were NASA’s Automated Instrumen-

tation and Monitoring System (AIMS) [11], the University of Wisconsin at Madison’s

Paradyn [12], and the native PVM trace facility [8]. Each of these instrumentation en-

vironments was oriented towards locating performance bottlenecks in the computa-

tion. Though each environment gives enough information for the analyst to identify

the communications processes as the source of a bottleneck, none of them produced

detailed information on the underlying actions involved in the supporting commu-

nications. Therefore, we generated our own traces and used them in subsequent

simulations and analyses.

We instrumented PVM communications and communications support func-

tions in libpvm to produce trace output of executing applications. These traces re-

port the time applications spend sending data, receiving or waiting to receive data,

and executing other tasks required by PVM to support the communications activity,

such as initializing, packing, and unpacking message buffers. As this tracing activ-

ity adds its own overhead to the communications process, pre-test runs were also

24
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instrumented to report the time consumed by the tracing activity itself. After post-

processing, the traces report time spent on the network, blocking time, and time

spent in PVM communications and communications support activities.

By confining our instrumentation to libpvm, we created an environment

where any PVM application can be instrumented and used in similar simulations

and analyses without modification to the PVM application itself. Even applications

written in Fortran make use of the same libpvm library. A PVM application must be

recompiled in order to link it to our instrumented library, however, and there is also

no way to attach this instrumented library to a process that is already in execution.

3.1 Trace Generation

In instrumenting PVM, we used the philosophy that all calls to communications func-

tions should be recorded as close to the function call as possible. The actual com-

munications activities take place in two functions, mxfer and mxinput, in the source

code file lpvm.c. The general flow of mxfer and mxinput are shown in Figure 2.12.

In our instrumentation, we bracketed the calls to select, read, and write with code

to record the time durations of those operations and other data pertinent to the

communications event, as shown in Figure 3.1. As indicated in Figure 2.1a, PVM

communications functions either call mroute directly or call pvm send, pvm recv,

or pvm mcast, which in turn call mroute. Mroute, in turn, passes the communica-

tions request to mxfer.

For all traces, times are measured using clock gettime, which reports the

number of seconds and nanoseconds from Jan 1, 1980. Clock gettime is a POSIX 4

function and has an accuracy of 1 �sec. [6]

There are four functions in the simulation: compute, send, receive, and

multicast. Broadcasts are treated as multicasts. Time listed in each compute line

reflects the time between send and receive functions, and is simulated by holding

for that number of microseconds. Compute time is determined by subtracting the
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mxfer()
{

.

.

.
while (more to send or receive) {

.

.

.
clock_gettime()
select()
clock_gettime()
.
.
.
mxinput()
.
.
.
clock_gettime()
write()
clock_gettime()
.
.
.
save relevant values in buffer

}

}

mxinput()
{

.

.

.
clock_gettime()
read()
clock_gettime()
.
.
.
save relevant values in buffer

}
write buffer to file

Figure 3.1: Mxfer and mxinput, Instrumented
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previous action start time plus the previous action duration from the current action

start time.

Send lines list the duration of the send activity, the number of bytes written

to the socket, and the source and destination processor numbers. Source and des-

tination processor numbers are assigned as a one-up number for each PVM task id

in the traced system. Though communications with the PVM daemons are reflected

in the traces, they are not included in the simulation input. This is because task to

pvmd communications take place on the same machine, and so are not subject to

change based on a changed network.

The multicast lines (those that start with ”m”) in the simulation input file

are similar to send lines, except that they may have more than one destination.

Receive lines in the trace files contain the blocked time and blocking start

time. This information is cut out of the simulation input as the simulation will deter-

mine how long a receiving process blocks. The blocked time in the traces from the

select operation is useful in determining how much time is spent computing both

before and after a receive, however. Also, to validate the simulation, these blocked

times were added up and compared to simulated blocked time on several application

runs.

3.1.1 Instrumentation of Send Function

Figure 2.11 shows the functions that underlie a call to pvm send. Instrumentation

was placed at the lowest level possible so that the traces generated would include

very little other than the actual network communications time. For pvm send, in-

strumentation is contained in mxfer, bracketing the write statement. The resulting

trace lines report the start time and duration of the write function, and the number

of bytes actually written to the socket (Figure 3.2). PVM adds a 32 byte header to

each message sent.
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Send Line:
s dur 239 start 845900277 len 1032 src 4000a dst 80008
a       b             c                       d            e               f

a - send flag
b - time required by process to write the data to the socket, in microseconds
c - send start time, in microseconds
d - number of bytes written to socket
e - source PVM task id
f - destination PVM task id

Receive Line:
r blk 6039 start 845913300 len 1016 src 4000a dst 80008 read 134
a       b              c                       d            e               f                  g

a - receive flag
b - time block for receive, in microseconds
c - start time for operation, in microseconds
d - number of bytes read from socket
e - source PVM task id
f - destination PVM task id
g - time required to read last data packet, in microseconds

Multicast Line:
m dur 322 start 845918992 len 1032 src 40012 dst 80008 100004 140003
a        b             c                      d             e               f   

a - multicast flag
b - time required by process to write the data to the socket, in microseconds
c - multicast start time, in microseconds
d - number of bytes written to socket
e - source PVM task id
f - destination PVM task ids, separated by blanks

Figure 3.2: Trace Output Formats
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3.1.2 Instrumentation of Receive Function

Figure 2.11 also shows the functions involved in a pvm recv operation. Again, in-

strumentation was inserted at the lowest possible level so that actual network block-

ing time could be measured as accurately as possible. Pvm recv makes use of the

instrumentation bracketing the select function as well as that bracketing read. As

called by pvm recv, select blocks until data is available. The resulting traces deter-

mine the blocking time from this value, and report the duration of the subsequent

read from the instrumentation bracketing that function call in mxinput (Figure 3.2).

When called from pvm trecv (receive with time-out) or pvm nrecv (non-blocking re-

ceive), mxfer passes a time value to select. Select will block until the time has expired

or a message has been received.

3.1.3 Instrumentation of the Multicast Operation

The pvm mcast operation is instrumented in much the same way as pvm send, with

start and elapsed send times determined from bracketing the write function in mxfer.

Unlike pvm send, though, pvm mcast may have as destination several PVM tasks.

The multicast address used in the actual pvm mcast operation does not correspond

to any of the destination task ids, however, so this information must be made avail-

able from the pvm mcast call in the source code file lpvmgen.c. This is accomplished

by setting an externally accessible pointer to the list of tasks referred to in a mul-

ticast address. Instrumentation in mxfer includes this list in the trace output as

destination task ids.

3.1.4 Instrumentation of PVM Communications Overhead

As mentioned above, traces that will be used in simulating network activities are

measured as close as possible around the lowest level communications: socket read,

write, and select. As PVM uses computer resources to set up these communica-

tions, the time required by PVM for communications support must also be mea-
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sured. These functions include pvm initsend, pvm pkint, pvm upkint, and others.

The traces generated by these functions overlap in time with those generated to sim-

ulate communications, and can overlap with each other. An example of the latter is

pvm psend. This function packs data into the message buffer and sends it in one

operation. Overhead traces for a call to pvm psend therefore include one or more

calls to a pvm pk* function and one call to pvm send. The overlapping portions of

time are removed in the overhead accounting portion of the simulation (Figure 3.3)

so as not to penalize PVM unfairly.

3.2 Trace Output

All trace output is written to files, with the output for each PVM task directed to a

different file. Trace files generated fall into two general categories. Traces that report

communications time and the type of communications operation (send, receive, or

multicast) are written to files named results.X where X is the task id in hexadecimal.

Files that record the output of PVM communications overhead traces are

named oh.X, oh2.X, pk.X, or pk2.X, depending on the PVM source code file where

the traced function resides. We instrumented 39 PVM communications and com-

munications support functions to report overhead; they are listed in Figure 3.5. We

selected these PVM functions to trace because they were necessary for the actual

communications activity. These overhead trace files have the format shown in Fig-

ure 3.4.

3.3 Converting Traces to Simulation Input

Because of the differences between the instrumentation output and the simulation

input formats, some preprocessing is necessary before trace files can be read into the

simulations. For example, PVM task ids must be converted into an integer counting

up from zero so that each task can index data structures and communicate with
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Function Start time (usec) Duration (usec)
.
.
.
pvm_initsend 242643527 172
pvm_pkdouble 242643799 15
pvm_send 242643886 1731
pvm_recv 242645718 14068
pvm_upkdouble 242659882 15
pvm_initsend 242705149 178
pvm_pkdouble 242705436 1165
pvm_send 242706697 3899
.
.
.

Function Start time (usec) Duration (usec)
.
.
.
pvm_psend 795294710 3087
pvm_pkbyte 795294798 28
pvm_send 795294918 2770
pvm_precv 795297905 23496
pvm_recv 795297915 23276
pvm_upkbyte 795321282 14
pvm_psend 795381544 3983
pvm_pkbyte 795381651 23
pvm_send 795381771 3642
.
.
.

a)  Sample output from communications event where pvm_send is
used.   Start times plus duration do not overlap.

b) Sample output from communications events where pvm_psend is
used.  Pvm_pkbyte and  pvm_send calls occur within pvm_psend start
time plus duration.  Durations of pvm_pkbyte and pvm_send are
subtracted from duration of pvm_psend in post-processing.

