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When powerful machines such as the Cray-2 became
available in the late 1980s, a number of researchers investi-We investigate the use of an inexact Newton’s method to solve

the potential equations in the transonic regime. As a test case, gated use of exact Newton’s method for solving steady
we solve the two-dimensional steady transonic small disturbance state CFD problems. Direct sparse matrix solvers (e.g.,
equation. Approximate factorization/ADI techniques have tradition- Gaussian elimination) were used for exact solution of the
ally been employed for implicit solutions of this nonlinear equation.

linear systems in each Newton iteration. Results using thisInstead, we apply Newton’s method using an exact analytical deter-
approach were obtained for transonic flows using the po-mination of the Jacobian with preconditioned conjugate gradient-

like iterative solvers for solution of the linear systems in each New- tential equations [1, 2], Euler equations [3, 4], and Navier
ton iteration. Two iterative solvers are tested; a block s-step version Stokes equations [5, 6]. While the exact Newton’s method
of the classical Orthomin(k) algorithm called orthogonal s-step Or- was found to be robust and have quadratic convergence
thomin (OSOmin) and the well-known GMRES method. The precon-

(with a good initial guess), the CPU time was not competi-ditioner is a vectorizable and parallelizable version of incomplete
tive with existing iterative implicit methods. This was dueLU (ILU) factorization. Efficiency of the Newton–Iterative method
mainly to the time required for exact solution of the largeon vector and parallel computer architectures is the main issue

addressed. In vectorized tests on a single processor of the Cray linear systems.
C-90, the performance of Newton–OSOmin is superior to Newton– An approach that has shown promising results recently
GMRES and a more traditional monotone AF/ADI method (MAF) is the inexact Newton’s method. In this approach, anfor a variety of transonic Mach numbers and mesh sizes. Newton–

inexact solution using an iterative solver is performedGMRES is superior to MAF for some cases. The parallel performance
in each Newton iteration. There are two advantages ofof the Newton method is also found to be very good on multiple

processors of the Cray C-90 and on the massively parallel thinking using a conjugate gradient-like iterative solver over a
machine CM-5, where very fast execution rates (up to 9 Gflops) are direct solver for a problem with n unknowns. First,
found for large problems. Q 1996 Academic Press, Inc. direct methods tend to be memory intensive and costly,

requiring O(n2) operations to generate an exact solution
for banded systems with bandwidth Ïn (arising in two-

1. INTRODUCTION dimensional problems). Iterative methods can generate
a good approximation to the solution in far fewer than

It has always been an objective of researchers in compu- O(n2) iterations. The second advantage is that conjugate
tational fluid dynamics (CFD) to develop more efficient gradient-like iterative methods contain many long vector
numerical solution procedures. This is particularly true operations and are consequently well suited for parallel
today when many of the more interesting engineering simu- execution. Promising results using the Newton method
lations, namely 3D unsteady problems with meshes over coupled with linear iterative methods (Newton–iterative)
1 million gridpoints, push the limits of existing computer have been obtained for Navier–Stokes calculations in
technology. In the past, numerical methods were devel- two dimensions for a variety of problems. McHugh and
oped for the purpose of approximating the solution to the Knoll [7] have computed low speed internal viscous flows
problem with the least amount of computational work. and Ajmani et al. [8] have computed subsonic viscous
This led to many efficient implicit algorithms, the most flows over an airfoil. Venkatakrishnan [9] has used the
common being approximate factorization/alternating di- inexact Newton methods to compute transonic viscous
rection implicit (AF/ADI) and multi-grid methods. How- flows over an airfoil and Ajmani et al. [10] and Orkwis
ever, with the development of vector-parallel and, more and McRae [11, 12] have computed high speed viscous
recently, massively parallel computer architectures, the ef- internal flows. Other recent interesting applications of

Newton’s method to solve nonlinear CFD problemsficiency of the algorithm on these architectures is as domi-
nant a factor as its convergence qualities. are [13–17].
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A popular iterative solver used in the Newton–iterative 2. THEORETICAL DEVELOPMENT
methods is the GMRES algorithm of Saad and Shultz [18].

The transonic small disturbance (TSD) equation is aGMRES has gained wide acceptance in the CFD commu-
simplified version of the full potential equation, assumingnity due to its ability to solve difficult nonsymmetric linear
small disturbances. It is an accurate prediction for flowssystems. It is the iterative solver used in [7–10, 13, 19].
around thin objects with relatively weak shocks, where theAnother method capable of solving nonsymmetric linear
isentropic assumption of the potential equations is valid.systems is the Orthomin algorithm of Vinsome [20]. Or-
For two-dimensional steady flow, the TSD equation canthomin has not received much attention in the CFD com-
be written asmunity because it does not have the robustness qualities

of GMRES. However, Chronopoulos [21] recently intro-
duced an s-step version of Orthomin, which enhances its F 1 2 M 2

y

t 2/3(c 1 1)M 2
y

2 FxG Fxx 1 Fyy 5 0, (1)robustness qualities as well as its parallelization potential.
Swanson and Chronopoulos [22] have modified the ap-
proach to make the s-steps orthogonal. The resulting or-

where F is the perturbation potential, subscripts x and ythogonal s-step Orthomin algorithm attains a level of ro-
denote differentiation, My is the free stream Mach number,bustness comparable to GMRES and has shown good
and t is the maximum airfoil thickness nondimensionalizedefficiency on a parallel computer architecture (e.g., [22]).
by the airfoil chord.In a recent comparison study by McHugh and Knoll [7],

The first term in the bracket is defined as K, the transonicit was determined that GMRES is superior to several other
similarity parameter:iterative methods for inexact Newton solution of two-

dimensional Navier–Stokes problems. It is for this reason
that we compare the s-step Orthomin method to GMRES

K 5
1 2 M 2

y

t 2/3(c 1 1)M 2
y

. (2)in this work.
In this paper, we address the issue of efficiency of the

Newton–iterative approach for solving the 2D steady
The K 2 Fx term is the nonlinear term in the TSD equa-

transonic small disturbance (TSD) potential equation.
tion. If K 2 Fx is greater than zero (subsonic flow), the

