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A Real-Time Traffic Simulation Using a
Communication Latency Hiding Parallelization

Anthony Theodore Chronopoulos, Senior Member, IEEE,and Charles Michael Johnston

Abstract—This paper implements and analyzes a highway
traffic-flow simulation based on continuum modeling of traffic dy-
namics. A traffic-flow simulation was developed and mapped onto
a parallel computer architecture. Two algorithms (the one-step
and two-step algorithms) to solve the simulation equations were
developed and implemented. Tests with real traffic data collected
from the freeway network in the metropolitan area of Minneapolis,
MN, were used to validate the accuracy and computation rate
of the parallel simulation system (with 256 processors). The
execution time for a 24-h traffic-flow simulation over a 15.5-mi
freeway, which takes 65.7 min on a typical single-processor
computer, took only 88.51 s on the nCUBE2 and only 2.39 s on the
CRAY T3E. The two-step algorithm, whose goal is to trade off
extra computation for fewer interprocessor communications, was
shown to save significantly on the communication time on both
parallel computers.

Index Terms—Communication latency hiding, real-time, simu-
lation, traffic, two-step lax algorithm.

I. INTRODUCTION

A VERY important component of the Intelligent Highway
System is a traffic simulation system. Such a system uses

computer hardware and software to simulate traffic on free-
ways and arterial networks. Input/output (I/O) devices provide
real-time traffic data measurements from a network of traffic
detectors (loops or cameras). The system uses a mathematical
traffic-flow model to perform traffic-flow simulation and pre-
dict the traffic conditions in real time. These predictions can be
used for real-time traffic control and vehicle guidance.

Fig.1 shows an architecture for such a traffic simulation
system. It consists of three layers: a data layer, a simulation
layer, and an analysis layer. The data layer is responsible for
system I/O. It imports current traffic data from roadway sensors
and provides access to databases containing roadway layout
information. Above this, in the simulation layer, the traffic flow
model is implemented to compute current and future traffic
flow along the highway. At the top, the analysis layer combines
simulation results with traffic management heuristics to make
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Fig. 1. Simulation system architecture.

decisions about how best to control and/or route highway
traffic. This information is then exported to both the traffic
control systems and vehicle guidance systems via the data layer.

Macroscopic or continuum traffic-flow models based on
traffic density, volume, and speed have been proposed and ana-
lyzed in the past (see, for example, [1]–[6] and the references
therein). These models involve partial differential equations
defined on appropriate domains with suitable boundary con-
ditions, which describe various traffic phenomena and road
geometries.

The main objective of this paper is to demonstrate that the
parallelization of the traffic-flow simulation component in a
real-time system is feasible for macroscopic models. Some
preliminary results on the issue of parallelizing computational
fluid dynamics (CFD) methods for transportation problems
were presented in [5]. Such a real-time simulation system can
be designed using a parallel computer as its computational
component. We design such a computational component by
parallelizing a CFD method to solve the momentum conserva-
tion (macroscopic) model [4]–[6] and implementing it on the
nCUBE2 and Cray T3E parallel computers.

Tests with real data from the I-494 freeway in Minneapolis,
MN, were conducted. We run the simulations on a nCUBE2 and
on a Cray T3E parallel computer. Processing elements (PEs) of
the nCUBE2 are proprietary processors with rate of 20 MHz.
Processors on the Cray T3E are DEC Alpha 21 164s with a clock
speed of 450 MHz. Tests were run on the nCUBE2 at Sandia Na-
tional Laboratory, and on the Cray T3E at the NPACI San Diego
Supercomputing Center and at the Pittsburgh Supercomputing
Center. The execution time for a 24-h traffic-flow simulation
of a 15.5-mi freeway, which takes 65.65 min of computer time
(on a 133-MHz single-processor Pentium computer), took only
88.51 and 2.39 s on the parallel traffic simulation systems im-
plemented on nCUBE2 and Cray T3E, respectively.

We adopted the lax-momentum traffic model [11]. We next
outline the continuous model equations. Let and
be the traffic density and flow, respectively, at the space–time
point . The generation term represents the number
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of cars entering or leaving the traffic flow in a freeway with
entries/exits. The traffic flow, density, and speed are related by

The relaxation time is assumed to vary with density ac-
cording to

where and are model parameters. The model
equations are

where and are the following vectors in discretized form

A typical choice of parameters is
and . These parameters depend

not only on the geometry of the freeway but also on the time of
day and even on weather conditions.

