Towards Efficient Parallel Implementation of the CG Method
Applied to a Class of Block Tridiagonal Linear Systems

A.T.Chronopoulos

Department of Computer Science, University of Minnesota
Minneapolis, Minnesota 55455.

Abstract

An efficient implementation of Conjugate
Gradient (CG) methods on vector and parallel
machines is presented. The two different architec-
ture models considered are the shared memory
machines with memory hierarchy and the message
passing private memory machines. For a
parametrized vector architecture similar to
CRAY-2 we present (theoretically) an implemen-
tation of the s-step CG used to solve an elliptic
partial differential equation problem is twice as
fast as that of the standard CG. For Hypercube
parallel computers we show that the performance
of s-step CG can be up to 2s times the perfor-
mance of the standard CG.

1 Introduction

Accurate numerical solution of mathcmati-
cal problems derived from modeling physical
phenomena often requires a capacity of computer
storagc and a sustained processing rate that
exceed the ones offered by the existing supercom-
puters. Such problems arise from oil reservoir
simulation, electronic circuits, chemical quantum
dynamics and atmospheric simulation 10 mention
just a few.

There is an enormous amount of data that
must be manipulated to solve these problems with
a reasonable accuracy. These data are stored (for
the shared memory systems) either in a large glo-
bal memory (e.g 4-Gbyte for CRAY-2) or in slow
secondary storage devices; for the message pass-
ing machines they are stored in the private
memory of each processor.

Memory contention on shared memory
machines constitutes a severe bottleneck for

© 1991 ACM 0-89791-459-7/91/0578 $01.50

578

achieving the maximum performance. The same is
true for communication costs on a message pass-
ing system. For example, computations which
require the synchronization of all the processors
constitute a severe bottleneck for message passing
systems. This is because synchronization needs
global communication of the system. Therefore
both the distributed private memory and hierarchi-
cal memory models require carefull design of
numerical algorithms in order to obtain the max-
imum efficiency of the system. The algorithm
should not only lend itself to vectorization and
parallelization but it must provide good data
locality. That is the organization of the algorithm
should be such that the data can be kept as long as
possible in fast registers or local memories and
have many arithmetic operations performed on
them. A good first measure of the data locality is
for shared memory machines is the size of ratio
(Memory References)/(Floating Point Operations).
For distributed memory machines the data locality
to the amount local or global communications.

Several algorithms which improve the data
locality for dense linear algebra problems have
been suggested for shared memory systems
(e.g.see [2], [4]). These algorithms are based on
BLAS3 (Basic Linear Algebra level 3) modules
consisting matrix times matrix operations. BLAS3
computations manage efficiently hierarchical
shared memory systems. Linear algebra algo-
rithms which improve data locality on distributed
memory systems have also been studied (e.g.see
{5], [6]). In the area of iterative methods BLAS2
modules implementations consisting of one or
more single vector operations have been studied
in [7),[8),[9). The s-step Conjugate Gradient
(s-CG) [1] is a generalization of the Hestenes and
Stiefel CG [3] which improves both data locality

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:14:14 UTC from |IEEE Xplore. Restrictions apply.

and parallel properties. The s-CG method uses
BLAS3 operations. This means that the method
makes more efficient use of slower memory in a
memory hierarchy system than the standard CG
method. Also, the method can be organized so
that the 2s inner products required for one s-step
iteration are executed simultaneously. This
reduces the need for frequent global communica-
tion in a parallel system and enhances the perfor-
mance of the method by pipelining the 2s inner
products.

In section 2, the standard and s-step conju-
gate gradient methods are presented. In section 3,
a model problem in partial differential equations
which yields a large sparse matrix after discretiza-
tion is described. In section 4, the efficient imple-
mentation of CG on a vector parallel system is
described. In sections 5,6,7 the efficient imple-
mentation of s-CG on a CRAY-2 like architecture
with memory hierarchy is presented. In sections
8.9 the efficient implementation of s-CG on a dis-
tributed memory message passing architecture are
suggested.