Traditionally, this equation has been solved using an AF/
equation is elliptic, whereas if K 2 Fx is less than zero

ADI method for the implicit operator (e.g., [23, 26]).
(supersonic flow), the equation is hyperbolic. Hence the

Instead, we apply Newton’s method using an analytical
system of equations describing the transonic flowfield is

exact computation of the Jacobian and solve the linear
a mixed set of elliptic and hyperbolic equations. This mix-

systems with conjugate gradient-like iterative methods.
ture complicates the finite difference discretization of the

In earlier work with Newton’s method [24], we used the
flowfield. For points where the TSD equation is elliptic,

Orthomin(k) [20] algorithm for the iterative solver with
central finite differences should be used and for the

a vectorized incomplete LU (ILU) factorization precondi-
points where it is hyperbolic, upwind differences should

tioner [25]. The results compared favorably with the
be used.

MAF method of Goorjian [26], which uses an AF/ADI
A technique to perform this switching between upwind

implicit operator. However, the method lacked robustness
and central differences was introduced by Murman and

for more difficult high Mach number transonic flows. In
Cole in 1971 [29]. Finite differences are used to find the

this paper, we apply the more robust block s-step version
value of K 2 Fx, and switching is done depending upon

of Orthomin(k), referred to as OSOmin(s,k) [22], along
whether K 2 Fx is positive or negative. Although the

with the well-known GMRES(m) algorithm. The vec-
Murman switch satisfies conservation properly, it has the

torized ILU preconditioner is modified to be more paral-
weakness of allowing numerical instabilities to develop in

lelizable using the technique of Di Brozolo and Robert
regions of flow around complicated geometries or blunt

[27]. An earlier version of this work was presented as
surfaces, such as flow near the leading edge of an airfoil. In

Ref. [28].
1985, Goorjian et al. [26] introduced the monotone switch,

The issue of parallelization is also addressed. The New-
based on the ideas of Godunov [30]. As the name ‘‘mono-

ton–iterative method is compared to the MAF algorithm
tone’’ implies, this switch eliminates oscillations, improving

of Goorjian [26] for a test problem on a vector-parallel
convergence and thereby making the method more robust.

architecture (Cray C-90) with eight processors and a mas-
The differencing approximation of the TSD equation with

sively parallel architecture (thinking machine CM-5) with
the monotone switch incorporated is

up to 512 processors. Both preconditioned and unprecondi-
tioned solvers are tested using a variety of mesh sizes and

F (Fn11) 5 [(G̃D1
x 1 ĜD2

x )d2
x 1 dyy]Fn11 R 0, (3)Mach numbers.
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where ALGORITHM. Inexact Newton.

Choose F0 .
G̃ 5

(c 1 1)M 2
y

2
[(1 2 «i, j)h(1 2 «i11/2, j)=ui11, j

For n 5 0,1, ... until convergence do
1 «i21/2, j=ui, jj 1 (1 2 «i21/2, j)=ui, j], (4)

1. Solve Iteratively: F 9(Fn)C n 5 2F (Fn)

2. Fn11 5 Fn 1 C n

Ĝ 5
(c 1 1)M 2

y

2
[«i21, jh(1 2 «i21/2, j)=ui, j

EndFor
1 «i23/2, j=ui21, jj 1 («i21/2, j)=ui, j], (5) The Jacobian of the function, F 9(Fn), is computed in its

exact form analytically. For higher order accurate prob-
and lems, exact computation of the Jacobian can be CPU inten-

sive. However, with the first-order TSD equation, exact
=ui, j 5 K 2 d2

x Fn
i, j . (6) computation is relatively easy and requires only a small

percentage of the CPU time (2% to 5%). Most of the CPU
time is spent solving the linear systems with the precondi-The difference operators are standard finite difference op-
tioned iterative solver. The large, nonsymmetric, sparseerators, defined by
linear systems are banded with six diagonals, representing
coefficients Fi, j21 , Fi22, j , Fi21, j , Fi, j , Fi11, j , and Fi, j11

D1
x f n

i, j 5
f n

i11, j 2 f n
i, j

As (xi11 2 xi21) (Fig. 1).
The diagonals Fi22, j and Fi11, j exist in different regions

of the flowfield, depending upon whether the flow is sub-
D2

x f n
i, j 5

f n
i, j 2 f n

i21, j

As (xi11 2 xi21) sonic or supersonic. In subsonic regions, central differenc-
ing is used and the Fi22, j entry is 0. In supersonic regions,
upwind differencing is used and the Fi11, j entry is 0. In ad2

x f n
i, j 5

f n
i, j 2 f n

i21, j

(xi 2 xi21) completely subsonic flowfield, the system would be a
slightly nonsymmetric pentadiagonal system. As a largerdyy f n

i, j 5 D1
y (d2

y f n
i, j)

portion of the flow becomes supersonic (caused by increas-
ing Mach number) the magnitude of the factors in theand the switches are defined by
sixth diagonal become larger. For some difficult cases, the
systems cannot be solved by the iterative methods and

«i, j 5 0 if As (=ui11, j 1 =ui, j) $ 0
these systems could be indefinite.