We next outline the discrete model. Let and be the
time and space mesh sizes. We use the following notation:is
the density (vehicles/mile/lane) at space node and at time

is the flow (vehicles/hour/lane) at space node and
at time , and is the speed (mile/hour) at space node
and at time . At time , the density value and
volume value are computed directly from the density and
volume at the preceding time step

The method is of first-order accuracy with respect to, i.e.,
the error is . To maintain numerical stability, time and
space step sizes must satisfy the Courant–Friedrichs–Lewy
(CFL) condition , where is the free-flow
speed (see [4]). Typical choices for the space and time meshes
of ft and s are recommended for numerical
stability [6], [11].

Let be the number of processors available in the system.
The parallelization of the discrete model is obtained by parti-
tioning the space domain (freeway model) into equal segments
Seg Seg and assigning each segment to the proces-
sors (PEs) . The choice of indexes
defines a mapping of the segments to the processors [3], [11].

The computations associated with each segment have as their
goal to compute the density, volume, and speed over that seg-
ment. The computation in the time dimension is not parallelized.

TABLE I
PE ALLOCATION USING METHOD I

At a fixed discrete time, this essentially means that the quanti-
ties and are computed by processor , iff the space
node belongs to the segment Seg. This segment-pro-
cessor mapping must be such that the communication delays
for data exchanges, required in the computation, are minimized.
This segment-processor mapping is a linear array mapping onto
a hypercube (nCUBE) and Torus (T3E).

The contents of this paper are organized as follows. In
Section II, a processor allocation scheme is presented. In
Sections III, the parallelization of the traffic flow model is
discussed. In Sections IV and V, the implementation of the
model on the nCUBE2 and the Cray T3E is described. In
Section VI, the simulation tests are shown. In Sections VII–IX,
a performance study of the simulations is presented. In Sec-
tion X, conclusions are drawn.

II. PE SCHEDULING

All the space nodes in the simulation must be allocated to
PEs. This is also known as PEscheduling. For a given number of
PEs, , it is desirable to allocate them in such a way that all PEs
are utilized in the most efficient way possible, while keeping in
mind any load-balancing requirements. Assume that there are

space nodes. Then ideally, we allocate nodes per
PE. Obviously, the closest we can come is an allocation of

(ceiling operation) or (floor operation),
where “floor” equals the integer division and “ceiling” equals
“floor” 1 if is greater than .

Our first approach to this problem we call Method I: allocate
or space nodes to as many PEs as possible, with the re-

mainder going to the last utilized PE. This algorithm has some
side effects. Namely, as gets larger, so does the number of idle
PEs. As an example, consider the case where and is
an increasing power of two. We are faced with the situation in
Table I, whereremis the number of space nodes that the last PE
will need to process (i.e., the number remaining after the initial

or distribution).
This scenario is clearly not desirable from a load-balancing

perspective. It does, however, free up some PEs for some other
potentially useful work. In a real-time environment, these PEs
could be doing I/O, or applying algorithms to the simulation
results in order to effectively manage the traffic flow. However,

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 05,2010 at 13:59:08 EST from IEEE Xplore.  Restrictions apply. 



500 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 51, NO. 3, MAY 2002

at the largest values, where the lowest run-times are obtained,
nearly 17% of the PE’s are idle—an unreasonably large number.
To obtain better load balancing, a second scheduling method
was developed that was used in our implementation.

Method II seeks to improve load balancing by distributing
the space nodes as evenly across the PEs as possible. This will
require some combination of and . If and are the number
of PEs allocated and space nodes, respectively, then we
know

(1)

(2)

(3)

(4)

Given (1) and (2), we combine (3) and (4) to solve forand
and obtain

from

Therefore, PEs each allocate space nodes, andPEs each
allocate space nodes.