2 The Conjugate Gradient Methods
The CG algorithm (3] for approximating the

solution of a linear system Ax =f, where the
matrix A is large and sparse is outlined here.
Algorithm 1.1 : The conjugate gradient method
(CG).

Choose x,

Po=ro=f-Ax

For i =0 Until Convergence Do
Compute and Store Ap;
Compute (p;,Ap;)
_ (rir)

v:Ap))
Xy =X +ap;
Fis) =1 — GiAp;
Compute (7;41.7i41)

_ irian)

o)

. P =T T bp;

EndFor .
Storage is required for the entire vectors solution
x, residual ~, direction p, and Ap vectors the
sparse matrix A. Note that 3. (or 6.) must be com-
pleted before the rest of the computations in the

a;

© N LA W N

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:14:14 UTC from |EEE Xplore. Restrictions apply.

same step can start. This forces double access of
vectors r,p, Ap from the main memory at each
CG step.

In s-CG s direction vectors are computed
simultaneously and the the approximation to the
solution is improved as much as in 5 consecutive
steps of the standard CG.

Here we outline the algorithm in block vector
form. We will use the notation

(0] =[z‘, e ,g"]

denote the direction vectors in the odd and even
iterates respectively. The parameters (bY{’} and
{a}} are determined by solving s+1 linear systems
of equations of order s. The scalar work subrou-
tine computes the matrices
W; =[(Ap!,pH] 1sl,k<s and the right hand side
vectors ¢/, b/ and solves s+1 linear systems of
size 5. The scalars y' = (r;, A;r;) are the moments
of the vector r; with respect to the matrix A.

Algorithm 2.2 The s-step Conjugate Gra-
dient Method (s-CG)

Select xg
SetP =0
Compute Q = [ry=f — Axg, Arg, . .. ,A*rg)
Compute p°, . .., u%!
For i =0 Until Convergence Do

Call ScalarWork

If (ieven) then

1. Q=Q+P[b!,....b"
2. xy=x+Qa
3. P=[ry=f-AxAra,. .. Ay
4. Compute o, ... p=!
Else
1. P=P+Q[b',....b")
2. xiy=x;+Pa
3. Q=lrim=f-Ax Ay, ... vA‘_l"iH]
4. Compute o, ... ,u*"!
EndIf
EndFor
ScalarWork Routine
If (i=0) then

Form and Decompose Wy
Solve Woa =my
Else o
Solve W,_1b/ +¢/ =0, j=1,...,s
Form and decompose W;
Solve Wa =m;
EndIf

Return
End

Vector products needed to advance one
iteration in the s-step CG are performed by multi-
plying one vector by powers of the matrix. It does
not seem possible to take advantage of this fact
for efficient use of local memories unless the
matrix has a regular sparsity structure. We will
demonstrate this possibility for a linear system
arising from the numerical solution of a model
problem.

3 A Model Problem

Large, sparse and structured linear systems
arise frequently in the numerical integration of
partial differential equations (PDEs). Thus we
borrow our model problems from this area. Let us
consider the second order elliptic PDE in two
dimensions in a rectangular domain € in R? with
homogeneous Dirichlet boundary conditions:

- (au,), — (buy), +cu=g @3.1)

where u=H on dQ, and a(x.y), b(x,y), c(x,y)
and g(x,y) are sufficiently smooth functions
defined on Q, and a,b >0, c20 on Q. If we
discretize (3.1) using the five-point centered
difference scheme on a uniform nxn grid with
h =1/(n+1), we obtain a linear system of equa-
tions

Ax=f

of order N = n2, Since the PDE is self-adjoint and
A is symmetric and weakly diagonally dominant
[Varg62]. If we use the natural ordering of the
grid points we get a block tridiagonal matrix of
the form

A= [Ck—l' Tk' C‘], 1€k< n,

where T,,C, are matrices of order n; and
Co = C, =0. The blocks have the form

580

Cy=diag[c/k,....c*]
Te=[b%,.al b},
1<i<n,

with bik <0, C,'k <0, b(§=b:=0, and aik> 0.