Figure 3.3: Pvm send and pvm psend Instrumentation
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pvm_pkint 845900246 1435
a                b                 c

a - name of the function traced
b - function start time, in microseconds
c - time elapsed in executing function, in microseconds

Figure 3.4: PVM Overhead Trace Files Format

other tasks. Preprocessing converts files structured as shown in Figure 3.2 to that

shown in Figure 3.6.

The process of converting trace files to simulation input involves generat-

ing send, receive, multicast, and compute lines. The duration of the compute line is

calculated from the time difference between the end of a send or receive operation

and the start of the next send or receive operation. The time a process is blocked for

each receive operation is reported in the traces and removed from the corresponding

receive line in the simulation input. The simulation determines the blocking time

associated with each receive operation. Each receive line in the simulation input

contains the time that was used to read the data once it had arrived, as reported in

the traces. The time value associated with the receive operation in the simulation

input is the time used by the process to read the data when it finally arrived, taken

from the traces. The blocking time associated with each receive operation is com-

puted by the simulation. Send and multicast lines in the simulation input list the

amount of time the process spent in Unix write for that operation, as reported in the

traces. Accordingly, all time values used in the simulation, except receive blocking

time, are taken directly from the traces.

PVM communications support overhead traces also undergo processing be-

fore being input into the simulation. In this case, trace file post-processing combines

all overhead trace files from each PVM task into one file per PVM task, and sorts

that file based on start times. In the simulation, the start time and the duration of
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pk2.xxxxx
pk2.xxxxx
oh.xxxxx
oh.xxxxx
oh2.xxxxx
oh2.xxxxx
oh.xxxxx
pk2.xxxxx
oh.xxxxx
oh.xxxxx
pk2.xxxxx
pk2.xxxxx
pk.xxxxx
pk.xxxxx
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pk.xxxxx
pk.xxxxx
pk.xxxxx
pk.xxxxx
pk.xxxxx
pk.xxxxx
pk.xxxxx
pk.xxxxx
pk.xxxxx
pk.xxxxx
pk.xxxxx
pk.xxxxx
pk.xxxxx
pk.xxxxx
pk.xxxxx
pk.xxxxx
pk.xxxxx
pk.xxxxx
pk.xxxxx
pk.xxxxx
pk.xxxxx
oh.xxxxx

pvm_gsulib.c
pvm_gsulib.c
lpvmgen.c
lpvmgen.c
lpvm.c
lpvm.c
lpvmgen.c
pvm_gsulib.c
lpvmgen.c
lpvmgen.c
pvm_gsulib.c
pvm_gsulib.c
lpvmpack.c
lpvmpack.c
lpvmpack.c
lpvmpack.c
lpvmpack.c
lpvmpack.c
lpvmpack.c
lpvmpack.c
lpvmpack.c
lpvmpack.c
lpvmpack.c
lpvmpack.c
lpvmpack.c
lpvmpack.c
lpvmpack.c
lpvmpack.c
lpvmpack.c
lpvmpack.c
lpvmpack.c
lpvmpack.c
lpvmpack.c
lpvmpack.c
lpvmpack.c
lpvmpack.c
lpvmpack.c
lpvmpack.c
lpvmgen.c

pvm_barrier
pvm_bcast
pvm_mcast
pvm_nrecv
pvm_precv
pvm_psend
pvm_recv
pvm_reduce
pvm_send
pvm_trecv
pvm_scatter
pvm_gather
pvm_pkbyte
pvm_pkcplx
pvm_pkdcplx
pvm_pkdouble
pvm_pkfloat
pvm_pkint
pvm_pkuint
pvm_pklong
pvm_pkulong
pvm_pkshort
pvm_pkushort
pvm_pkstr
pvm_vpackf
pvm_upkbyte
pvm_upkcplx
pvm_upkdcplx
pvm_upkdouble
pvm_upkfloat
pvm_upkint
pvm_upkuint
pvm_upklong
pvm_upkulong
pvm_upkshort
pvm_upkushort
pvm_upkstr
pvm_vupackf
pvm_initsend

Function
PVM Source Code

File
Trace Output File

Figure 3.5: PVM Communications Functions Instrumented for Overhead
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a b c d e
c 3356 0 0 0
s 234 48 0 2
c 499 0 0 0
m 184 58 0 1 2 3
r 188 16 2 0
c 64 0 0 0
r 142 32 2 0

a - function (c=compute, s=send, r=receive, m=multicast)
b - time, in microseconds, associated with the function
c - number of bytes of data
d - source processor
e - destination processor(s)

Figure 3.6: Format of Simulation Input

each PVM communications support function will be used to determine where one

such function call is contained within another, and this overlap removed from the

enveloping function call. For example, in Figure 3.3b, quantities of 28 and 2770

�sec (durations of pvm pkbyte and pvm send respectively) are subtracted from the

duration of pvm psend, leaving 289 �sec as the duration of that operation.



Chapter 4

Simulations of PVM Program
Executions

In this chapter, we describe the Ethernet simulators we created to facilitate analysis

of the PVM communications traces. The purpose of using the traces in simulations

is to provide insight into the actions, dependencies, and constraints of the opera-

tional PVM environment. By using traces of the actual execution of a PVM applica-

tion to drive the simulations, we hope to reconstruct the communications events of

the application execution as closely as possible. The benefit of the simulation is that

aspects of the communications process that could not be directly observed during

the real application execution, such as the number of collisions on the network, are

open to review and analysis. Also, such a simulation allows the analyst to predict

the impact of changing some variable parameters on many aspects of the applica-

tion execution. In our case, we changed the network speed from 10 Mb/sec to 100

Mb/sec to evaluate the effect of that change on the benchmark execution as a whole.

4.1 CSIM

We used CSIM, a process-oriented, discrete-event simulation package, to create these

simulations [13]. This package is a library of routines that can be used with C or

C++ programs. A CSIM program models a system as a collection of CSIM processes.

35
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These processes interact with each other through other CSIM constructs, such as

mailboxes, the setting and clearing of events, facilities, and storage blocks. CSIM

maintains a clock holding the simulation time, and advances this clock under the

control of the simulation.

In simulating a parallel system, each node of the system is modeled as a

CSIM process. These processes communicate with each other and synchronize the

simulation by accessing global and private variables and other CSIM constructs. In

addition to CSIM processes, we used CSIM facilities, events, and mailboxes to pass

information between processes. The interactions of the processes through these re-

sources controls the execution of the simulation.

A CSIM facility is a process that controls a resource or set of resources. The

resource or service is granted to requesting processes according to a service disci-

pline. In our simulations, we used a simple first-come-first-served service discipline

on a single resource per facility, essentially modeling an M/M/1 queue. A process

requests to use a facility by calling reserve(facility name). After the calling process

has used the facility’s resource, it exits the resource by calling release. In our model,

the Ethernet channel and each station’s TCP server were modeled as facilities.

CSIM uses events to control and synchronize interactions between pro-

cesses. A process waits for an event to occur though the wait command, sets an

event through a call to set, and clears the event though a call to clear. Though CSIM

supports non-blocking and timed event waiting protocols, we used blocking waits

exclusively on events in these simulations.

The mailbox construct allows processes to communicate with more infor-

mation than the simple on/off state of an event. Processes use mailboxes to send

and receive integers or pointers, using the CSIM function calls send and receive.

Though the default action is to block on receive if the mailbox is empty, CSIM also

offers non-blocking and timed varieties of receive.

Another important CSIM function is hold. A call to hold causes the calling
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process to sleep for the specified number of clock ticks. This can be used to simulate

the CPU processing in a PVM computation. This CPU processing can be either useful

computation or PVM messaging overhead.

4.2 Ethernet, 10 Mbits/second

The first simulation is a 10 Mbits/second Ethernet [14] broadcast local area network

(LAN). As this is the network used to connect the testbed computers, these tests were

also used to validate the simulation. After initializing some values, the simulator

spawns a task, or station in CSIM terminology, for each processor in the system. A

TCP server for each task is simulated by another CSIM task, a facility, and called

tcp server. There is exactly one tcp server associated with each station. The CSIM

tasks station and tcp server both execute a CSIM create statement, which acts as a

Unix fork and spawns the task off as an independent function.

Each station task reads its input file and executes the action indicated by

the function flag. A ”c” causes the station to hold for the specified number of mi-

croseconds. Other function flags involve much more activity.

4.2.1 Send a Message to Another Task

For a function flag of ”s”, the station will simulate sending a message to another task.

The station first simulates the PVM task handing off data to the TCP processor by

holding for 375 �sec. We estimate 375 �sec to be the time required to write one block

of 1460 bytes of data to the socket. We arrived on this number by measuring the

time spent in write in a traced PVM program that sent 1428-byte packets to another

process 100 times. (PVM added a 32 byte header to the data, so the writes operated

on 1460 bytes each time.) This program was executed on one of the Sun Sparcstation

5s on the network testbed. The writes averaged 375 �sec.