In addition to knowing how many space nodes to allocate to
each PE, we must devise a mapping of a subset of space nodes
to each PE. Given that each PE knows its identity via a uniquely
valued parameter , then the mapping is de-
fined via the following pseudocode:

if then
upstream-node
downstream-node

else
temp
offset
upstream-node offset temp
downstream-node offset temp

end if

We introduce here the concept ofupstreamanddownstream
space nodes. If we think of the traffic as moving from upstream
to downstream, then an upstream node is the leftmost or lowest
index node within a segment, and the downstream node is the
rightmost or highest index node within a segment.

Note that the first PEs were chosen to allocate space
nodes. It could just as easily have been the firstPEs allocating

space nodes. The following example helps clarify this proce-
dure:

Given and , then

two PE’s allocate 5 space nodes, and one PE allocates 6.
For : upstream-node

downstream-node
offset

temp
upstream-node
downstream-node

offset
temp
upstream-node
downstream-node

We should also note at this point that this allocation method
places some constraints upon the simulation. Clearly, there are
situations where either or can be zero. This is an indication
that there are more processors than are necessary for the given
number of space nodes (i.e., some PEs would be idle). This sit-
uation is flagged as an error and the program terminated. This
allocation mechanism is used for all algorithms that follow.

III. T HE ONE- AND TWO-STEP ALGORITHMS

In this section, we first explain the existing algorithm for
the lax-momentum computation. In theone-stepalgorithm, one
time step is executed before an interprocessor communication
(IPC) is required. In thetwo-stepalgorithm, two time steps are
executed before an IPC is required.

The core of the lax-momentum computations, for a given time
step and space node, is quite simple. The general form of the
computations is as follows (expressed in a-like pseudocode).
In this notation, theoddandevenreferences correspond to suc-
cessive time steps. Theevenk, evenq,andevenuvariables are the
previous time steps values for density, flow, and speed, respec-
tively, and theoddk, oddq,andodduvariables are the current
time step density, flow, and speed for which a new solution is
being sought:

for each segment on processor do
for each space nodewithin do

oddk (evenk
evenk (evenq
evenq (5)

oddq (evenq
evenq

(evenu evenu
evenk

evenk
evenu evenu evenk

evenk ((evenk
evenq (evenk
evenq (6)

oddu oddq oddk (7)
end for

end for

Here and are constants across all processors,
andoddk oddq andoddu are the and described
in Section I. In a straightforward implementation, once theodd
values are computed and distributed to the neighboring seg-
ments (on neighboring PEs), theevenvariables are loaded with
the odd values, and the computation resumes for the next time
step.
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Fig. 2. The one-step algorithm.

The major steps of the one-step algorithm are demonstrated
in Fig. 2, which depicts a hypothetical situation with three PEs
and 15 space nodes. Each segment can be viewed as a boundary
value problem whose upstream and downstream nodes contain
new boundary values for each time step. Thus, after partitioning
the space nodes into segments of sizenodeseach (five in our
example), each processor will allocate space for nodes to
hold the boundary value as well.

The flow of the algorithm (time) begins at the bottom of the
figure and proceeds upward [Fig. 2(a)–(c)]. We begin the al-
gorithm at some arbitrary time with all even variables set
to some initial value [step (a)]. From (5) and (6) in the algo-
rithm, we note that the new (odd) values for nodeare com-
puted from previous (even) values from nodes1 and 1
[step (b)]. After new values are computed, each PE exchanges
values with its neighbors to update their boundaries [step (c)].
Note that the upstream boundary on the farthest upstream seg-
ment, and the downstream boundary on the farthest downstream
segment, will be determined by other means [marked by a box
in step (b)]. These data are either prerecorded roadway data (our
case) or could be obtained, in real time, from sensors strategi-
cally placed upon an actual roadway. Once the new (odd) values
have been moved into the old (even) variables, the algorithm is
ready to proceed with step .