Suppose the three dimensional problem
were considered with 7-point line discretization,
natural ordering of the planes and the discretiza-
tion points in each plane. The matrix A would
then be symmetric, weakly diagonally dominant,
block tridiagonal of order n* and it has the form:

A=[D,,Ti.Dy), 1Sk<n,

where, Dy =diag [d*, ..., d,*] withdf <0and
the blocks T, have the form of the matrix for the
2-D case (just discussed).

4 Efficient Vector and Parallel Implemen-
tation of CG for the Model Problem

Let us first consider the CG case. At each
iteration, one matrix vector product, two inner
products, and three vector updates are performed
in a certain order.

(i) The matrix vector product can be written in
vector form :

Ap(i)=c(i-n)* p(i-n)+c(@)* p(i+n) +

bi-1)* p(i-1)+b@) * pGi+1) +a(i)* p()

In some machines with vector registers (CRAY
X-MP, ALLIANT FX/80) the restructuring
software does not take advantage of the shift and
so 11 vectors of data are transferred and 9N
operations are performed, giving a ratio of 11/9.
For example, on the CRAY-2 this operation takes
approximately 11N clock cycles.

(ii) The inner products are (r;.r;) and (p;.Ap;). giv-
ing a ratio of 1/2 and 1, respectively. They cannot
be performed simultaneously because they are
separated by a SAXPY.

(iii) The three vector updates are

X =Xy +aipi-y

ri=ri_y—a;Ap;

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:14:14 UTC from |IEEE Xplore. Restrictions apply.

pi=ri+bi_piy

Here the ratio is 3/2 . These operations are
memory intensive; consequently, they can be slow
unless the communication between the vector
functional units is faster than the vector opera-
tions. For example, on CRAY X-MP these opera-
tions are executed at the maximum rate whereas
on CRAY-2 at half the maximum rate. (The
CRAY X-MP has two channels for vector LOAD
and one for vector STORE whereas the CRAY-2
has one bidirectional channel.)

This situation can be improved slightly if
(ii) is combined with (i) or (iii). For example, the
update of p; may be combined with Ap; and
(Ap;.p;), saving two vector memory references.
The update of r; may be combined with (r;,r;),
saving one reference. We can also update the
solution only every k steps using the linear combi-
nation [9]

Xk =X+ api + @i Piy+ -0 +8i Pis-)

This provides a ratio (k+2)/(2k) =1/2, thus
improving data locality, but increases the storage
requirements by k-1 vectors.

Although the data locality is not good this
algorithm is fully vectorizable. Parallelization
may be problematic for systems with a large
number of processors (e.g. a Hypercube architec-
ture). This is because the inner products may con-
stitute a bottleneck if the interprocessor communi-
cation is much slower than the speed of the pro-
CESSOrs.

S Implementation of s-CG with Efficient
Use of Local Memory

In this section we show how the different
parts of s-CG can be implemented efficiently on a
vector processor with a local memory or cache.
Examples of such systems are the ALLIANT
FX/80 and the CRAY-2 computers.

We first discuss the implementation of the
matrix product for the 2-D and 3-D model prob-
lem. Second we consider how inner products and
linear combinations are implemented.

(i) Matrix vector products:

Let a horizontal section of order n be the
submatrix A, =[Ci 1, Ty, Cl, k=1,..., n.

Also, let u;, v, be subvectors (of order n) of u, v

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:14:14 UTC from IEEE Xplore. Restrictions apply.

581

corresponding to the block A,. If the local

memory can simultaneously accommodate two
full sections of A and seven full subvectors, we
can carry out the computation
Vi =Ay
Do k=1,n-1
Y1 = Ak+l[‘_‘k1’ .l.‘.kT+l) EkT+2)7
we = Ayl v, vl)T
EndDo
Compute w,
while keeping the matrix in the local memory. If
these blocks do not fit in the memory they must
be further sectioned.