After holding, the station task starts its TCP process by reserving that fa-
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cility and passing it the message particulars (source, destination, and length). The

station resumes processing immediately, even if the TCP facility for the simulated

machine is in use, but the station’s message will not go out until the TCP facility

becomes available. The station task then holds for the remainder of the time listed

in trace file as the duration of that write operation. This is based on the assumption

that the time taken by the write operation depends on the speed of the machine, not

network availability factors. We assume that the TCP facility has sufficient buffer

space to hold the entire message so that a network slowdown does not result in TCP

pausing and blocking the calling process in the middle of a write, though it will delay

the beginning of a write.

The tcp server facility breaks down the message into data packets of 1460

bytes, adds 40 bytes to each packet for TCP/IP overhead, and simulates passing

them through Ethernet. After each data packet is successfully transmitted through

Ethernet, the tcp server facility sends a CSIM message to the destination tcp server

facility to tell it a data packet has arrived.

Ethernet is a Carrier Sense Multiple Access, Collision Detect (CSMA/CD)

system [14]. Typically, Ethernet stations will test the network to sense a carrier.

If the carrier exists, the station broadcasts its message through the physical me-

dia, and listens for that message. If the sending station receives its own message

correctly, it assumes that the message was also received correctly at the intended

destination station. If it does not receive its own message correctly, it assumes that

another station on the Ethernet also broadcasted at the same time, causing a col-

lision. When this occurs, each station attempting to broadcast a message will back

off, waiting a random amount of time, and try again.

Multicast. The ”m” flag indicates a message will be multicast to several other tasks.

In this case, the simulation proceeds in the same manner as with send. After the

data is transmitted, the tcp server facility sends a CSIM message to every task spec-

ified as destination.



39

4.2.2 Receive a Message From Another Task

If the function flag is ”r”, the station process will reserve its tcp server facility to

receive data, and sleep until the tcp server facility reports that a data packet has

arrived. The tcp server facility waits for a CSIM message from the source facility,

buffering messages that arrive from other sources. When a message from the cor-

rect source arrives, the tcp server sets an event to wake up the station process, and

sets a global variable with the amount of data received. The station process decre-

ments this amount from the number of bytes it wants to receive. If the number of

bytes to receive is zero, the station process reserves the tcp server facility to send an

acknowledgment. If the number of bytes in the received message is more than the

number of bytes for which the process is waiting, a stub for the received messages is

left in its mailbox so that the remaining bytes can be received in subsequent actions.

4.2.3 An Example of Simulation Processing

Figure 4.1 shows an example of the interaction between the processes comprising

our Ethernet model. At the top of this example, a station process has just begun an

action to send a 4032- byte message to another process. The station first holds for

375 �sec to simulate handing the first 1460 bytes to the TCP handler, then reserves

the tcp server facility. Though the sending station will not block, the tcp server facil-

ity will not process the request until the facility is free. The station continues on by

holding for the remainder of the time listed in the trace file for that particular write

action. It then acts on the next line from its simulation input file, which in this case

is a receive.

Once freed from its previous task, the TCP process reserves the tcp server

facility, and holds for 300 �sec to simulate TCP send processing. It then passes the

message on to the Ethernet by 1500- byte packets. When finished, it will send a

CSIM mail message to the TCP process associated with the destination station to

tell it the packet has arrived, and call release to make itself available for other task-
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(begin send)

hold 375 usec

station tcp_server

hold 300 usec (TCP processing overhead)

simulate Ethernet (1460 bytes)

simulate Ethernet (1460 bytes)

simulate Ethernet (1112 bytes)

hold (write duration from trace
minus 375 minus time waiting to

reserve tcp facility)

wait for tcp facility availablility

release tcp facility

(begin receive)

wait for tcp facility availablility

reserve tcp
facility

message arrives from sender’s tcp

hold 300 usec (TCP processing overhead)

reserve tcp
facility

wake up
station

read 16 bytes

hold 300 usec (TCP processing overhead)
wake up
station

message arrives from sender’s tcp

(msg to receiving tcp)

read 1444 bytes

simulated
time

(begin send)

key:
gray line:  process blocked
black line:  process computing

Figure 4.1: Simulation Timeline
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ing. In the example in Figure 4.1, the station next issues a request for a receive, and

blocks waiting for the completion of that action. The TCP process waits on its mail-

box for a message from the source specified. Once that message arrives, the TCP

process holds 300 �sec to simulate TCP receive processing, and then wakes up the

blocked task. The station that was waiting for the message holds for the number of

microseconds listed in the trace file as the duration of that read. If there are still

more data packets to be received, the TCP process will be waiting for and respond-

ing to them at the same time the station is holding to read the data just delivered.

After the complete message has been processed by the TCP process and read by the

station, the station uses the TCP process to send an acknowledgment.

4.3 Ethernet, 100 Mbits per Second

The 100 Mbits/second Ethernet simulation works in exactly the same way as the

10 Mbits/second Ethernet simulation, except that data is transmitted at 0.08 �sec

per byte rather than 0.8 �sec per byte. 100 Mb/sec Ethernet (a.k.a. Fast Ethernet)

was standardized as 802.3u and approved by the IEEE in June 1995 [4]. In our

simulation, as in the standard, the only difference between the 10 Mbps and 100

Mbps Ethernet is the speed of transmission. All the packet formats, interfaces, and

procedural rules of the 10 Mb/sec Ethernet standard (IEEE 802.3) remain the same.

4.4 Assumptions and Approximations

We made several assumptions and approximations concerning PVM, TCP, and host

machine operation:

A. The overhead incurred in generating traces of a PVM application does not

alter its overall execution time substantially. The benchmarks we used are latency

independent, so the additional overhead does not change the execution behavior of

these programs. We have quantified the amount of time used to generate traces, but
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did not remove that time from the results because these costs are extremely variable

depending on how many times mxfer executes its loop on receiving messages. On the

average, each send costs 182 �sec, each two-part receive costs 278 �sec, and each

PVM communications support function call instrumentation costs 80 �sec. These

costs show up in the compute time between communications activities, not as a com-

ponent of the communication. Because each message is sent by one station and re-

ceived by a different one (except in the case of BT and SP as noted in Chapter 5),

the added time per message due to instrumentation overlaps on the send side with

the added time on the receive side. On the send side, the instrumentation adds 342

�sec (80 �sec to report pvm pk*, 80 �sec to report pvm send, and 182 �sec to report

write). On the receive side, it adds 438 �sec. Because these values overlap in time,

we consider 438 �sec to be the cost, per message, of the instrumentation.

B. We estimate the overhead added by TCP to be 300 �sec. We derived this

number from Clark et al [15], who measured Berkeley TCP overhead on a Sun 3/60,

which has a 20 MHz CPU. On this system, processing a 1460 byte packet was mea-

sured at 1211 �sec on the average. The Sun Sparcstation 5s used in these PVM

experiments are more advanced, 70 MHz machines, and we estimated 300 �sec, or

roughly one-fourth the time required on the Sun 3/60. The part of the TCP protocol

most commonly executed is common to both versions.

C. The simulation always uses direct routing, though the benchmarks were

all executed using default routing. When tasks communicate through the default

route, each communication must go through at least one PVM daemon. When the

communication is between tasks on different machines, the default route includes

two PVM daemons and UDP, an unreliable protocol. The PVM daemons do not block

for messages; instead, they loop through work handling whatever messages arrive

as they appear. These factors together add up to a system that is difficult to sim-

ulate. As noted in Chapter 5, the direct routing option was unstable in six of the

seven benchmarks used. To be consistent, we used default routing in all trace gen-

eration runs. The only apparent effect of this change was that direct routing breaks
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down messages of more than 64K bytes into several messages less than that size.

Default routing allowed the larger message size to pass unaltered. This option se-

lection reduces the correspondence between the actual execution of a benchmark

and its simulated execution, but comparisons of the results of each showed little

difference.

D. Communications between a PVM task and its PVM daemon are not in-

cluded in these simulations. As these tasks are on the same machine, they do not in-

volve network activity. Communications between tasks for other than data exchange

(for example, to set up a direct route) are included.

E. We assume the local area network has no other traffic than that caused

by these PVM tasks. For our testbed network, the amount of other traffic during the

time of day that the applications were run is minimal.

F. PVM provides a Fortran library as well as a C library. The Fortran library

is implemented as a Fortran function that calls the corresponding C library func-

tion. In calculating PVM overhead costs, the time required to process these Fortran

”wrappers” is considered to be minimal, and not included.



Chapter 5

PVM Benchmark Programs

In this chapter we discuss the PVM applications we selected for our tests. The PVM

Numerical Aerodynamic Simulation (NAS) Parallel benchmarks are eight problems

designed by the NASA Ames Research Center to provide a common basis for com-

parisons of parallel computers. The problems consist of five kernels and three simu-

lated computational fluid dynamics (CFD) applications, all specified algorithmically

[9]. These benchmarks were implemented as PVM applications at Emory University

by V. S. Sunderam, S. White, A. Alund, and X. Lu [10].

We chose the NAS parallel benchmarks for our experiments for three rea-

sons. First, the source code and documentation are widely available over the Inter-

net. Second, the complexity and variety of the benchmarks provide a meaningful test

environment. And finally, these and other implementations of the same benchmarks

have been used in evaluations of many types of parallel systems, so our results may

be compared to the results of other such evaluations. In these experiments, we do

not analyze the benchmarks in terms of message size, complexity of communica-

tions, or effectiveness of implementation. Instead, we treat them simply as examples

of PVM applications and observe how they behave as network conditions change. We

used only seven of the eight benchmarks. The Embarrassingly Parallel (EP) bench-

mark has minimal communications. We obtained the PVM source code for the other

seven from Sunderam’s group at Emory University [10].