As mentioned previously, in any system with high IPC la-
tency, the designer must structure the algorithm so that large
amounts of computation are performed between communication
steps. The only possible way to reduce the number of IPCs be-
tween processing elements here is to see if more than one com-
putation can be done before an IPC is necessary. Whether this
can be done or not depends upon the functional form of the com-
putation. If we rewrite (5) and (6) and reorder the terms, we can
see more clearly the data interdependencies between the current
node and its neighbors

oddk evenk evenq

evenq evenk
oddq evenk

evenq evenq
evenu evenu evenk

evenk

evenq evenk
evenq

evenu evenu evenk
evenk

We ignoreoddubecause it is simply a function ofoddkand
oddqand is easily obtained once they are known. We can see
that each new computation has inputs from onlyadjacent(both
upstream and downstream) andcurrentnodes from the previous
(even) time step. In a sense, each new (odd) computation is in-
dependent for each node, given that the neighboring nodes’ data
are known. Therefore, it should be possible to do asecond com-
putationon at leastpartof the nodes within a segment before in-
curring the cost of an IPC. The challenging question now is what
to do with the upstream and downstream boundaries and their
neighbors. During each IPC, we will send both the boundary
values from the first complete time step and the inputs necessary
for the neighbor tocomputethe second time steps’ boundary
values. When these computations are complete, we will be ready
to begin the next two-step iteration. This is the two-step algo-
rithm. It incurs a very small overhead in central processing unit
(CPU) time, but the IPC time is cut almost in half. The assump-
tion is that the extra computations in completing the second time
steps boundary are more than made up for by the saved IPC. We
will quantify these savings in Section VI. Finally, the two-step
algorithm places one additional constraint on our PE allocation
technique: both and must be three or more in order for
there to be enough nodes for the partial second step to be per-
formed.

Returning once again to our example and Fig. 3, we can see
the major steps of this algorithm.

Steps (a) and (b) are exactly as they were in the one-step algo-
rithm. In step (c), the “inner” space nodes are computed for the
second time step. Step (d) is the new IPC. Note that not only the
boundary value from the first time step [step (d), items 2 and 3]
but also the additional data necessary for the neighbor to com-
pute the “missing” information are sent so it can complete the
second time step [step (d), items 1 and 4]. Several computations
are performed in step (e). Once the first time steps’ boundary
has been loaded [step (d), item 2], the PE can then complete the
second time step for its own upstream node [step (e), item 5].
With the partial information delivered in step (d), item 1, it can
complete the upstream boundary for the second step [step (e),
item 6]. Similar processing is applied to the data from step (d),
items 3 and 4, to compute a new downstream node [step (f), item
7)] and boundary value [step (g), item 8 and step (h), item 9].
The algorithm is now ready to proceed with step .

IV. I MPLEMENTATION ON THE nCUBE2

The nCUBE2 is a multiple-instruction multiple-data (MIMD)
hypercube parallel processing computer. Each PE contains
a proprietary processor with a 20-MHz clock and 4 MB of
local memory. Peak theoretical performance is 4.1 millions
of floating point operations per second (MFLOPS) per PE.
The hypercube architecture is a distributed-memory message
passing architecture. In a hypercube of dimension, there are

processors, labeled . Two processors
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Fig. 3. The two-step algorithm.

and are directly connected (neighbors) iff the binary
representations of and differ in exactly one bit. Each edge
of a hypercube graph represents a direct connection between
two processors. Thus, any two processors in a hypercube are
separated by at mostother processors. Fig. 4 illustrates a hy-
percube graph of dimension . The number of processors
to be allocated to a job is chosen by the user, but must be a
power of two.

Table II summarizes interprocessor communication times for
neighbor processors and basic floating-point operation times for
the nCUBE2 [13]. We see that communication even between
neighboring processors is many times slower than floating-point
operations.

In an architecture with high communication latencies (such as
nCUBE2), the algorithm designer must structure the algorithm
so that as much computation as possible is done between com-
munication steps.

Two important factors that influence the delivered perfor-
mance on this machine are load balancing and reduction of com-
munication overhead.

Fig. 4. Hypercube of dimension four with gray code mapping of linear arrays
in its subcubes.

TABLE II
COMPUTATION AND COMMUNICATION TIMES (nCUBE)

Fig. 5. The Cray T3E toroidal mesh.

V. IMPLEMENTATION ON THE CRAY T3E

The Cray T3E (model 900) is a distributed shared-memory
MIMD architecture with a three-dimensional (3-D) torus
topology and bidirectional channels. Each PE consists of a
DEC Alpha 21 164 processor, a system control chip, local
memory, and a network router. The custom-made control chip
implements the distributed shared memory, which consists of
all the local memories in the PEs. Each processor is connected
to six other processors in a 3-D toroidal mesh, as seen in
Fig. 5. All PEs in opposite “faces” of the mesh are connected
to each other. The T3E supports low-latency, high-bandwidth
communications via this mesh and is capable of delivering a
64-bit word every system clock in all six directions, for a raw
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TABLE III
COMPILER OPTIMIZATION RESULTS

bandwidth of 600 MB/s, with data bandwidths of 100–480
MB/s after protocol overheads.