This idea can be generalized to do
Au, - --,A%u together while A is in the local
memory. However, s sections of the matrix and 3s
subvectors must fit in the local memory. This can
be useful even on a sequential machine when the
two levels of memory that must be used effi-
ciently are the main memory and a slow secon-
dary storage device.

The same idea can be applied to the 3-D
problem. Here the horizontal sections of order n?
are: Ay =[Dy,Ty,D;], 1<k <n. For a reason-
able resolution without need of secondary storage,
n3 = 10° (because of the main memory limits), so
n?=10% and a good portion of a section can be
kept in a local memory of size 16K (CRAY-2,
ALLIANT FX/80).

(ii) Inner Products:

We must compute 2s inner products involv-
ing the vectors p,-l ,..., p{ by efficiently using
the local memory. We partition the vectors in
N/m equal subvectors of length m. The 2s subvec-
tors (of length /) holding the partial results of the
inner products must remain in the local memory.
Thus (sm + 2sl) S local memory size. The "DO"
loop for all the inner products consists of an outer
loop of N/m steps and an inner loop of m steps.
(iii) Linear Combinations:

For the linear combinations we partition the
vectors p! ..., pf, pli. ..., pLy and x4, x;
into equal subvectors of length m such that
(25+2)m < local memory size. The "DO" loop for
all the linear combinations consists of an outer
loop of N/m steps and an inner loop of m steps.
By using the matrix notation we can describe this
as follows

Do k=1,N/m
Py=P,+Qlb', ... b°]

e =)+ Pra
EndDo

6 Implementation of s-CG with Efficient
Use of Vector Registers

In this section we will demonstrate how the
computations in 5-CG (i.e. s=5) can organized to
achieve a speedup =2 with respect to CG. We
assume that each processor in a multiprocessor
system has a sufficient number of Vector Regis-
ters (VRs). This assumption excludes systems
such as the CRAY X-MP because it has only 8
VRs. The FUJITSU VP-200 system has a total
vector capacity of 8K-bytes which can dynami-
cally reconfigured as different sets of varying
length vector registers. For example, 32 VRs, each
of length 256 and width 64 bits, is one possible
arrangement.

The model vector processor we consider has
at least 11 VRs and one bidirectional port to the
memory, one pipelined multiplier (adder). We
also assume that vector operations can be going
on simultaneously and they take the same number
of clock cycles to execute. For simplicity we also
assume that they take N cycles for vectors of
length N. Finally, we assume that a subvector of
operands can be extracted from a vector register.
A good example for such a system would be a
CRAY-2 with 11 VRs (instead of 8).

Vectorization:
@) Matrix vector products:
ri=f-Ax;, Ar;, ... A%, (A%, A%r). We will

compute v = Au and w = Av simultaneously keep-
ing A and v local.

In terms of grid lines the idea is to partition
the square region into p equal horizontal regions
and distribute the section amongst the p proces-
sors. The data of one section A; come from three

consecutive lines. If the the grid line is longer
than the register length, it is partitioned into seg-
ments of length equal to that of the vector regis-
ters. Each processor gets segments of data from its
region. Segments from four consecutive grid lines
to compute v = Au and w = Av. So each processor
sweeps its horizontal region in a vertical fashion.
For the first line of its region each processors will
have to do v and Av separately. This is illustrated
in Fig. 6.1 for two processors.

582

We will perform the computation as fol-
lows: (1) r,Ar, () A¥, A%, (3)
A"r,-, (A"r‘-,Asri). We will demonstrate how to
compute (2) with the least number of memory
transfers. Let [be the length of the Vector Regis-
ter (VR). We use the following notation to denote
the contents of a VR.

Vv =v(i+n i itn+l), vi=v(+li+14)

vt =v(@-ni-ntl), v =v(@i-1:i-1+l),
v=v({i:i+l)
Similarly for a,b,c,u. For w,
w =w(i+] : i+l-1); and we use similar notations
for w* , w™,w™, w*, Use of the operator "*" or
("+") here means that the contents of two VR go
through the vector functional unit pipeline (so that
the elements of the vectors are arithmetically
combined componentwise).