44
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For most of the benchmarks, memory requirements constrained the prob-

lem size to the smallest size available. All benchmarks were run in a four-computer

network configuration, with another computer added to the PVM system in three

benchmarks as noted below. Finally, though three of the seven benchmarks offered

an option for direct routing instead of default routing, we used default routing in all

tests. Setting the option for direct routing caused six of the seven benchmarks to

fail on execution.

We programmed the simulations to maintain a record of each PVM mes-

sage’s source, destination, length, and the (simulation) time it was passed to the

TCP facility. After running the simulations on the four-node network testbed using

the traces generated in the execution of each benchmark, we used these records to

construct communications profiles for each benchmark. Figures 5.1 through 5.14

show the aggregate and dynamic communications profiles of each benchmark. The

aggregate communications profile reflects the number of bytes and messages sent

from each station to the other stations. The dynamic communications profile shows

the number of bytes and messages sent by all processes as a function of time.

5.1 Multigrid

Multigrid (MG) is a kernel benchmark that solves a 3D Poisson partial differential

equation with constant coefficients [9]. MG was implemented in C as pvmmg. In

our tests, we used a problem size of 128x128x128.

MG is reported to test both short and long distance communications. Due

to the limited number of nodes on our test network, we could not observe long dis-

tance communications directly. Figure 5.1 shows that each MG process communi-

cates with two other processes consistently, but has very little communication with

the third. Figure 5.2 shows the number of messages and bytes sent by all MG pro-

cesses throughout the execution of the application. According to this graph, MG

traffic can be characterized as sporadic, and the number of bytes sent per message
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varies between messages.

5.2 Conjugate Gradient

The Conjugate Gradient (CG) benchmark was implemented in Fortran as pvmcg. CG

is a kernel benchmark that uses a conjugate gradient method to compute an approx-

imation to the smallest eigenvalue of a large, sparse, symmetric positive definite ma-

trix [9]. We ran pvmcg with a matrix size of 1400, in 15 iterations. The recommended

problem size for CG is 14000, but memory constraints did not permit this problem

size.

CG is reported to use irregular, long-distance communications. Again, the

limited number of nodes on our test network prevented us from observing long dis-

tance communications. The communications profile of CG we constructed (see Fig-

ure 5.3) shows that a CG process sends more data to some fellow processes than

others, and also sends this data in varying message sizes. The dynamic communi-

cations profile given in Figure 5.4 shows that the message traffic is consistently of a

high level, with varying numbers of bytes per message.

5.3 Integer Sort

The Integer Sort (IS) benchmark was implemented in C as pvmis. This kernel bench-

mark tests a sorting operation used in particle method codes, which require reas-

signment of particles that have drifted from place back to the appropriate cells [9].

We selected options to run a problem size of 220, with a key range of 0 to 2
20. Load

balancing was not used.

The aggregate and dynamic communications profiles in Figures 5.5 and 5.6

show that the amount of data sent between processors is extremely variable, but the

number of bytes sent to each process is consistent with the number of messages sent

to that process.
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Figure 5.1: Aggregate Communications Profile for MG
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Figure 5.3: Aggregate Communications Profile for CG
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Figure 5.5: Aggregate Communications Profile for IS
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5.4 Fast Fourier Transform

The FT benchmark solves a 3D partial differential equation using fast Fourier trans-

form [9]. This kernel benchmark was implemented in Fortran as pvmft. We used a

problem size of 64x64x64 in our tests.

The aggregate and dynamic communications profiles in Figures 5.7 and 5.8

show that each process participating in the FT application sends approximately the

same amount of data to every other process in the system. The number of messages

sent is consistent with the number of bytes sent as well.

5.5 Lower-Upper Diagonal

The Lower-Upper Diagonal (LU) benchmark uses a symmetric, successive overrelax-

ation numerical scheme to solve a regular-sparse, block lower and upper triangular

system [9]. LU is a simulated computational fluid dynamics benchmark and was im-

plemented in Fortran as pvmlu. For these tests, another machine was added to the

four-node configuration to hold the master pvmlu task. This master task initializes

the problem set and spawns and controls the other tasks as they perform the com-

putation. Due to memory constraints, the problem size we selected was 12x12x12,

and the program ran in 50 iterations. A complete solution to this benchmark re-

quires 250 iterations.

Results of a test run shown in Figure 5.9 shows that each pvmlu process

sent messages consistently to two other tasks, and the overall number of messages

sent to each process is consistent with the number of bytes sent to that process.

(The master process is station 0.) Figure 5.10 shows that the number of bytes per

message varied considerably over time.
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Figure 5.7: Aggregate Communications Profile for FT
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Figure 5.9: Aggregate Communications Profile for LU
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5.6 Scalar Pentadiagonal

The Scalar Pentadiagonal (SP) benchmark solves multiple independent systems of

nondiagonally dominant, scalar pentadiagonal equations [9]. SP was implemented

in Fortran as pvmsp. We used a problem size of 12x12x12 in these tests, again due

to memory constraints. An extra machine was added to each configuration to hold

the master pvmsp process. The program ran in 100 iterations; a complete solution

requires 400 iterations.

Figure 5.11 shows that each process sends a different amount of data to

each other process, and the number of messages sent to a process matches the num-

ber of bytes sent to that process. Figure 5.12 indicates, however, that the number

of bytes per message varied throughout the computation. (It is interesting to note

that each process sent a considerable amount of data to itself. We assume that this

is an error in the implementation of the benchmark. Though these messages to self

never hit the network media, considerable time is spent in calls to read, write, and

select to handle them.)

5.7 Block Tridiagonal

The Block Tridiagonal (BT) benchmark solves multiple independent systems of non-

diagonally dominant, block tridiagonal equations with a 5x5 block size [9]. This im-

plementation of BT, pvmbt, also requires a master task to initialize the problem set

and spawn and control the other tasks as they performed the computation. We used

a problem size of 12x12x12, executing in 60 iterations. A complete solution requires

200 iterations.

Figure 5.13 shows that each process sent different amounts of data to other

processes, and the number of messages sent to a process matches the number of

bytes sent to that process, much the same as the SP application. (In this benchmark

implementation as well, each process sent a considerable number of messages to
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Figure 5.11: Aggregate Communications Profile for SP
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itself.) Unlike SP, however, the graph of traffic over time indicates that the number of

bytes per message remained relatively constant over the period of the computation.

5.8 Test Network Configuration

The test network used to run the NAS benchmark applications under PVM consisted

of five computers on the University of Texas at San Antonio computer network. This

network actually connects 85 computers in a series of Ethernet sub- LANs, con-

nected by bridges and repeaters into one rather large and busy network. The com-

puters used in these tests consisted of five Sun Sparcstation 5s configured as listed

in Figure 5.15. These computers were all connected to the same sub-LAN.

We ran the benchmarks at night to reduce the amount and effect of am-

bient network traffic. Typically, we first start PVM on each machine in the four- or

five-node configuration, depending of the type of benchmark run. A shell script is

executed to run the benchmarks and convert the trace output to simulation input.

These input files are used to drive the Ethernet simulator described in Chapter 4.
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Figure 5.13: Aggregate Communications Profile for BT
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Computer Type: Sun Sparcstation 5
Operating System : SunOS 5.4
Main Memory: 32 MB
Virtual Memory: 55 MB
No. of CPUs: 1
Kernel Architecture: sun4m
Max No. of Processes per user: 485
Max STREAMS Message Size: 65536
Version of POSIX 1 Standard Supported: 199309
Version of X/Open Standard Supported: 3
Total Pages Physical Memory: 8192
Ethernet Interface Card: AMD Lance Am7990, 10 Mb/sec
CPU: microSPARC II
CPU Speed: 70 MHz
PVM Version Used: 3.3.7
PVM Architecture Class: SUN4SOL2

Figure 5.15: Network Testbed Computer Configuration (from sysinfo [6])



Chapter 6

Performance Analysis

Several tests conducted in recent years [16, 17, 18, 19] have compared the perfor-

mance of PVM to that of other parallel environments, such as P4 and Linda. In most

cases, the comparisons begin with a simple ping/pong type of data transfer, much

like the ring example described in section 2.4. Some of the papers extended the com-

parison to consider other, more complicated communications profiles, using appli-

cations like OVERFLOW-PVM and a subset of the NAS Parallel Benchmarks [17]. In

all cases, however, message send and receive operations were timed externally to

PVM; that is, either the PVM application was instrumented to report the start and

end times of the data transfer, or the overall execution of the application was timed.

We believe that our method of inserting the instrumentation within the PVM com-

munications library enables a finer-grained analysis of the results. In particular,

we are able to separate out the contributions that each element of PVM processing

makes to the overall execution time as well as the time each packet spends on the

actual network.