The DEC Alpha 21 164 processor is capable of issuing four
instructions per clock period, giving it a theoretical peak rate of
900 MFLOPS. Each PE supports 128 MB of local memory.

Optimization on the T3E is not a straightforward process. The
user is given fine-grained control over what aspects of optimiza-
tion they wish to control. There are no less than 26 selectable
options, most having more than one level of control. Without
in-depth knowledge of the exact relationships among the com-
piler, the source code, and the objectives of the application, it is
nearly impossible to know which combination of optimizations
would be optimal. Most were selected based on their descrip-
tions, together with some basic benchmarking of those whose
effects could not be predicted beforehand. Some combinations
yielded better performance, others worse. Table III shows the
options as benchmarked (these benchmarks were made using
the complete simulation code, but on a smaller data set size for
expediency).

All pairs of options were tried, the most obvious being
pipeline3with scalar3, since they both resulted in improve-
ments. This combination resulted in a run time of 5.211 s
(a ratio of 0.923). But a better combination was discovered:
pipeline3with unroll, resulting in a run time of 5.170 s (a ratio
of 0.915), and the best run time of all the options/combinations
tested. Note that no three-option combinations were tested due
to time constraints. Theunroll directive instructs the compiler
to unroll all loops generated by the compiler. Thepipeline
directive instructs the compiler to aggressively pipeline the
software to the CPU, including speculative loads and opera-
tions. Both of these compiler directives will result in longer
compilation times but faster execution times.

Because the T3E maps a linear array of PEs into a mesh, the
mapping of highway segments to processors is a straightforward
linear mapping. For performance reasons, it is important that
neighboring segments are mapped to neighboring processors.
The most problematic implementation issue is the paradigm
with which distributed memory is implemented. The T3E has
several different IPC mechanisms to choose from. At the highest
level are standard message passing interfaces (like the standard
PVMapplication programming interface) to the lower level (and
faster) interfaces built around shared-memory operations. It is
at this level that an IEEE POSIX-like shared memory interface
is defined which is much more efficient than PVM. Because

of this, the Crayshmemget() andshmemput() shared-memory
routines were selected.

VI. SIMULATION TESTING

The simulation was implemented on the 1024-node nCUBE2
computer located at the Massively Parallel Computer Research
Laboratory, Sandia National Laboratories, Albuquerque, NM.
The simulation was also run on the Cray T3E at the San Diego
NPACI, San Diego, CA, and Pittsburgh PSC Supercomputing
Center, Pittsburgh, PA.

As a test site, a multiple entry/exit section of the I-494
highway was chosen in Minneapolis, MN. This section of
eastbound I-494 extends from I-394 in the west to Nicollet
Avenue in the east. It is 15.5 mi long, with 17 exit and 19 entry
ramps. Data for the simulation were recorded on April 9, 1997,
and span a 24-h period beginning at midnight of that day. The
Appendix shows a sample of the data. To test the simulation,
the time and space mesh sizes were chosen as s and

ft. The discrete model contained 814 space nodes.
The tests were analyzed in two ways: comparison with real
data and computational performance.

Traffic data are collected at theupstream/downstream bound-
aries of the freeway section and atcheck-station sites(check-
nodes) inside the freeway section. Figs.12–15 show plots drawn
after the collected data. Let be the number of discrete time
points at which real traffic-flow data are collected. We compare
the simulated traffic flow volume and speed data with those from
the check-stations. There were a total of 23 check-stations. The
following error moduli are used to measure the effectiveness of
the simulation in comparison with the actual data:

Max Absolute Error

Observed Simulated

Max Relative Absolute Error
Observed Simulated

Observed
Mean Absolute Error

Observed Simulated

Mean Relative Error

Observed Simulated
Observed

Relative Error with 2-Norm

Observed Simulated

Observed

Standard Deviation

Observed Simulated

The error statistics are sampled in Tables IV and V. The relative
errors (Rel. 2-Norm) are at a level of about 10% for the volume
but lower for the speed measurements. These error levels are
consistent with past simulations carried out by simulation sys-
tems based on a single-processor computer (see [1] and [11]).
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TABLE IV
ERRORSTATISTICS FORTRAFFIC-FLOW VOLUME

TABLE V
ERRORSTATISTICS FORTRAFFIC-FLOW SPEED

VII. PERFORMANCESTUDY

In general, the serial (or single PE) computational perfor-
mance of a given algorithm implemented on a given computer
architecture is expressed in terms of MFLOPS. In order to
derive this measure, an estimate of the number of floating-point
operations (FLOPS) is needed for the algorithm in question.
Upon examining (5)–(7) in the algorithm, we see there are
some 32 floating-point operations contained within the main
simulation loop. There are, in actuality, 34 such operations (this
pseudocode was somewhat simplified for purposes of clarity).
In general, each space node computation requires 34 FLOP. If
we rewrite the one-step algorithm pseudocode in terms of the
number of FLOPS performed, we arrive at the following:

for ns 5-minute time steps do
for 300 seconds do

for each space node on this PE do

end for
IPC
advance time seconds

end for
end for

TABLE VI
MFLOPS RESULTS(nCUBE)

TABLE VII
ONE-STEP PERFORMANCE(nCUBE)

In this testing, recall that s. If the number of space
nodes operated on by this PE is, then the one-step single PE
total number of operations is

ns ns

The two-step algorithm is somewhat more complicated. Its
pseudocode looks like the following:

for ns 5-minute time steps do
for 300 seconds do

for each space node in 1st step on this PE
do

end for
advance time seconds
for each space node in 2nd step on this
PE do

end for
IPC

advance time seconds
end for

end for
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TABLE VIII
TWO-STEP PERFORMANCE(nCUBE)

Fig. 6. Compute time of one- and two-step algorithms.

Fig. 7. Speedup of one- and two-step algorithms.

Some explanation is in order. The space node loops certainly
make sense in terms of the number of nodes that are being solved
for in both the first and second steps of the algorithm. Plus it

Fig. 8. Efficiency of one- and two-step algorithms.

TABLE IX
TWO-STEP TOONE-STEP COMPARISON(nCUBE)

TABLE X
MFLOPS RESULTS(Cray T3E)

makes sense that there would be two additional nodes solved
for (marked ) since the second step does not operate on all the
space nodes that the first step does (two less). In actuality, the
two-step algorithm requires slightly more computation than the
one-step. In the one-step case, the segment end-nodes are ex-
changed between neighboring PEs during the IPC to be used
as segment boundary values for the next compute cycle. This
cannot happen in the two-step case, since the segment end-nodes
have yet to be calculated for the second step. This forces neigh-
boring PEs to both compute the boundary values, but for dif-
ferent purposes: one as the segment end-node and the other as
the boundary value for the next compute cycle. Thus, we must
perform two additional node computations (marked) for a
total number of operations of

ns
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TABLE XI
ONE-STEP PERFORMANCE(Cray T3E)

Fig. 9. Compute Time of one- and two-step algorithms.

Fig. 10. Speedup of one- and two-step algorithms.

To derive the desired MFLOPS value, we need only divide the
total number of operations by both the single PE execution time
and 10. For this simulation, ns and .

VIII. nCUBE2

Table VI summarizes the MFLOPS results for nCUBE2.

Fig. 11. Efficiency of one- and two-step algorithms.

TABLE XII
TWO-STEP PERFORMANCE(Cray T3E)

TABLE XIII
TWO-STEP TOONE-STEP COMPARISON(Cray T3E)

Here, we see the two-step algorithm outperforming the
one-step algorithm when the software is run on a single PE, as
mentioned at the end of Section VII.

For the parallel performance analysis (for both the nCUBE2
and T2E), we evaluate the following measures: the serial exe-
cution time , the parallel execution time , the parallel
speedup , and the parallel efficiency . Additionally,

can be broken down further to component measures ofinput,
computation,andoutput. The computation time is simply the
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Fig. 12. Occupancy data.