Let us assume that a subvector like
a(i+1 : i+l-1) can be extracied from a VR con-
taining a(i : {+!), and that all the subvectors com-
ponents are O for indices —n+1 : 0, n*: n*+n. The
computation of (2) proceeds as follows:

v=c*u " +crut +bru +b*ut+aru
[KeepcT,c,b7,b,a,vin VR]
w=cT v+ b xv +brvt+axy
[Keepc,v,w,asc”, v, w in VR]
Do i=1,n%1
v=c*u T +cxut+b s +brut+aru
wlh=w4+c Ty
[Keepc™,c,b™,b,a,vin VR]
[v, v* are extracted from v]

PE2 b

. T e i

PE1 ¢

[W T Y
<+ 4 4
4+ 4 4

\ t %
1
Fig. 6.1. Processor mapping to square grid.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:14:14 UTC from |IEEE Xplore. Restrictions apply.

w=cTey 4+ b sy +bevi+ary
[Keepc,v,w,asc™, v, w™ in VR]
EndDo
whr=wTl4+c T xy
Do i=1,n%l
Compute w(l* i+1), w((I-1)* i+1)
EndDo

The second "DO" loop is executed in vector mode
in (n%/1%) vector steps. This part is only 1/! of the
total time required to compute (2) and is rather
small since 64 </ in most computers. Thus, we
need only concentrate in the work involved in the
main "DO" loop.

Computing (2) requires 18N floating point
operations (Ops) for v, w and 10 vector transfers.
This gives a ratio : 10/18 = 1/2. We obtain a simi-
lar ratio from (1) and (2). We need seven VRs 10
keep w™,c™,¢c,b7, b,a,v in VRs. During the
last multiply and add in computing v two subvec-
tors nceded for computing v in the next step are
brought in. This requires two additional VRs. Two
additional VRs are needed for storing intermedi-
ate results (e.g. ¢ **v™). So atotal of 11 VRs are
required.

On our model vector processor, v = Au takes
approximately 11N cycles. Computing vand w for
the main "DO" loop above takes approximately
11N cycles because vector loads, stores and addi-
tions may be completely overlapped with the mul-
tiplications. Therefore, on such a processor, two
matrix vector products of s-CG take approxi-
mately the same time as one in CG.

(ii) Inner Products: We choose to group the
operations in two sets so that the number of VR
needed is not too large.

1
(fi.fl'), (r;,Ar;), (Ar;.Ar;), (Azr,-,Ar;). (Azr,-,Azr;).

@) (A%, A%r), (A% A%r), (A% A%r), (A'r A

Denoting iuv =iuv(i: i+l), an inner product is
performed as follows:

Do i=1,N,l
iuv = iuv + u*xv
EndDo
Sum the components of iuv

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:14:14 UTC from |IEEE Xplore. Restrictions apply.

583

To execute (1) we need 3 VR to store the vectors
involved, 5 VR for the intermediate inner product
vectors (e.g. iuv), 3 VR for temporary storage.
Thus we have a ratio of 3/10 for (2) and 3/8 for
(1). Hence the ratio for the inner products is = 1/3
provided that there are 11 VRs at our disposal.

On the model vector processor with 11 VR

these nine inner products take about 10N cycles,
whereas a single inner product and a norm take
about two and one cycles respectively. Thus 5
consecutive steps of CG require about 15N cycles
for inner products.
(iii) Linear = Combinations: ~ We need
pl=A"r+1ply, ... p3) for j=1,...,5
and X=X +1[pil_l, N ,p"S_I] . These 17 vector
transfers and 60N Ops give a ratio of 17/60 = 1/3.
As for CG we can update the solution vector less
frequently, improving this ratio to about 1/4. For
example this could be done by

X =x+1pt. . p2 0+ 1R).
This does not increase the storage requirements.
We need S VRs to store ply,....pl1, 2

VRs for any two of pl, . .. ,p’, 1 VR for x;, and 3

VR for temporary storage. On our model vector
processor the computation can be performed in
about 30N cycles. This is because the vector
loads, stores and additions completely overlap
with the multiplications. We note that a vector
update can be computed in 3N cycles. Thus for 5
consecutive steps of CG vector updates require
45N cycles.