In this chapter, we present the results of our benchmark runs on a testbed

workstation cluster and an analysis of the data. The performance analysis com-

pares the actual execution times of the PVM benchmarks to the predicted execution

times obtained by our simulator. For the simulated system configurations, we have

used both the 10 Mb/sec Ethernet backbone (the one actually used in our execu-

65
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tion runs) and the 100 Mb/sec fast-Ethernet backbone. We also recomputed the

execution times after reducing the PVM message processing overhead by 90% to get

an idea of the impact of this aspect of the intertask communications. Using these

scenarios, we predict the performance improvement on the applications.

6.1 Test and Simulation Results

The simulations can measure and report a variety of factors. For these tests, we re-

port the total simulation time, time blocked on receive, time required to send mes-

sages on the network, overhead added by PVM communications functions, and the

number of bytes and messages sent. All stations start at simulation time 0, and the

times at which they complete the processing of their trace input files are reported

as the total simulation time. The time blocked on receive is measured by the sta-

tion, and includes the time the station had to wait for the tcp server facility to be-

come available as well as the time the tcp server facility had to wait for a message

from the correct source. The network time is measured at the tcp server facility,

and reports the time required to send each packet through the simulated Ethernet.

We take the overhead added by PVM for communications support functions directly

from the traces, with the overlapping time segments removed from the enveloping

function call as described in Section 3.3. We also subtract the actual process block-

ing time reported in the traces from the PVM overhead total.

Time values are reported per station, and as an average of the four stations

that perform the actual computation (in several cases, station 0 does not participate

in the actual computation but acts as a task coordinator). The simulation also re-

ports the number of collisions on the simulated Ethernet, the amount of time spent

in each PVM function call, and the time each process spent in select while attempting

a receive. This last value represents the actual blocking time of the process gener-

ating the traces.

We validated the simulation model by comparing the overall time of the
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simulation to the benchmark execution time, and by comparing the blocking time

from our simulation with the total time the benchmark actually spent in select, as

reported in the traces. We calculated the actual execution time by subtracting the

time stamp on the last message trace from the time stamp on the first message trace.

Both the overall times and blocking times are close in all cases. More accurately, the

actual and simulated blocking times have differed consistently by the same amount,

indicating that the differences have to do with some initializations that are not mod-

eled in our simulations.

Figure 6.1 summarizes the overall execution times of the actual runs and in

the simulations. Detailed information on message overheads and individual process

statistics are given in Appendix A. Possible sources of time differences include our

acknowledgment policy and the ambient traffic on the real network. Our simulation

sends an acknowledgment after each complete message is received. TCP acknowl-

edges at most every other message [15]. In order to reduce the effect of ambient net-

work traffic, we ran the benchmarks and collected traces during the early hours of

the morning. Despite this precaution, it was evident that we occasionally happened

upon a period of heightened network and system activity, when automatic news feed

updates and other such activities disrupted the benchmark execution. To minimize

this effect, we ran each benchmark at least 12 times, and used the traces from the

minimum execution time for each.

The instrumentation itself is intrusive, and adds approximately 438 �sec

per message to the overall execution time. With message counts in the tens of thou-

sands for some benchmarks, this additional processing adds up, and can tend to

mask the degree of speedup we see from the network.

The communications profiles given in Chapter 5 show that the communi-

cations complexity of each benchmark is significant. Our 10 Mb/sec Ethernet sim-

ulation matches strongly to the real execution profile in each case. Based on these

results, we also consider our 100 Mb/sec Ethernet configuration simulation valid,

and draw conclusions about the effectiveness of that network type.
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Actual Time Simulated Time (seconds)
Benchmark          (seconds) 10 Mb/sec 100 Mb/sec

MG 329.162 321.601 319.393
CG 47.184 37.396 31.594
IS 282.657 261.182 257.114
FT 81.505 79.066 47.318
LU 77.880 69.298 68.458
SP 392.106 381.611 364.642
BT 529.075 524.556 504.224

Figure 6.1: Benchmark Test and Simulation Results

6.2 Impact of Network Speed on Communications Time

Changing the network speed from 10 Mb/sec to 100 Mb/sec brought some improve-

ment to the benchmark performance in each case. Figures 6.2 through 6.8 show

the results of the simulations. In these figures, the time duration of each bench-

mark is shown for four possible system configurations. The first configuration rep-

resents the system configuration on which we traced each benchmark. This system

is a four-workstation cluster connected by a 10 Mb/sec Ethernet LAN (Section 5.8).

The second configuration shows the workstation cluster connected by a 100 Mb/sec

Fast Ethernet LAN. In the third and fourth configurations, we reduced the PVM mes-

saging overhead by 90% to predict the performance improvement. These results are

presented for workstation cluster connected by a 10 Mb/sec Ethernet LAN as well

as one connected by a 100 Mb/sec Fast Ethernet LAN. All time values are reported

in seconds.

6.2.1 Multigrid (MG)

For MG, the change in network speed proved to have little effect on the overall perfor-

mance of the benchmark (Figure 6.2). MG processes sent a total of 25,714,772 bytes

in 329.16 seconds, averaging 6,428,693 bytes in 213 messages. As noted in Section
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Figure 6.2: Comparison of Multigrid Simulation Results

2.5, when pvm send is used with PvmDataDefault encoding, the process will divide

the message into chunks of 4080 bytes each. Because of this, the number of mes-

sages sent averaged 1,721 per process. When the network speed is increased, the

average send time dropped by more than a factor of 10. There is no similar decrease

in blocking time, however, and the total effect is to reduce overall execution time by

only 2.2 seconds, or 0.6%. MG processes send relatively few messages compared to

the processes in the other benchmarks. It is possible that because MG sends fewer

messages throughout an extended execution time, its processes enjoy a lower net-

work time and collision rate than seen in other benchmarks. In that case, speeding

up the network, which tends to reduce the collision rate, had little effect. Examina-

tion of the results shows that the average number of collisions per message for the

10 Mb/sec Ethernet was 3.01. As a comparison, FT processes suffered an average

of 11.75 collisions per message on the 10 Mb/sec Ethernet LAN.
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Figure 6.3: Comparison of Conjugate Gradient Simulation Results

6.2.2 Conjugate Gradient (CG)

The effect of changing the network speed for CG is more dramatic (Figure 6.3). In the

test case, CG processes send a total of 13,414,084 bytes in 47.18 seconds, averaging

3,353,521 bytes in 2,386 messages per process. Changing the network reduces the

send time by 95%. Blocking time is also reduced significantly, by 41%.

6.2.3 Integer Sort (IS)

The performance of IS shows little response to the change in network speed (Figure

6.4). IS processes send a total of 66,373,816 bytes in 282.66 seconds, averaging

16,593,454 bytes and 92 messages per process. The number of messages sent av-

erage 4,128 per process. In this case, changing the network reduces send time by

92%. However, blocking time remains within 3% of the original blocking time, so the

overall effect of the network speedup is minimal.
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Figure 6.4: Comparison of Integer Sort Simulation Results

6.2.4 Fast Fourier Transform (FT)

The FT benchmark shows the most dramatic improvement from the change in net-

work speed (Figure 6.5). FT processes send a total of 44,218,744 bytes in 81.51

seconds, averaging 11,054,686 bytes and 48 messages per process. The number of

messages sent averages 2,735 per process. Using the faster network reduces the

time on the network by 94%, and reduces blocking time by 93% as well.

6.2.5 Lower-Upper Diagonal (LU)

LU shows little effect when the network speed is changed (Figure 6.6). The four

”worker” LU processes send a total of 3,909,888 bytes in 77.88 seconds, averaging

977,472 bytes and 5,395 messages per process. Using the faster network reduces

send time by 92%. Blocked time is reduced by only 6.7%. Of all the benchmarks, LU

processes send the least number of bytes, and the least bytes per message (approx
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Figure 6.5: Comparison of Fast Fourier Transform Simulation Results

181 bytes per message in the test case).

6.2.6 Scalar Pentadiagonal (SP)

The SP benchmark shows a moderate change with the increase in network speed

(Figure 6.7). The four ”worker” SP processes send a total of 187,350,080 bytes in

392.11 seconds, averaging 46,837,520 bytes and 33,639 messagesper process. When

the network speed is increased, the send time drops by 93%, and blocked time drops

by 77%. SP stations each send a lot of messages to themselves. These messages

cause no blocking and are never transmitted over the network, but affect overall ex-

ecution time.
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Figure 6.6: Comparison of Lower-Upper Diagonal Simulation Results

6.2.7 Block Tridiagonal (BT)

The BT benchmark also shows moderate effect with the network change (Figure 6.8).

The four ”worker” BT processes send a total of 185,099,200 bytes in 529.07 seconds,

averaging 46,274,800 bytes and 26,969 messages per process. When the network

speed is increased, the send time drops by 93%, and blocked time drops by 73%

of the original blocked time. Like SP, BT stations each send a lot of messages to

themselves. These messages cause no blocking and are never transmitted over the

network, but affect overall execution time.

6.3 Algorithmic Blocking Factors

The performance improvements with 100 Mb/sec Ethernet over 10 Mb/sec Ether-

net varied considerably. Some benchmarks showed a great increase in performance

while others showed small improvement. From the test results, it is apparent that
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Figure 6.7: Comparison of Scalar Pentadiagonal Simulation Results

in each case, the amount of time that each benchmark has data on the network is

reduced by 90% or more with the increase in network speed. This should have re-

sulted in substantially reduced blocking time on the part of the station waiting for

that data. But in most cases, the blocking time is reduced by only a small amount.