5 1 otherwise; An important consideration in the use of inexact Newton
methods is the level of accuracy required of the linear

«i11/2, j 5 0 if =ui11, j $ 0
solution in order to assure convergence of the Newton

5 1 otherwise. method. Superlinear convergence requires that the inner
linear iteration (i.e., solving the linear system of equations)
be solved more accurately than the outer (i.e., Newton)The monotone approximate factorization (MAF) algo-

rithm of Goorjian et al. [26] uses the above discretization iteration. For quadratic convergence, the inner iteration
must be solved to machine accuracy. Since it is usuallytechnique, coupled with an AF/ADI solution technique,

to solve the TSD equation. Algorithm details can be found impractical to use iterative methods to solve to machine
accuracy, the typical criteria used for calculations of thisin [26]. A geometric acceleration parameter sequence, orig-

inally proposed in the AF2 algorithm of Ballhaus and type is the 2-norm of the linear residual must be less than
or equal to the 2-norm of the nonlinear residual, as de-Jameson [23], is used to accelerate the convergence of

MAF. The size of this acceleration parameter sequence, scribed in [31]. However, this criteria presupposes that the
nonlinear residual decreases in each iteration. We foundg, can be adjusted to give optimal convergence. Optimal

values of g for the problems we tested are given in the that during the shock formation, the nonlinear residual
tends to oscillate unless the initial guess contains a shock.results section, where the MAF algorithm is compared the

Newton–iterative method. Use of the above criteria with an oscillating nonlinear
residual will cause the linear solution accuracy to oscillate,In our approach, after discretization using the above

approach, an inexact Newton algorithm is applied to solve promoting further nonlinear oscillations that can eventu-
ally lead to divergence. For this reason, we establish thethe nonlinear system F (Fn11), as defined in Eq. (1).
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FIG. 1. Six diagonal linear system.

following criteria for the linear solution accuracy: However, over the past two decades many new conjugate
gradient-type algorithms have been developed that are
capable of solving nonsymmetric linear systems. In addi-
tion, the size of many engineering problems has increasediLinearResiduali2 #minHiNonlinearResiduali2

SpecifiedValue(e.g.,1021–1023). to the point that direct methods are memory-intensive and
(7) costly. For these reasons, attention has been refocused on

the use of iterative methods.
The specified value condition essentially puts a ceiling on The two iterative methods utilized in this work are the

the minimum linear accuracy until a good approximation orthogonal s-step Orthomin(k) (OSOmin(s,k)) method of
of the shock is formed and the nonlinear residual stops Swanson and Chronopoulos [22] and the GMRES(m)
oscillating. In general, the shock is well formed when the method of Saad and Shultz [18]. Both of these algorithms
nonlinear residual drops by one to three orders of magni- are Krylov subspace methods based on generalizations of
tude, so the specified value is usually set in this range. With the conjugate gradient method. Both GMRES(m) and
this stopping criterion, the convergence of the Newton OSOmin(s,k) can solve systems in which the coefficient
method should be somewhere between superlinear and matrix A is nonsymmetric with a symmetric part (i.e.,

(A 1 AT )/2) positive definite (i.e., all positive eigenvalues).quadratic.
They also are able to solve some systems in which A is
nonsymmetric with the symmetric part indefinite.3. PRECONDITIONED ITERATIVE METHODS

In deriving these conjugate gradient-like methods for
In solving large sparse linear systems arising in engi- nonsymmetric systems, different approaches are used. The

neering problems, direct methods have traditionally been approach used by the s-step methods, is to truncate the
the method of choice because most engineering problems recursion, making the new s direction vectors orthogonal
form nonsymmetric linear systems with high condition to the previous s direction vectors. Another approach, used

by GMRES, uses periodic restarts of the algorithm. Therenumbers which iterative methods were unable to solve.
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is a class of other nonsymmetric iterative methods based • The vectors ai 5 [a 1
i , ... , a s

i ]T (of dimension s) are
the steplengths that minimize iri11i2 over the affine Kry-on a nonsymmetric Lanczos procedure. These include the
lov subspacebiconjugate gradient algorithm (BCG) and its stabilized

variants (Bi-CGSTAB) [32], the conjugate gradient
squared algorithm (CGS) [33, 34], and algorithms based on Hxi 1 Os

j51
ajApj

i : aj scalarsJ.the quasi-minimum residual idea (QMRCGS) [35]. These
methods may be faster for some classes of linear systems.
However, in a recent comparison study by McHugh and

• For indices l 5 1, ... , s and ji # j # i, bl
j 5 [b(l,1)

j , ...,Knoll [7], it was determined that GMRES is superior to
b(l,s)

j ]T are vectors (of dimension s) of parameters used inthese Lanczos-based methods for inexact Newton solution
orthogonalizing APi against APj .of two-dimensional Navier–Stokes problems. It is for this

reason that we compare the s-step approach to GMRES. For integers k and i (such that 1 # i), let ji 5 max(1,
i 2 k 1 1) for OSOmin(s,k). The algorithm is given below.

ALGORITHM. OSOmin(s,k).3.1. OSOmin

Orthogonal s-step Orthomin is a relatively new algo- Compute r1 5 f 2 Ax1 .
rithm, introduced in 1992 by Swanson and Chronopoulos
[22]. Its original basis is the Orthomin(k) method of Vin- For i 5 1, ... until convergence do
some [20]. Orthomin(k) works well for diagonally domi- 1. Compute APi 5 [Ari , A2ri , ..., Asri] and set
nant and slightly nonsymmetric systems, but it tends to Pi 5 [ri , Ari ,... , As21ri]
break down when the diagonal dominance is lost, or when If (1 , i) then
the degree of nonsymmetry becomes large. In 1991, Chro- 2. compute bl

j 5 [(A(l11)ri)T Ap1
j , ...,

nopoulos [21] introduced an s-step version of Orthomin(k). (A(l11)ri)TAps
j )]T, where l 5 1, ..., s and j 5 j(i21) ,

The s-step version forms, at each iteration, a block of s ..., i 2 1
independent direction vectors using repeated matrix– 3. APi 5 APi 2 oi21

j5j(i21)APj[b l
j]s

l51
vector products of the coefficient matrix with a single resid- 4. Pi 5 Pi 2 oi21

j5j(i21)
Pj[b l

j]s
l51

ual vector [36, 37, 21]. Then the solution is advanced simul- EndIf
taneously using the s direction vectors. The s-step method 5. Apply MGS to the matrix APi to obtain final
is more robust than the standard method, giving it the APi and Pi
capability to solve more difficult linear systems. In addition, 6. Compute ai 5 [rT

i Ap1
i , ..., rT

i Aps
i ]T

since each s direction can be advanced simultaneously, 7. ri11 5 ri 2 APiai
independently of one another, the method is well-suited for 8. xi11 5 xi 1 Pi ai
parallel execution. The original version of s-step Orthomin EndFor
does not maintain orthogonality between the s direction
vectors. As a result, the method becomes unstable unless 3.2. GMRES
s is small (s # 5). An alternative approach to the s-step