Parallelization:

Parallelization for (i) is realized by partitioning
the matrix into p equal horizontal sections,
assigning each to one of p processors. If N/p is
integer then each section consists of entire blocks
of order n and the communication needed
between every 2 processors working on adjacent
sections will be a subvector of v of dimension ».
Since this will be formed initially by the processor
whose starting point is this vector this causes no
delay.

In cases (ii) and (iii) the vectors are divided
into p equal subvectors and distributed to the p
processors.

8 Comparison of s-CG with CG on a
CRAY-2-like architecture

In both CG and s-CG the data locality can
be improved by combining some of the 3 types of
operations. For example matrix vector multiplica-
tions and inner products in s-CG can be executed
simultaneously. Here we consider them separately
because the comparison is easier. The number of
Ops and the critical ratios for 5-CG and CG for a
single iteration of algorithms 2.1 and 2.2 are
shown on Table 7.1. We use the notation: Vops
(Vector operations), Dotpr (Dot products), Mv
(Matrix times vectors), Lc (Linear combinations)

Assume for a vector system the time for a
vector transfer equals the vector multiplication (
addition) times a factor a 2 1. Also, assume one
port for vector transfers from the memory to the
VRs.

When a=1 and an architecture model like
the one described in the previous section is
adopted we obtain a speedup of 1.5. This is
because the execution of one step of s-CG
requires approximately 33 + 30 + 10 = 73N cycles
compared to 55+45+15=110N cycles for S
consecutive steps of CG.

If a > 1 then the vector transfers essentially
overlap with almost all the vector operations, and
so the execution time is equal to the "vector
transfer time ". The number of vector transfers for
1 step of S-CG is 17 +6+30 =753 and for 5 steps
of CG 45+ 15+ 55=115. Thus, in this case,
5-CG will run twice as fast as CG on the model
problem. The local memory of the CRAY-2 pro-
cessors can be efficiently programmed to provide
memory space for three additional vector regis-
ters. Thus the implementation of s-CG for the
CRAY-2-like architecture can be realized on the
CRAY-2 system.

9 Description of a Message Passing Com-
puter Architecture

Vops | Ops ratio | Ops | ratio
Dpr 20N 173] 20N 3/4
Mv 54N | 10/18 | 45N | 119
Lc 60N | 17/60 | 30N 32

Table 7.1 Ops and (mem. transfers)/Ops (5-CG in
columns 1,2 ‘and 'S consecutive steps of CG in columns
3.4).

We adopt the Hypercube architecture as our
model. A similar discussion can be carried out for
any ensemble architecture system (e.g. the ring
architecture).

A hypercube model is a particular example
of a distributed-memory message passing parallel
computer. In a hypercube of dimension d, there
are 2% processors. Assume that these are labeled
0,1,...,2°~1. Two processors i and j are directly
connected iff the binary representation of i and j
differ in exactly one bit. Each edge of Figure 8.1
represents a direct connection of a dimension 4
hypercube (lines and dotted lines are communica-
tion links).

584

Fig. 8.1. Four dimensional Hypercube.

Thus in a hypercube of dimension d, each proces-
sor is connected to d others, and 27 processors
may be interconnected such that the maximum
distance between any two is d.