These results highlight two areas that deserve more consideration: why the percent

decrease in time on network is greater than the percent increase in network speed,

and why this does not translate into a similar reduction in blocking time. To under-

stand the results, we further analyzed the blocking time of PVM tasks in a bench-

mark execution.

By increasing the speed of the underlying network from 10 Mb/sec to 100

Mb/sec, we would expect that the time on the network would decrease by the same

factor, yet the simulation results show that in all cases, the time on the network was

reduced by more than 90%. The time on the network gives the time elapsed in the

simulation’s doether function, which simulates Ethernet, It does not include waiting
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Figure 6.8: Comparison of Block Tridiagonal Simulation Results

for the tcp server to become available or any other blocking factor. The most proba-

ble cause for the greater than 90% time difference is that having data on the network

for less time resulted in fewer collisions per message. Therefore, the stations did not

have to back off and retransmit as often and the total network time was reduced.

If the data spends less time on the network, one would assume that the

station waiting for that data would not have to block as long. A naive prediction

would be that the blocking time should be reduced by the amount of the reduction

in time on the network. If so, the simulation results should show the blocking time

for the 100 Mb/sec Ethernet configuration to be 57.3% of the blocking time for the 10

Mb/sec Ethernet configuration. Instead, the results show the 100 Mb/sec blocking

time to be 72.3% of the blocking time for the 10 Mb/sec Ethernet configuration.

One possible cause for this difference is that a station may begin a receive

operation on data that the other station has not sent yet. In that case, the receiving

station’s blocked time includes some computation time on the part of the sending
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station as well as the time the data spent on the network. We refer to the time from

the start of a receive operation to the start of the complementary send operation as

algorithmic blocked time, and the time from the start of the send operation to the

end of the receive as service blocking. Service blocking includes the time the send-

ing station waits for its tcp server to become free, the time the data spends on the

network, and the time spent processing the message at the receiver’s TCP station.

These time elements are shown in Figure 6.9.

We computed the algorithmic and service blocking times for all the bench-

marks (see Figure 6.10). These results show that only the service blocking time was

reduced. Where algorithmic blocking was a large component of the total blocking

time (e.g. MG and IS), the reduction in total blocking time was minimal.

6.4 Summary

These results show that for most cases, a PVM application would see an increase

in performance by changing from a PVM configuration on 10 Mb/sec Ethernet to a

PVM configuration on 100 Mb/sec Ethernet. The degree of change depends on the

communications characteristics of the application.

Figures 6.2 through 6.8 also predict how well an application would per-

form if PVM overhead were reduced by 90%. PVM overhead constitutes a substan-

tial portion of execution time for each benchmark. Reductions in the packing, buffer

initialization, and send and receive processing in PVM would greatly improve the

performance of most of these applications.
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Figure 6.9: Components of Blocking Time

Total Time Total Algorithmic Service %Service
Benchmark          (seconds) Blocking Blocking Blocking Blocking

MG 321.601 138.954 132.168 6.786 4.9%
CG 37.396 14.202 8.435 5.767 40.6%
IS 261.182 166.588 151.056 15.532 5.9%
FT 79.066 34.152 0.258 33.894 99.2%
LU 69.298 12.456 10.792 1.664 13.4%
SP 381.611 73.997 53.636 20.361 27.5%
BT 524.556 76.350 55.417 20.933 27.4%

Figure 6.10: Benchmark Blocking Times for 10 Mb/sec Ethernet Simulation



Chapter 7

Discussion and Conclusions

In this project, we demonstrated how PVM could be instrumented to report key char-

acteristics of its communications processes. The resulting traces give insight into

how a PVM program actually works, and can be used to drive simulations of the

system. This approach is promising in that the traces generated may be used to

simulate any LAN and predict the possible performance changes. We experimented

with changing the type of network connecting a workstation cluster, but the same

traces could drive simulations that use custom-designed Application Programmer

Interfaces (APIs) [20, 21] or other protocols instead of TCP in task-to-task commu-

nications, or run on a massively parallel processor. Alternatively, one could reduce

or even remove entirely the overhead associated with PVM processing and see the

performance improvements.

The version of PVM we instrumented was 3.3.7, and we ran our tests and

simulations on the SUN4SOL2 class architecture exclusively. This does not neces-

sarily limit the instrumentation’s effectiveness to that environment, however. PVM

source code was designed for platform independence. There is a common set of

source code files, and compile-time flags tell the system about the target architec-

ture and environment. Our instrumentation should run just as effectively on any

computer architecture that supports PVM. Because we use clock gettime, a POSIX-

4 function, in the instrumentation, however, the target architecture must support

78
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the posix4 library.

In future work we would like to extend this implementation to a more cur-

rent version of PVM, and test it on other architecture classes. There are other areas

to address as well. Because our instrumented code prints trace lines directly, trace

files generated are very large and the instrumentation somewhat intrusive. The in-

strumentation could be revised to output the traces in a compact, encoded form that

can be processed later to create readable traces. Furthermore, it may be preferable

to rewrite the instrumentation so that trace writes occur when a PVM task is sup-

posed to be blocked for a receive operation. These approaches are complementary

and minimize the extent of the intrusion caused by the instrumentation. Also, we do

not account for the effect of context switching, and the instrumentation environment

is not applicable to latency-dependent computations.

Future directions for research include addressing these improvements and

adding simulations of other network types. In addition, we plan to investigate using

these traces to predict the performance of workstation clusters connected by vari-

ous hybrid or conceptual networks, and to estimate the performance improvement

in workstation clusters as more and more machines are added to the PVM configu-

ration.



Appendix A

Simulation Results

All time values are listed in seconds. Messages, bytes, and calls are literal numbers.

A.1 Benchmark: mg

10 Mbps Ethernet

Station Exec. Block Time Net. Overhead Msgs Bytes
Time Total Serv. Alg. Travel PVM TCP

0 324.4 218.3 9.9 208.4 9.2 8.1 0.6 1717 6426992
1 311.4 117.4 5.6 111.9 7.9 12.8 0.6 1729 6430540
2 326.2 3.1 2.5 0.6 7.6 25.0 0.6 1729 6430540
3 324.4 217.0 9.2 207.8 9.7 9.2 0.6 1709 6426700

Avg of 4 321.6 139.0 6.8 132.2 8.6 13.8 0.6 1721 6428693

5174 Collisions on ethernet

Block Time in the Actual Execution

Proc 0 Proc 1 Proc 2 Proc 3
223.4 134.8 5.6 221.4

100 Mbps Ethernet

80
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Station Exec. Block Time Net. Overhead Msgs Bytes
Time Total Serv. Alg. Travel PVM TCP

0 322.3 216.2 0.8 215.4 0.6 8.1 0.6 1717 6426992
1 309.0 115.0 0.3 114.7 0.6 12.8 0.6 1729 6430540
2 324.0 0.9 0.0 0.9 0.6 25.0 0.6 1729 6430540
3 322.3 214.9 0.8 214.1 0.6 9.2 0.6 1709 6426700

Avg of 4 319.4 136.7 0.5 136.3 0.6 13.8 0.6 1721 6428693

514 Collisions on ethernet

PVM message overheads:

Processor 0
PVM function Time (calls)
initsend 0.085 (209)
send 4.813 (208)
mcast 0.009 (1)
pkstr 0.000 (4)
pkdouble 1.594 (208)
pkint 0.000 (17)
upkdouble 1.503 (227)
upkint 0.000 (39)
upkstr 0.000 (1)
nrecv 0.000 (1)
recv 223.455 (215)

Processor 1
PVM function Time (calls)
initsend 0.523 (221)
send 6.084 (221)
pkdouble 2.362 (225)
pkint 0.000 (9)
upkdouble 3.528 (216)
upkint 0.000 (16)
upkstr 0.000 (2)
nrecv 0.000 (1)
recv 135.091 (217)

Processor 2
PVM function Time (calls)
initsend 2.571 (221)
send 8.487 (221)
pkdouble 3.389 (225)
pkint 0.015 (9)
upkdouble 9.617 (216)
upkint 0.000 (16)
upkstr 0.000 (2)
nrecv 0.000 (1)
recv 6.482 (217)

Processor 3
PVM function Time (calls)
initsend 0.099 (201)
send 5.818 (201)
pkdouble 1.723 (205)
pkint 0.000 (9)
upkdouble 1.410 (204)
upkint 0.001 (16)
upkstr 0.000 (2)
nrecv 0.000 (1)
recv 221.483 (205)

A.2 Benchmark: cg

10 Mbps Ethernet

Station Exec. Block Time Net. Overhead Msgs Bytes
Time Total Serv. Alg. Travel PVM TCP

0 37.4 7.2 4.8 2.4 10.2 11.5 2.0 3991 4504264
1 37.3 18.6 7.8 10.8 7.2 5.3 1.0 1591 2235180
2 37.4 16.0 5.5 10.4 9.6 6.7 1.1 2371 4439460
3 37.4 15.1 4.9 10.2 6.2 6.6 1.0 1591 2235180