The second iterative solver used is the generalized mini-methods is block methods.
mum residual (GMRES) technique, introduced by SaadThe block methods use many independent initial resid-
and Shultz in 1986 [18]. GMRES is an efficient and robustual vectors. In the orthogonal s-step Orthomin approach, a
method that has gained wide acceptance in solving nonsym-modified Gram–Schmidt method is used to orthonormalize
metric systems generated in computational fluid dynamicsthe direction vectors within each block of s-step Orthomin.
problems. Because the storage grows linearly and compu-Although this reduces the data locality properties some-
tational work quadratically with the dimension of the Kry-what and requires slightly more operations, it allows the
lov subspace, the version most often used is the restartedblock size s to be increased up to s 5 16 without affecting
version, GMRES(m). In this approach, the method is re-the numerical stability of the method. Using higher values
started every m steps, limiting the size of the Krylov sub-of s makes the method more robust and increases the
space to m. GMRES(m) is more robust than standarddegree of parallelism. More details of the orthogonal
Orthomin(k) but it is theoretically proven that the s-steps-step Orthomin (OSOmin(s,k)) algorithm can be found
version of Orthomin(k) has the same convergence proper-in [22]. The following notation facilitates the description
ties as GMRES(m) with s 5 m (see [21]). Therefore,of the algorithm:
OSOmin(s,k) and GMRES(m) maintain about the same
level of robustness for our problem. The algorithm for• The matrix Pi 5 [ p1

i , ... , ps
i ] (of dimension n 3 s) is

a block of s direction vectors GMRES(m) is given below.
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ALGORITHM. Restarted GMRES(m).

For k 5 1, ... until convergence do
1. Compute rk 5 f 2 Axk , b 5 irki2 , v1 5 rk/b

For j 5 1, 2, ..., m do
2. wj 5 Avj

3. For i 5 1, ..., j 2 1 do
hi, j 5 (wj , vi)
wj 5 wj 2 hi, jvi

EndFor
4. hj11, j 5 iwji2

5. vj 5 wj/hj11, j

EndFor
6. Compute ym , the minimizer of ibe1 2 Hyi2

7. xk11 5 xk 1 Vm ym , where Vm 5 [v1 , v2 , ..., vm]
EndFor

3.3. Preconditioning

The convergence rate of iterative schemes is highly de-
pendent on the condition number of the system. Therefore,
most iterative solution algorithms implement a precondi-
tioning strategy along with the iterative method. The pur-
pose of the preconditioner is to form a preconditioning FIG. 2. DiBrozolo block ILU preconditioner.
matrix Pr such that AP 21

r P I, clustering the eigenvalues
of the system around unity. The transformed system
(AP 21

r ) Prx 5 b (i.e., right preconditioned system) has a
lelize the method by stripmining the vectorized blocks, butlower condition number and is solved more quickly by the
since the length of the blocks are only length Ïn, thisiterative method. One further requirement is that P 21

r must
approach can be inefficient. An efficient parallel imple-be easy to compute. An effective preconditioner can also
mentation of ILU was proposed by Di Brozolo and Robertincrease the robustness of the iterative method because
[27]. The original preconditioning matrix is broken up intoit can transform insolvable systems with high condition
nblocks submatrices, ignoring the original relation betweennumbers into systems with lower condition numbers that
the submatrices. Each submatrix is then executed indepen-are within the limits of the iterative solver.
dently on a different processor. The loss of connection ofWe use a right preconditioning approach based on the
the submatrices is accounted for by introducing an overlap-ILU factorization method, developed by Meijerink and
ping region and taking the average of the computed valuesVan Der Vorst [38]. Zero fill-in is used (i.e., ILU(0)).
by the subsystems in the overlapping regions. We found anPreconditioning reduces the number of iterations in the
optimal overlapping region of length one. This technique isiterative method considerably (by a factor of about three
illustrated with nblocks 5 4 in Fig. 2.in our tests) but the preconditioner itself can have very

If nblocks 5 1, this preconditioner is exactly the sameslow execution rates if not implemented properly.
as the vectorized ILU preconditioned method. The effec-An efficient vectorized implementation of ILU was in-
tiveness of ILU decreases as the size of nblocks increases.troduced by Van der Vorst [25]. The approach uses a Von
Thus, there is a trade-off between improved parallel per-Neumann series expansion approximation for the L and
formance and reduced convergence rate with use of thisU inversions, truncating the expansion at the first-order
approach. Generally, the preconditioner begins to breakterm. This allows the method to be vectorized in blocks
down with large values of nblocks (i.e., nblocks $ 8) soof length Ïn, for an n 3 n system (n 5 no. of gridpoints).
the Di Brozolo parallelization is efficient only on a smallThe convergence rate of the iterative method with the
number of processors.vectorized ILU preconditioner is slightly worse than with

original ILU, but the execution rate on a vectorized proces-
sor is about three times faster. 4. RESULTS

While the vectorized ILU approach is efficient on vector
processors, it does not exhibit good parallel performance. The Newton–iterative method is compared to the more

traditional approximate factorization/ADI MAF methodThis is due to a recursion between vectorized blocks. That
is, block i uses the results of block i 2 1. One could paral- of Goorjian [26] on two modern supercomputer architec-
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TABLE I

Storage Requirements for MAF and Newton Algorithms

MAF 6n

Newton–OSOmin(s,k) [9 1 2(k 1 1)s]n
Newton–GMRES(m) [9 1 (m 1 2)]n

tures; a vector-parallel Cray YMP C-90 and a massively
parallel Thinking Machine CM-5. We test on eight proces-
sors of the C-90 and each processor has a peak execution
rate of 1 Gflop per processor, giving a peak rate of 8 Gflops.
The CM-5 has 512 processors with a peak execution rate
of 125 Mflops per processor, giving it an overall peak execu-