Each node of the system can be a scalar (or
vector) processor for computations and ‘it has its
own memory. It must also have a processor which
sends and receives messages to neighbor nodes.
This processor may coincide with the processor
dedicated for computations (e.g. INTEL iPSC/1).
The time required for a message packet of size k
bytes to be communicated between two adjacent
nodes is

o=0a+kB

where o is the communication latency (startup
time for a transmission) and P is the transmission
time per byte and k the number of bytes in the
message packet. Assume that there are 2¢ nodes in
the system. We can distinguish two types of com-
munications needed to carry out computations on
an ensemble architecture. The local communica-
tion involves only m <« 22 neighboring nodes and
the global one involves m =2 nodes. The time

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:14:14 UTC from |IEEE Xplore. Restrictions apply.

required for a message to be communicated glo-
bally is

wd

Table 8.1 shows the times for single 8 Byte
neighbor transfer, the times to perform an 8 Byte
Add and Multiply operations and the ratio
Communication/Computation (Comm./Comp.)
time on NCUBE/7. We see that a single 8 byte
message transfer between two directly connected
processors takes 42 times the time for an 8 byte
real addition and 32 times that of an 8 byte real
multiplication. Furthermore, longer messages are
transferred at a higher rate (i.e. bytes per second)

100«——i01
010 __ri 01

Fig. 9.1. Dot product computation on Hypercube

than shorter ones going the same distance. In a
linear time model of nearest neighbor communi-
cation a message of length M bytes requires
approximately 446.7+2.4M microseconds where
the constant term is a startup time which consists
of the software overhead at each end and the time
to set up the circuit and the second term is the
actual transmission time. The startup time for
short messages is the dominating factor in the
communication cost on the NCUBE.

Operation time | Comm./Comp.
8 B transfer | 470ps

£ 11.2us | 42times

T 14.7us | 32 times

Tab. 8.1. 8-Byte Oper. times on NCUBE/].

10 Implementation of CG and s-CG on
Message Passing Architectures

The CG and s-CG methods can be imple-
mented on such a system by dividing all vectors
into 24 equal subvectors (and the matrix A into 2°
horizontal sections) and storing them at the 2¢

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:14:14 UTC from |IEEE Xplore. Restrictions apply.

585

nodes of the system. The vector updates and linear
combinations require no communication of the
nodes. The scalars computed in s-CG require the
moments of the residual vector. So they do not
introduce any communication of the nodes. We
now consider separately the inner products and
the matrix vector products.

(i) Inner products: An inner product is computed
by assigning an equal part of the vector (if possi-
ble) to each node. This allows each processor to
work on local segments independently of other
processors for most operations. Each node com-
putes in parallel the sum of squares of its part of
the vector. Then an Exchange-Add algorithm (5]
can be used. Processors Pg,. 1.0z ...

(i=0,...,d-1) concurrently exchange their most
recent partial sum with their neighbor
Puos .. tiaddi, ... 20 and then concurrently form

their new partial sum. At the end of 24 con-
current nearest neighbor communication steps,
each processor has its own copy of the inner pro-
duct. The Exchange-Add algorithm is illustrated
in Fig. 9.1(d=3).

An inner product requires global communication
of the nodes in order to sum up the vector product
and communicate the result to all the processors.
Denote by ¢, the time to perform a scalar addition
on a single processor. Assume that the time to
transmit a double precision number to a neighbor
is greater than the time for scalar addition. This is
a reasonable assumption. For example this is valid
for NCUBE machine.

L<w(=a+8p)

The exchange-add algorithm described in the pre-
vious section (for 2¢ processors) requires time
equal to

dQQon+t,)

(A more expensive way is to collect all numbers
to a single node for the addition and then transmit
the result to all nodes)

Performing 25 inner products simultane-
ously requires time equal to

d Qo +E)

where @ = 0.+ 258 and £, is the time to add two

vectors of length 2s. If we assume that every node
has a separate processor for passing messages,
then , (or ¢,) overlaps with 2w (or 2). This is
because of the assumption that the time for scalar
addition is much less than the time to send a
number to a neighbor node. Neglecting the time
spent for the multiplication part of the inner pro-
ducts we obtain the following speedup (by per-
forming 2s inner products versus 1)