Avg of 4 37.4 14.2 5.8 8.4 8.3 7.5 1.3 2386 3353521
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8030 Collisions on ethernet

Block Time in the Actual Execution

Proc 0 Proc 1 Proc 2 Proc 3
17.4 28.4 25.7 24.9

100 Mbps Ethernet

Station Exec. Block Time Net. Overhead Msgs Bytes
Time Total Serv. Alg. Travel PVM TCP

0 31.6 1.4 0.1 1.2 0.5 11.5 2.0 3991 4504264
1 31.5 12.8 0.6 12.2 0.2 5.3 1.0 1591 2235180
2 31.6 10.2 0.5 9.7 0.4 6.7 1.1 2371 4439460
3 31.6 9.3 0.5 8.8 0.3 6.6 1.0 1591 2235180

Avg of 4 31.6 8.4 0.4 8.0 0.4 7.5 1.3 2386 3353521

725 Collisions on ethernet

PVM message overheads:

Processor 0
PVM function Time (calls)
initsend 0.588 (3211)
send 8.271 (3210)
mcast 0.011 (1)
pkstr 0.000 (3)
pkdouble 1.006 (3210)
pkint 0.018 (405)
upkdouble 0.502 (2829)
upkint 0.000 (15)
upkstr 0.000 (1)
nrecv 0.000 (1)
recv 18.511 (2823)

Processor 1
PVM function Time (calls)
initsend 0.210 (1201)
send 2.993 (1201)
pkdouble 0.465 (1203)
pkint 0.000 (1)
upkdouble 0.973 (1590)
upkint 0.006 (404)
upkstr 0.000 (1)
nrecv 0.000 (1)
recv 29.085 (1591)

Processor 2
PVM function Time (calls)
initsend 0.278 (1591)
send 4.491 (1591)
pkdouble 0.941 (1593)
pkint 0.006 (391)
upkdouble 0.460 (1200)
upkint 0.000 (14)
upkstr 0.000 (1)
nrecv 0.000 (1)
recv 26.182 (1201)

Processor 3
PVM function Time (calls)
initsend 0.217 (1201)
send 4.237 (1201)
pkdouble 0.462 (1203)
pkint 0.000 (1)
upkdouble 0.914 (1590)
upkint 0.006 (404)
upkstr 0.000 (1)
nrecv 0.000 (1)
recv 25.649 (1591)
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A.3 Benchmark: is

10 Mbps Ethernet

Station Exec. Block Time Net. Overhead Msgs Bytes
Time Total Serv. Alg. Travel PVM TCP

0 260.8 205.0 19.2 185.8 18.1 13.2 1.1 3629 14566444
1 260.3 229.3 22.7 206.6 16.4 11.5 0.9 2852 11419876
2 263.7 29.6 4.0 25.6 18.6 49.8 1.5 5022 20214820
3 259.9 202.5 16.3 186.2 19.6 24.9 1.5 5012 20172676

Avg of 4 261.2 166.6 15.5 151.1 18.2 24.8 1.3 4128 16593454

7189 Collisions on ethernet

Block Time in the Actual Execution

Proc 0 Proc 1 Proc 2 Proc 3
229.2 250.7 50.5 224.5

100 Mbps Ethernet

Station Exec. Block Time Net. Overhead Msgs Bytes
Time Total Serv. Alg. Travel PVM TCP

0 256.8 200.9 1.6 199.3 1.3 13.2 1.1 3629 14566444
1 256.2 225.2 1.8 223.3 1.1 11.5 0.9 2852 11419876
2 259.7 25.6 0.2 25.4 1.8 49.8 1.5 5022 20214820
3 255.8 198.4 1.7 196.7 1.8 24.9 1.5 5012 20172676

Avg of 4 257.1 162.5 1.3 161.2 1.5 24.8 1.3 4128 16593454

613 Collisions on ethernet

PVM message overheads:

Processor 0
PVM function Time (calls)
initsend 0.096 (105)
send 7.027 (93)
mcast 0.083 (12)
pkstr 0.000 (3)
pkint 3.544 (144)
upkdouble 0.000 (15)
upkint 2.340 (137)
upkstr 0.000 (1)
nrecv 0.000 (1)
recv 229.228 (96)

Processor 1
PVM function Time (calls)
initsend 0.088 (92)
send 5.815 (92)
pkdouble 0.000 (5)
pkint 2.794 (98)
upkint 2.664 (139)
upkstr 0.000 (1)
nrecv 0.003 (1)
recv 250.826 (123)
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Processor 2
PVM function Time (calls)
initsend 2.012 (102)
send 16.752 (92)
mcast 0.521 (10)
pkdouble 0.656 (5)
pkint 5.898 (128)
upkint 19.485 (129)
upkstr 0.000 (1)
nrecv 0.003 (1)
recv 54.963 (103)

Processor 3
PVM function Time (calls)
initsend 0.152 (102)
send 13.442 (92)
mcast 0.105 (10)
pkdouble 0.000 (5)
pkint 5.659 (128)
upkint 5.291 (139)
upkstr 0.000 (1)
nrecv 0.003 (1)
recv 224.700 (113)

A.4 Benchmark: ft

10 Mbps Ethernet

Station Exec. Block Time Net. Overhead Msgs Bytes
Time Total Serv. Alg. Travel PVM TCP

0 79.1 33.6 33.3 0.3 37.0 11.9 0.8 2731 11054464
1 79.1 35.1 34.8 0.2 35.5 10.7 0.8 2737 11054760
2 79.0 32.9 32.7 0.2 37.1 12.1 0.8 2737 11054760
3 79.1 35.1 34.7 0.4 35.9 10.7 0.8 2737 11054760

Avg of 4 79.1 34.2 33.9 0.3 36.4 11.3 0.8 2735 11054686

32124 Collisions on ethernet

Block Time in the Actual Execution

Proc 0 Proc 1 Proc 2 Proc 3
33.3 34.0 32.1 34.1

100 Mbps Ethernet

Station Exec. Block Time Net. Overhead Msgs Bytes
Time Total Serv. Alg. Travel PVM TCP

0 47.3 1.8 0.4 1.4 2.1 11.9 0.8 2731 11054464
1 47.3 3.3 1.0 2.3 2.0 10.7 0.8 2737 11054760
2 47.3 1.1 0.3 0.8 2.2 12.1 0.8 2737 11054760
3 47.3 3.4 0.8 2.6 2.0 10.7 0.8 2737 11054760

Avg of 4 47.3 2.4 0.6 1.8 2.1 11.3 0.8 2735 11054686

9325 Collisions on ethernet

PVM message overheads:
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Processor 0
PVM function Time (calls)
initsend 0.085 (43)
send 6.320 (42)
mcast 0.007 (1)
pkstr 0.000 (3)
pkdcplx 2.891 (42)
pkint 0.000 (15)
upkdcplx 2.490 (60)
upkdouble 0.000 (12)
upkint 0.000 (18)
upkstr 0.000 (1)
nrecv 0.000 (1)
recv 33.392 (63)

Processor 1
PVM function Time (calls)
initsend 0.072 (49)
send 5.471 (49)
pkdcplx 2.577 (48)
pkdouble 0.000 (4)
pkint 0.000 (2)
upkdcplx 2.423 (42)
upkint 0.001 (14)
upkstr 0.000 (1)
nrecv 0.003 (1)
recv 34.221 (43)

Processor 2
PVM function Time (calls)
initsend 0.071 (49)
send 6.536 (49)
pkdcplx 2.787 (48)
pkdouble 0.000 (4)
pkint 0.000 (2)
upkdcplx 2.438 (42)
upkint 0.001 (14)
upkstr 0.000 (1)
nrecv 0.004 (1)
recv 32.324 (43)

Processor 3
PVM function Time (calls)
initsend 0.074 (49)
send 5.455 (49)
pkdcplx 2.610 (48)
pkdouble 0.000 (4)
pkint 0.000 (2)
upkdcplx 2.443 (42)
upkint 0.001 (14)
upkstr 0.000 (1)
nrecv 0.002 (1)
recv 34.220 (43)

A.5 Benchmark: lu

10 Mbps Ethernet

Station Exec. Block Time Net. Overhead Msgs Bytes
Time Total Serv. Alg. Travel PVM TCP

0 69.5 68.8 0.0 68.8 0.0 0.1 0.0 8 784
1 69.5 14.4 1.4 13.0 2.3 17.2 3.3 5627 993940
2 69.1 14.1 1.8 12.2 2.3 14.4 3.2 5317 971908
3 69.1 14.4 2.1 12.4 2.3 14.2 3.2 5317 971876
4 69.4 6.9 1.4 5.5 2.4 19.3 3.2 5319 972164

Avg of 4 69.3 12.5 1.7 10.8 2.3 16.3 3.2 5395 977472

1343 Collisions on ethernet

Block Time in the Actual Execution

Proc 0 Proc 1 Proc 2 Proc 3 Proc 4
77.7 23.0 22.6 23.1 15.7
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100 Mbps Ethernet

Station Exec. Block Time Net. Overhead Msgs Bytes
Time Total Serv. Alg. Travel PVM TCP