FIG. 4. Cp Distributions over NACA 0012 airfoil for cases tested ontion rate of 64 Gflops. Both methods (i.e., Newton and
256 3 128 grid.MAF) are implemented to solve a test problem, computing

the transonic flowfield over a NACA 0012 airfoil. The
methods are run to the same exit accuracy level, so their
solutions are exactly the same. The execution time and rate vary for different cases tested, so the storage requirements
are measured using the hardware performance monitor on for the Newton–iterative methods are problem dependent.
the Cray. A test problem is chosen which is representative of a

The memory requirements of MAF and the Newton– typical transonic aerodynamic calculation. A NACA 0012
iterative methods are significantly different, and must be airfoil at zero angle of attack is placed in a computational
taken into consideration for the implementation. With n domain extending 10 chordlengths in front of and behind
gridpoints, MAF requires storage of the solution vector, the airfoil. A mesh is overlaid on the domain which is
the correction vector, and four vectors used to store the nonuniform in both the x and y directions, except on the
tridiagonal systems during vectorized ADI sweeps, totaling airfoil where uniform spacing in x is used. Since the NACA
6n. The Newton method requires storage of the six diago- 0012 is a symmetric airfoil, we only compute on the upper
nals of the linear system, the right-hand side, and the solu- half of the computational domain. This simple symmetric
tion and correction vectors, totaling 9n. In addition, the test case was chosen arbitrarily and we expect the method
Newton–iterative method requires storage for the precon- would have no difficulties for a lifting case.
ditioned iterative solvers. This amounts to [2(k 1 1)s]n for The solution mesh is shown in Fig. 3. The boundary
OSOmin(s,k)and (m 1 2)n for GMRES(m). Details on conditions applied are no perturbations (F 5 0) along all
the derivation of these storage requirements are given in edges of the mesh, except on the bottom edge, where the
[22] for OSOmin and in [18] for GMRES. The overall flow tangency condition is applied on the airfoil (i.e., F/
storage requirements of MAF and the Newton–iterative y 5 f/x, where f (x) is the airfoil shape function for
methods are given in Table I. The values of s, k, and m NACA 0012) and F/y 5 0 elsewhere on the x axis. Once

the steady potential field is solved, the Cp distribution on
the airfoil can be determined by

Cp 5 22t 2/3Fx , (8)

where Fx is the derivative in the x direction along the
airfoil and is approximated with finite differences. This
definition for Cp comes from the small disturbance approxi-
mation.

Results from three different implementations of the
Newton method and MAF to solve the above problem are
presented in the remaining portions of this section. In the
first set of tests, a 256 3 128 mesh is used and three different
transonic Mach numbers are tested. The iterative solversFIG. 3. Solution mesh (64 3 32 shown for illustration purposes, but

actual meshes used are 256 3 128 and 512 3 512). use ILU preconditioning. Results are given on single and
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TABLE II

Single Processor Execution Times and Rates (on Cray C-90) with 256 3 128 Mesh

Method My 5 0.7141 M5 5 0.8016 My 5 0.8600

MAF 6.1 s/143 Mflops 13.5 s/143 Mflops 67.5 s/143 Mflops
Newton–OSOmin 5.0 s/538 Mflops 8.4 s/549 Mflops 22.1 s/685 Mflops
Newton–GMRES 13.1 s/501 Mflops 18.7 s/504 Mflops 24.1 s/510 Mflops

Note. Iterative solvers use ILU preconditioning, nonlinear residual converged by eight orders of magnitude.

multiple processors of the Cray C-90. The second set of considered converged when the nonlinear residual 2-norm
is reduced by eight orders of magnitude. Execution ratestests is similar to the first, except that a finer 512 3 512

mesh is used and lower Mach numbers are tested (the and times are shown in Table II, and convergence plots
are shown in Figs. 5–7.transonic cases become more difficult with the finer mesh

due to better shock definition). The third set of tests are Newton–OSOmin outperforms both MAF and New-
ton–GMRES for all three Mach numbers. For the twodone using the same 512 3 512 mesh but with unprecondi-

tioned versions of the iterative solvers. The purpose of lower Mach numbers, Newton–GMRES is slower than
MAF while Newton–OSOmin is about 1.2 and 1.6 timesthis is to, first, show the improvement in convergence that

preconditioning adds and, second, to study whether the faster, respectively. For the My 5 0.8600 case, both
Newton–OSOmin and Newton–GMRES are about 3better parallel performance of the unpreconditioned

solvers outweighs their slowness on one processor. Results times faster than MAF. The execution rates of the
Newton–iterative methods are between 3.5 and 5 timesfrom this third set of tests are presented both from the

Cray C-90 and the Thinking Machine CM-5. faster than MAF. Since the speedups in execution time
are lower than this, the total amount of computational

4.1. 256 3 128 Mesh work performed by the Newton method is more than
MAF. The speed of the Newton methods is due to theirThree different Mach numbers are tested with the
efficient vector performance. They would be slower on256 3 128 mesh. The first is My 5 0.7141, corresponding to
a serial machine.a similarity parameter of K 5 1.76. This flow is completely

The convergence plots show that the Newton methodssubsonic, giving a smooth Cp distribution over the airfoil.
converge smoothly for the subsonic case without shocksThe second is My 5 0.8016 (K51.10), which is moderately
(Fig. 5), but they exhibit oscillations in the initial stagestransonic for this airfoil, causing weak shocks to form and
for the two transonic cases with shocks (Figs. 6 and 7).disrupt the smooth Cp distribution. A substantial portion
This oscillatory behavior is due to use of a freestreamof the flowfield is subsonic, though. The third Mach number

tested is My 5 0.8600 (K 5 0.73). This flow forms strong
shocks and is the most difficult of the three cases. The Cp

distributions over the NACA 0012 airfoil for these three
Mach numbers are shown in Fig. 4. The sonic condition
C*p for the three cases is also indicated in Fig. 4.