252w) _ 2s(o+ 8P)

is a full block of the matrix A. A certain number-
ing of the nodes must followed so that adjacent
sections are stored in adjacent nodes. The multi-
plications

r,-=f—Ax,-,...,A’r,-

are carried out sequentially in each node. To
compute the subvector

T T T T
Y = Ap[U-ys Ue s Uier]

the subvectors u;_; and u,,; must be transferred to
the node holding the section A, from neighbor

nodes. To carry out one matrix vector multiplica-
tion every node must send one subvector to two
neighbors and must receive two subvectors. So
only local communication of the processors is
necessary to carry out this part of the computa-
tion. In Fig. 9.2 we demonstrate how to assign the
matrix blocks and subvectors to the processors of

20 o+2s88
matrix vectors

P
PEO Ty €y, L
PEL G Ty Co.
PE3 | Ty Co . .l
PE2 o, C3. T8 Connn, 1
PES OUTRUR Ca Ts. G, 4
S D Cs5.T6.Co..... 1
PES L et .Co..I?..Cq b 4
PEA Cr 1) 1

Fig. 9.2. Matrix and vector mapping to processors

When the transmission startup time o is much
greater than 16sf the speedup is of order 2s. This
essentially means that for such a machine the glo-
bal communication may dominate the whole com-
putation in the CG iteration. If this is true then the
speedup obtained by using s-CG can be of order
2s.

(ii) Matrix Vector Products: Consider the 2-D
model problem first. The matrix A is partitioned
into p horizontal sections. Each section is stored
in the private memory of a node. Assume for sim-
plicity that N = 224, Then each section

Ak=[Ck-l’TbCk]' k=l,...,p

586

a hypercube of dimension 3 for the single matrix
vector multiplication.

Assume for the 3-D problem that the
number of processors if n =24 then n horizontal
sections of order n2

Ay=[Dy, Ti.Dy), 1Sk<n

must be stored each in each of the p nodes. The
matrix vector multiplications can be performed
similarly to the 2-D problem. The communication
still consists of sending one subvector to two
ntzzighbors and receiving two subvectors of order
n-.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:14:14 UTC from |IEEE Xplore. Restrictions apply.

11 Summary and future work

We have presented an efficient implementa-
tion of the s-step conjugate gradient method on a
vector parallel system with memory hierarchy and
on a message passing distributed memory archi-
tecture. We can conclude that the s-step methods
give significant performance enhancement over
the standard methods.

References

(1] A.T.Chronopoulos and C.W.Gear, "s-step
iterative methods for symmetric linear systems",
Journal of Computational and Applied Mathemat-
ics 25, pp. 153-168, 1989.

[2] J. J. Dongarra, D. C. Sorensen, "Linear Alge-
bra on High-Performance Computers" Parallel
Computing 85, M. Feilmeier, G. Joubert and U.
Schendel (eds.), Elsevier Science Publishers B.V.
[3] M. Hestenes and E. Stiefel, "Methods of con-
jugate gradients for solving linear systems,” J.
Res. Nat. Bureau of Stand. 49, pp. 409-436, 1952.
[4] W. Jalby and U. Meier, "Optimizing Matrix

587

Operations on a Parallel Multiprocessor with a
Memory Hierarchy." Inter. Conf. on Parallel
Proc., St. Charles, IL, 1986.

(S] R.F.Lucas, T.Blank, and J.J.Tiemann, "A
Parallel Solution Method for Large Sparse Sys-
tems of Equations”, IEEE Transactions on
Computer-Aided Design, Vol. CAD-6, No. 6,
November 1987

[6] O.AMcBRYAN and EF.van de Velde,
"Matrix and vector operations on hypercube paral-
lel processors", Parallel Computing 5, pp. 117-
125, 1987.

[7] Gerard Meurant, "Multitasking the conjugate
gradient method on the CRAY X-MP/48", Paral-
lel Computing 5, pp. 267-280, 1987.

[8] M. K. Seager, "Parallelizing conjugate gra-
dient for the CRAY X-MP " Parallel Computing
3,pp. 3547, 1986.

[9] H. A. Van Der Vorst, "The Performance of
FORTRAN Implementations for Preconditioned
Conjugate Gradients on Vector Computers”
Parallel Computing 3 (1986) pp. 49-58, North-
Holland.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:14:14 UTC from IEEE Xplore. Restrictions apply.