0 68.7 68.0 0.0 68.0 0.0 0.1 0.0 8 784
1 68.6 13.6 0.4 13.2 0.2 17.2 3.3 5627 993940
2 68.3 13.2 0.5 12.7 0.2 14.4 3.2 5317 971908
3 68.3 13.6 0.6 13.0 0.2 14.2 3.2 5317 971876
4 68.6 6.1 0.4 5.7 0.2 19.3 3.2 5319 972164

Avg of 4 68.5 11.6 0.5 11.2 0.2 16.3 3.2 5395 977472

273 Collisions on ethernet

PVM message overheads:

Processor 0
PVM function Time (calls)
initsend 0.002 (8)
send 0.010 (8)
pkstr 0.000 (3)
pkdouble 0.000 (4)
pkint 0.001 (16)
upkbyte 0.000 (8)
upkdouble 0.003 (124)
upkint 0.000 (23)
upkstr 0.000 (1)
nrecv 0.000 (1)
recv 77.789 (110)

Processor 1
PVM function Time (calls)
initsend 1.054 (5523)
send 12.399 (5523)
pkdouble 0.325 (5528)
pkint 0.000 (5)
upkbyte 0.000 (1)
upkdouble 0.340 (5423)
upkint 0.000 (11)
upkstr 0.000 (1)
nrecv 0.000 (1)
precv 0.000 (1)
recv 26.106 (5425)

Processor 2
PVM function Time (calls)
initsend 1.106 (5213)
send 10.677 (5213)
pkdouble 0.288 (5216)
pkint 0.000 (5)
upkbyte 0.000 (1)
upkdouble 0.283 (5211)
upkint 0.003 (11)
upkstr 0.000 (1)
nrecv 0.000 (1)
precv 0.000 (1)
recv 24.653 (5213)

Processor 3
PVM function Time (calls)
initsend 1.255 (5213)
send 10.360 (5213)
pkdouble 0.297 (5216)
pkint 0.000 (5)
upkbyte 0.000 (1)
upkdouble 0.296 (5211)
upkint 0.000 (11)
upkstr 0.000 (1)
nrecv 0.000 (1)
precv 0.000 (1)
recv 25.110 (5213)
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Processor 4
PVM function Time (calls)
initsend 1.080 (5215)
send 13.851 (5215)
pkdouble 0.566 (5218)
pkint 0.000 (5)
upkbyte 0.000 (1)
upkdouble 0.418 (5209)
upkint 0.001 (11)
upkstr 0.000 (1)
nrecv 0.001 (1)
precv 0.000 (1)
recv 19.092 (5211)

A.6 Benchmark: sp

10 Mbps Ethernet

Station Exec. Block Time Net. Overhead Msgs Bytes
Time Total Serv. Alg. Travel PVM TCP

0 381.7 380.8 0.0 380.7 0.0 0.1 0.0 20 848
1 381.6 129.5 24.9 104.6 38.1 103.5 14.0 26921 37535888
2 381.6 30.3 17.7 12.7 58.1 171.1 20.0 40613 56159536
3 381.6 40.9 18.4 22.6 58.4 162.1 20.0 40613 56159536
4 381.6 95.2 20.5 74.7 39.9 125.9 13.7 26409 37495120

Avg of 4 381.6 74.0 20.4 53.6 48.6 140.7 16.9 33639 46837520

27133 Collisions on ethernet

Block Time in the Actual Execution

Proc 0 Proc 1 Proc 2 Proc 3 Proc 4
391.9 143.7 47.5 55.2 110.7

100 Mbps Ethernet

Station Exec. Block Time Net. Overhead Msgs Bytes
Time Total Serv. Alg. Travel PVM TCP

0 364.7 363.8 0.0 363.8 0.0 0.1 0.0 20 848
1 364.7 112.5 3.9 108.6 2.4 103.5 14.0 26921 37535888
2 364.6 13.4 0.5 12.9 3.9 171.1 20.0 40613 56159536
3 364.6 24.0 1.0 23.0 3.9 162.1 20.0 40613 56159536
4 364.6 78.2 2.9 75.4 2.5 125.9 13.7 26409 37495120

Avg of 4 364.6 57.0 2.1 55.0 3.2 140.7 16.9 33639 46837520

2177 Collisions on ethernet
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PVM message overheads:

Processor 0
PVM function Time (calls)
initsend 0.002 (4)
send 0.030 (12)
psend 0.047 (8)
pkstr 0.000 (3)
pkbyte 0.001 (8)
pkdouble 0.000 (4)
pkint 0.000 (8)
upkdouble 0.005 (126)
upkint 0.001 (27)
upkstr 0.000 (1)
nrecv 0.000 (1)
recv 391.913 (114)

Processor 1
PVM function Time (calls)
initsend 6.046 (26719)
send 71.752 (26719)
pkdouble 10.336 (26722)
pkint 0.000 (4)
upkdouble 9.758 (29012)
upkint 0.000 (11)
upkstr 0.000 (1)
nrecv 0.000 (1)
recv 149.305 (29014)

Processor 2
PVM function Time (calls)
initsend 9.586 (40209)
send 133.711 (40209)
pkdouble 18.102 (40212)
pkint 0.000 (4)
upkdouble 13.911 (37808)
upkint 0.000 (11)
upkstr 0.000 (1)
nrecv 0.001 (1)
recv 43.373 (37810)

Processor 3
PVM function Time (calls)
initsend 9.296 (40209)
send 123.577 (40209)
pkdouble 16.808 (40212)
pkint 0.000 (4)
upkdouble 13.836 (37808)
upkint 0.000 (11)
upkstr 0.000 (1)
nrecv 0.000 (1)
recv 53.770 (37810)

Processor 4
PVM function Time (calls)
initsend 6.377 (26207)
send 95.834 (26207)
pkdouble 11.143 (26210)
pkint 0.000 (4)
upkdouble 10.810 (28606)
upkint 0.000 (11)
upkstr 0.000 (1)
nrecv 0.000 (1)
recv 112.465 (28608)

A.7 Benchmark: bt

10 Mbps Ethernet
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Station Exec. Block Time Net. Overhead Msgs Bytes
Time Total Serv. Alg. Travel PVM TCP

0 524.6 523.5 0.0 523.4 0.0 991.3 0.0 20 848
1 524.6 121.5 24.5 97.0 29.4 84.7 11.2 22281 35993488
2 524.6 41.8 19.7 22.2 49.9 128.1 15.1 31813 56568496
3 524.5 47.8 19.7 28.1 50.3 126.1 15.1 31813 56568496
4 524.6 94.3 19.9 74.4 29.2 101.1 11.0 21969 35968720

Avg of 4 524.6 76.3 20.9 55.4 39.7 110.0 13.1 26969 46274800

24397 Collisions on ethernet

Block Time in the Actual Execution

Proc 0 Proc 1 Proc 2 Proc 3 Proc 4
529.9 129.1 51.3 57.2 102.6

100 Mbps Ethernet

Station Exec. Block Time Net. Overhead Msgs Bytes
Time Total Serv. Alg. Travel PVM TCP

0 504.3 503.1 0.0 503.1 0.0 991.3 0.0 20 848
1 504.2 101.1 3.9 97.3 2.0 84.7 11.2 22281 35993488
2 504.2 21.5 0.5 21.0 3.6 128.1 15.1 31813 56568496
3 504.2 27.5 0.9 26.6 3.6 126.1 15.1 31813 56568496
4 504.2 73.9 3.0 71.0 1.9 101.1 11.0 21969 35968720

Avg of 4 504.2 56.0 2.0 54.0 2.8 110.0 13.1 26969 46274800

2109 Collisions on ethernet

PVM message overheads:

Processor 0
PVM function Time (calls)
initsend 0.001 (4)
send 0.024 (12)
psend 0.044 (8)
pkstr 0.000 (3)
pkbyte 0.000 (8)
pkdouble 0.000 (4)
pkint 0.000 (8)
upkdouble 0.003 (86)
upkint 0.001 (27)
upkstr 0.000 (1)
nrecv 0.000 (1)
recv 520.080 (73)

Processor 1
PVM function Time (calls)
initsend 4.220 (22159)
send 55.739 (22158)
pkdouble 10.122 (22162)
pkint 0.000 (4)
upkdouble 11.627 (24492)
upkint 0.000 (11)
upkstr 0.000 (1)
nrecv 0.000 (1)
recv 132.035 (24494)
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Processor 2
PVM function Time (calls)
initsend 7.234 (31569)
send 97.281 (31569)
pkdouble 15.907 (31571)
pkint 0.000 (4)
upkdouble 12.611 (29168)
upkint 0.000 (11)
upkstr 0.000 (1)
nrecv 0.000 (1)
recv 46.310 (29170)

Processor 3
PVM function Time (calls)
initsend 6.890 (31569)
send 94.457 (31569)
pkdouble 16.163 (31572)
pkint 0.000 (4)
upkdouble 12.665 (29168)
upkint 0.000 (11)
upkstr 0.000 (1)
nrecv 0.000 (1)
recv 53.096 (29170)

Processor 4
PVM function Time (calls)
initsend 6.280 (21847)
send 75.528 (21847)
pkdouble 9.053 (21850)
pkint 0.000 (4)
upkdouble 9.717 (24246)
upkint 0.000 (11)
upkstr 0.000 (1)
nrecv 0.000 (1)
recv 103.127 (24248)
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