There are several parameters in the iterative methods
which can be adjusted to optimize their convergence. In
MAF, the size of the geometric sequence g can be adjusted.
In GMRES(m), the size of the Krylov subspace m is ad-
justed, and in OSOmin(s,k), the number of s directions
along with the value of k is adjusted. For the single proces-
sor tests, these parameters are set to give the fastest single
processor convergence time. The original vectorized form
of ILU (i.e., nblocks 5 1) is used for preconditioning with
the iterative methods. The optimal parameters for the sin-
gle processor tests are g 5 6, m 5 10, s 5 2, and k 5 1
for the My 5 0.7141 case; g 5 9, m 5 12, s 5 3, and k 5
2 for the My 5 0.8016 case; and g 5 9, m 5 17, s 5 15, FIG. 5. Residual vs. CPU time measured on single processor of Cray

C-90 for My 5 0.7141 case on 256 3 128 mesh.and k 5 2 for the My 5 0.8600 case. The methods are
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C-90. The Di Brozolo version of ILU [27] is used with
nblocks 5 4. It should be noted that larger values of nblocks
were tried but this caused the preconditioner to become
ineffective to the point that the convergence rate became
very poor. With nblocks 5 4, the robustness of ILU is
decreased but not substantially. As a result of the de-
creased robustness in ILU, the iterative methods require
more time to converge and the optimal values of the pa-
rameters m, s, and k in GMRES(m) and OSOmin(s,k) are
different from the single processor tests. For the My 5
0.7141 case, the optimal parameters are m 5 12, s 5 4,
and k 5 1. For My 5 0.8016, they are m 5 11, s 5 6, and
k 5 1, and for My 5 0.8600, they are m 5 17, s 5 16, and
k 5 1. The methods are again considered converged when
the nonlinear residual drops by eight orders of magnitude.
It should be noted that the version of MAF which we usedFIG. 6. Residual vs CPU time measured on single processor of Cray

C-90 for My 5 0.8016 case on 256 3 128 mesh. (i.e., the original version proposed by Goorjian [26]) has
a recursion in the ADI line sweeps, when sweeping in the
mean flow direction, and this is the reason for the poor
parallel performance. The parallel performance could be
improved by eliminating this recursion, but the conver-condition (i.e., without a shock) for the initial condition

in the Newton method. For cases with shocks, this initial gence rate then becomes slower. The execution time and
guess is poor and oscillations persist until a good approxi- speedup for the three methods on 1, 4, and 8 processors
mation of the shock is made. The oscillations are more of the C-90 are shown in Table III.
abundant with a finer mesh. Venkatakrishnan [6, 9] devel- The Newton–iterative methods achieve relatively good
oped a strategy to overcome this problem by using mesh parallel speedups while MAF achieves little speedup. A
sequencing, whereby an initial guess is determined on a plot of the parallel speedups is shown in Fig. 8. The
coarse mesh and extrapolated to progressively finer speedup of Newton–OSOmin is greatly affected by the
meshes. This reduced the oscillations considerably. Since value of s. In the subsonic case, where s 5 4, the
our work focuses on the efficiency of the iterative methods speedups are small in comparison to the most difficult
more than on the Newton method itself, we did not incor- transonic case, where s 5 16. The speedups of Newton–
porate this approach. However, this is certainly an idea GMRES remain relatively constant for all three cases,
for future implementation of this work. but are slightly better for lower m. This is probably due

We next test the methods on multiple processors of the to the minimization step in GMRES, where a least-
squares solution of the small m 3 m system is performed.
Since this step is performed serially, larger values of m
reduce the parallelism slightly.

The iterative methods by themselves achieve better
parallel speedups. What slows the method is the precondi-
tioning. The setup of the L and U factors in ILU is
completely serial and must be done for each new linear
system in each Newton iteration. On a single processor,
this step requires only 5–7% of the CPU time and is
relatively insignificant, but on eight processors it requires
15–20% and causes a significant reduction in the parallel
speedups. In addition, only four blocks were used in the
Di Brozolo decomposition of the preconditioning matrix,
due to a lack of robustness with nblocks . 4. While
this is efficient on four processors, the speedup is reduced
on eight processors. The combination of these two effects
cause a falloff in speedups after four processors, as is
apparent in Fig. 8.FIG. 7. Residual vs CPU time measured on single processor of Cray

C-90 for My 5 0.8600 case on 256 3 128 mesh. The good parallel performance of the Newton methods
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TABLE III

Multiple Processor Execution Times and Speedups (Mflops on Single Processor) on Cray C-90 with 256 3 128 Mesh

Method My 5 0.7141 M5 5 0.8016 My 5 0.8600

1 Processor
MAF 6.1 s/143 Mflops 13.5 s/143 Mflops 67.6 s/143 Mflops
Newton–OSOmin 6.0 s/520 Mflops 13.8 s/551 Mflops 32.6 s/606 Mflops
Newton–GMRES 14.0 s/453 Mflops 22.3 s/471 Mflops 33.5 s/456 Mflops

4 Processors
MAF 5.9 s/1.03 13.1 s/1.03 65.6 s/1.03
Newton–OSOmin 2.0 s/3.07 4.2 s/3.29 9.8 s/3.34
Newton–GMRES 5.2 s/2.71 7.6 s/2.92 12.4 s/2.70

8 Processors
MAF 6.0 s/1.01 13.3 s/1.02 66.9 s/1.02
Newton–OSOmin 1.7 s/3.51 3.5 s/3.89 7.7 s/4.23
Newton–GMRES 4.9 s/2.84 7.3 s/3.05 11.6 s/2.87

Note. Iterative solvers use Di Brozolo ILU preconditioning with nblocks 5 4, nonlinear residual converged by eight orders of magnitude.

makes them considerably more efficient than MAF on the same as the 256 3 128 mesh, just twice as fine in the
x direction and four times as fine in the y direction. Twomultiple processors. Figure 9 shows a histogram plot of

the ratio in speedup of the CPU times of the Newton Mach numbers are tested with this mesh; My 5 0.7141
(K 5 1.76) and My 5 0.7850 (K 5 1.215). The first ismethods over MAF. On a single processor, Newton–

OSOmin is 1.6 to 2.3 times faster than MAF, but on eight subsonic and corresponds to the subsonic case for the
256 3 128 mesh. The second is slightly transonic. Oneprocessors it is up to 8.7 times faster. Newton–GMRES is

slower than MAF for two cases on a single processor, but effect of using a finer mesh is that the shock definition is
better. In our tests, we find that the better shock definitionit is up to 5.8 times faster on eight processors.
yields linear systems that tend to be more difficult to solve.

4.2. 512 3 512 Mesh Consequently, the My 5 0.7850 case for the 512 3 512
mesh is about as difficult to solve as the My 5 0.8016 caseThe next group of tests are performed using a finer
for the 256 3 128 mesh. The Cp distributions for these two512 3 512 solution mesh. The grid domain and layout is
Mach numbers are shown in Fig. 10.

We first present the cases showing optimal convergence
on a single processor. Original ILU preconditioning is used

FIG. 9. Ratio of CPU times for Newton–iterative methods to MAFFIG. 8. Parallel speedups on Cray C-90 for Di Brozolo ILU precondi-
tioned cases on 256 3 128 grid. for 256 3 128 problem.
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TABLE V

Multiple Processor Execution Times and Speedups (Mflops on
Single Processor) on Cray C-90 with 512 3 512 Mesh

Method My 5 0.7141 M5 5 0.7850

1 Processor
MAF 17.5 s/167 Mflops 54.6 s/167 Mflops
Newton–OSOmin 12.0 s/546 Mflops 65.3 s/475 Mflops
Newton–GMRES 21.0 s/522 Mflops 79.9 s/502 Mflops

4 Processors
MAF 16.8 s/1.04 52.5 s/1.04
Newton–OSOmin 3.9 s/3.04 19.3 s/3.39
Newton–GMRES 6.9 s/3.05 28.2 s/2.83

8 Processors
MAF 16.7 s/1.05 52.0 s/1.05

FIG. 10. Cp distributions over NACA 0012 airfoil for two cases tested Newton–OSOmin 3.43 s/3.49 17.6 s/3.71
on 512 3 512 grid. Newton–GMRES 6.21 s/3.38 25.1 s/3.19

Note. Iterative solvers use Di Brozolo ILU preconditioning with
nblocks 5 4, nonlinear residual converged by four orders of magnitude.(i.e., nblocks 5 1) and the parameters in the methods are

tuned to give convergence is the fastest execution time.
The optimal parameters for the My 5 0.7141 case are
m 5 14 for GMRES(m), and s 5 1, k 5 1 for OSOmin(s,k). enhances them for this finer 512 3 512 case. As was dis-
For the My 5 0.7850 case, they are m 5 10, s 5 6, and cussed in the previous subsection, the convergence could
k 5 2. Because this finer mesh total yields a factor of 8 probably be improved by using a mesh sequencing strategy
increase in the total number of gridpoints, the methods in the Newton iterations.
are exited at an earlier level than the 256 3 128 tests, to Table V presents results of tests on multiple processors
avoid high CPU costs. The methods are exited when the of the C-90 for the 512 3 512 case. As was the case in the
residual 2-norm has been reduced by four orders of magni- 256 3 128 tests, the Di Brozolo version of ILU is used
tude rather than eight, as was used in the 256 3 128 tests. with nblocks 5 4 for all cases, resulting in slightly slower
Execution rates and times of the methods for these two convergence of the iterative methods and a change in the
Mach numbers are shown in Table IV. optimal convergence parameters for the iterative methods.

The Newton–OSOmin algorithm again outperforms The values of the parameters m, s, and k that give optimal
both MAF and Newton–GMRES in execution time. Al- convergence for the My 5 0.7141 case are m 5 11, s 5 3,
though it is 2.6 times faster than MAF for the subsonic and k 5 1, and for My 5 0.7850, they are m 5 9, s 5 5,
case (twice that in the 256 3 128 tests), Newton–OSOmin and k 5 1. Plots of the parallel speedups are shown in
is only 1.1 times faster for the transonic case. This conflicts Fig. 11.
with results from the 256 3 128 tests where the iterative The parallel speedups are slightly better than the 256 3
methods fared much better for the transonic cases. This is 128 cases, due to the larger vector lengths in the iterative
believed to be due to the freestream initial guess for New- methods. The better parallelism of the Newton methods
ton, which causes oscillations for the 256 3 128 case and again cause a substantial improvement in CPU time over

MAF. A histogram plot showing the speedup in CPU times
of the Newton methods over MAF is shown in Fig. 12. On

TABLE IV a single processor, Newton–OSOmin is 1.0–2.7 times faster
than MAF, and on eight processors it is 3.0–5.3 times faster.Single Processor Execution Times and Rates on Cray C-90 with

512 3 512 Mesh Newton–GMRES is slower than MAF on one processor,
but is 2.0–2.7 times faster on eight processors.

Method My 5 0.7141 M5 5 0.7850

4.3. 512 3 512 Mesh—Unpreconditioned SolversMAF 17.3 s/167 Mflops 54.9 s/167 Mflops
Newton–OSOmin 6.5 s/460 Mflops 47.1 s/539 Mflops While preconditioning can improve the convergence rate
Newton–GMRES 20.7 s/538 Mflops 73.5 s/507 Mflops

of the iterative methods substantially, causing fewer itera-
tions, it also inhibits the parallel performance. Thus, thereNote. Iterative solvers use ILU preconditioning, nonlinear residual con-

verged by four orders of magnitude. is a trade-off between reduced computational work and
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TABLE VI

Multiple Processor Execution Times and Speedups (Mflops on
Single Processor) on Cray C-90 with 512 3 512 Mesh

Method My 5 0.7141 M5 5 0.7850

1 Processor
MAF 10.4 s/167 Mflops 34.2 s/167 Mflops
Newton–OSOmin 20.8 s/702 Mflops 104.4 s/783 Mflops
Newton–GMRES 24.1 s/634 Mflops 107.2 s/644 Mflops

4 Processors
MAF 10.0 s/1.04 32.9 s/1.04
Newton–OSOmin 5.4 s/3.84 26.6 s/3.92
Newton–GMRES 6.8 s/3.57 29.5 s/3.64

8 Processors
MAF 9.9 s/1.05 32.6 s/1.05
Newton–OSOmin 3.3 s/6.26 15.3 s/6.84
Newton–GMRES 4.6 s/5.28 18.8 s/5.71

FIG. 11. Parallel speedups on Cray C-90 for Di Brozolo ILU precondi-
tioned cases on 512 3 512 grid.

Note. Unpreconditioned, iterative solvers used, nonlinear residual con-
verged by two orders of magnitude.

improved parallel efficiency. In this group of tests, we seek
to investigate this trade-off. Unpreconditioned versions of

by two orders of magnitude rather than four, which wasOSOmin(s,k) and GMRES(m) are used in the Newton
used in the earlier tests.method and compared to MAF for the same 512 3 512

Timings on multiple processors of the C-90 for thesetest cases used in the previous subsection.
cases are shown in Table VI. The parallelism of the unpre-Without preconditioning, the robustness of the iterative
conditioned solvers is considerably better than the precon-methods is reduced considerably. Particularly large values
ditioned cases, as is apparent in the plot of parallel speed-of m in GMRES(m) and s in OSOmin(s,k) had to be used
ups for these cases shown in Fig. 13. This indicates thatfor the transonic case. The optimal parameters for the
the bottleneck of parallelization found in the precondi-My 5 0.7141 case are m 5 12, s 5 6, and k 5 1, and for
tioned tests in the previous sections is the fault of theMy 5 0.7850 they are m 5 25, s 5 16, and k 5 2. Even
preconditioner, not of the iterative solvers themselves orwith the large increases in m and s, we still found that the
the routines associated with the Newton method.unpreconditioned solvers did not converge for the difficult

systems that arise in the latter part of the Newton solution.
Consequently, the unpreconditioned tests are converged

FIG. 12. Ratio of CPU times for Newton–iterative methods to MAF FIG. 13. Parallel speedups on Cray C-90 for unpreconditioned cases
on 512 3 512 grid.for 512 3 512 problem.
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TABLE VIIA histogram comparing the execution time of the New-
ton method to MAF is given in Fig. 14. On a single proces- Execution Times and Rates of the Newton–Iterative Methods
sor, the unpreconditioned iterative methods are about 2.5 on 64 Processors of the Thinking Machine CM-5
times slower than MAF for the subsonic case and about

Method My 5 0.7141 M5 5 0.78503.4 times slower for the transonic case. This amounts to
being about one-third the speed of the preconditioned Newton–OSOmin 15.0 s/975 Mflops 72.3 s/1131 Mflops
cases. However, the slowness on one processor is overcome Newton–GMRES 19.2 s/796 Mflops 77.4 s/892 Mflops
by good parallel speedups so that on eight processors,

Note. Unpreconditioned iterative solvers used, nonlinear residual con-the unpreconditioned methods are between 2 and 3 times
verged by two orders of magnitude.faster than MAF. While this is not as good as the 2–5 times

speedup over MAF from the preconditioned cases, it is
still comparable. We expect the unpreconditioned methods

execution rates are expected on the CM-5 when finer or
to be faster than the preconditioned methods when 16 or

three-dimensional meshes are used, since the current mesh
more processors are used. Of course, robustness of the used does not take full advantage of the machine’s capabil-
unpreconditioned solvers is still an issue. ities.

The Newton method with unpreconditioned solvers is
also implemented in data-parallel on the massively parallel 5. CONCLUDING REMARKS
Thinking Machine CM-5. The data-parallel programming
paradigm is essentially single instruction multiple data An inexact Newton method is used to solve the steady
(SIMD) and requires the code to be rewritten to a high two-dimensional transonic small disturbance equation.
performance Fortran-type language (i.e., CMFortran). Conjugate gradient-like iterative methods are used to solve
We did not implement the ILU preconditioner in data- the large sparse linear systems in each Newton iteration.
parallel, as this is more difficult to implement efficiently. The two iterative methods utilized are a block s-step solver,
We also did not implement the MAF code on the CM- orthogonal s-step Orthomin (OSOmin), and the more pop-
5. Timings on 64 processors of the CM-5 are given in ular GMRES method. The preconditioning used is a vec-
Table VII. torized and parallelized form of ILU. The Newton method

The execution rates of the Newton method with unpre- with these two solvers is compared against a more tradi-
conditioned solvers on 64 processors of the CM-5 are quite tional approximate factorization implicit solution method
fast. Scaled to the full machine configuration of 512 proces- MAF in computing the transonic flow over a NACA 0012
sors, the execution rates are 8–9 Gflops for Newton– airfoil. The efficiency of the methods is the main issue
OSOmin and 6–7 Gflops for Newton–GMRES. On eight addressed. The 2D TSD equation is only a test case for
processors of the C-90, the execution rates for these cases the viability of out approach. We intend to use this ap-
are 4–5 Gflops for Newton–OSOmin and 3–4 Gflops for proach for more complicated problems.
Newton–GMRES. Thus, the Newton–iterative approach In tests on a single processor of the Cray C-90, Newton–
is well suited for massively parallel execution. Higher OSOmin shows the best results, requiring less CPU time

than either MAF or Newton–GMRES for subsonic and
moderately transonic cases. Newton–GMRES is slower
than MAF for low Mach number cases, but it is faster for
strong shock cases. The Newton methods require more
work than MAF, but they are faster due to the efficiency
of the iterative solvers on the vector architecture. Oscilla-
tions in the residual occur in the first several iterations
during convergence of the Newton methods for cases with
shocks. This results from the absence of a shock in the
initial condition. The convergence is very rapid once a
reasonably good approximation of the shock is made.
Overall results show Newton–OSOmin is 1–3 times faster
than MAF for various Mach numbers on a 256 3 128 mesh,
while Newton–GMRES ranges from 2 times slower to 3
times faster for the same cases. With a finer 512 3 512
mesh, Newton–OSOmin is 1.2 to 2.4 times faster thanFIG. 14. Ratio of CPU times for Newton–iterative methods to MAF
MAF but Newton–GMRES is 1–2 times slower. It is ex-for 512 3 512 unpreconditioned problem.
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