Fig. 13. Volume data for I-494.

time for the discrete model computations. This time can be fur-
ther decomposed intocalculation timeandIPC time.

NCUBE2 performance data are presented first as Tables VII
and VIII, then as Figs. 6–8. Table IX contains the two-step over
the one-step gains.

Based on the single PE timings, the restructuring of the code,
which eliminates the odd and even swapping, saves a total of
15%. Even assuming that this fraction remains constant across

PE sizes, the two-step algorithm, by way of halving the number
of IPCs, still saves an additional 12% at the 256 PE size, where
IPC times are the highest (as a fraction of total compute time).
On average, the IPC time is reduced by 42% by the two-step al-
gorithm. A theoretical expected peak value would be 50%, but
in practice cannot be obtained. The data content of the IPC for
the two-step algorithm is more than twice that of the one-step al-
gorithm, which will result in slightly longer IPC times. Overall,
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Fig. 14. I-494 upstream boundary data.

Fig. 15. I-494 downstream boundary data.

these data show that the two-step algorithm is ideally suited to
the nCUBE2 architecture, where IPCs are quite costly compared
to computation.

IX. CRAY T3E

Table X summarized the MFLOPS results for T3E.
One may wonder why the two-step algorithm outperforms the

one-step algorithm when the software is run on a single PE. This
is a side effect of the implementation of the two-step algorithm.
Let us recall from (5)–(7) in the algorithm that the space nodes
currently being solved for have their data stored into locations
prefixed withodd,while the data for the same space node, but

for the previous time step, are prefixed witheven. In the one-step
algorithm, after theodddata are computed, the data are simply
copied into theevenvariables for use in the next time step. How-
ever, in the two-step algorithm, the computations are done “in
place,” as it were, so that the first step is stored into theoddvari-
ables and the second time step is stored into theevenvariables,
thus avoiding the overhead of the copy operation. This has the
benefit of lower computation times but the disadvantage of ap-
proximately doubling the size of the core computational section
of the code.

Cray T3E performance data are presented first as Tables XI
and XII, then as Figs. 9–11. Table XIII contains the two-step
over one-step gains.
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Fig. 16. I-494 and I-35 intersection near Minneapolis.

We see that the two-step algorithm is faster than the one-step
algorithm for . For , the one-step is faster be-
cause a) the IPC time is very fast on the T3E, and even halving
it does not lead to great savings overall and b) there are slightly
more computations in the two-step algorithm than the one-step.
Thus, there is a breakpoint (in) for the gain of the two-step,
and it occurs at . This breakpoint is so small here be-
cause the number of road space nodes assigned to each PE
in our simulation is very small (e.g., 12 or 13 nodes per PE for

). In realistic simulations, we expect this to be much
larger and, thus, the two-step algorithm will be even faster.

X. CONCLUSION

A very important component of an intelligent highway man-
agement system is a traffic simulation system. The design of
a real-time traffic simulation system is a challenging problem.
In this paper, the design of a parallel (macroscopic) traffic sim-
ulation system is demonstrated. This system could be used as
a component of a real-time simulation system. This parallel
system was implemented on the NCUBE2 and on the Cray T3E
parallel computer. Tests were run with real traffic data to vali-
date the accuracy and computational rate of the system. A 24-h
15.5-mi simulation, with real traffic data, took 2.39 s on the Cray
T3E and 88.51 s on the NCUBE2 versus 65.65 min on a typ-
ical single processor system (a 133-MHz Pentium). Two algo-
rithms were implemented, offering tradeoffs in execution time,
IPC time, and memory size. The two-step algorithm, when com-
pared to the one-step, reduced significantly the communication
time on both parallel computers and would be of considerable
savings when larger highway segments (e.g., entire beltway sys-

tems) are modeled. With increase in problem size, even higher
efficiencies are to be expected.

APPENDIX

SAMPLE HIGHWAY SCHEMATIC AND DATA FILE

Fig. 16 is a small section of a schematic from I-494 near Min-
neapolis (see Sections V and VII). Specifically, this is the inter-
change at I-494 and I-35W. It should be treated as example data
only. The detector locations correspond to simulation site lo-
cations, e.g., detector 120 corresponds to exit ramp 14, located
at space node 382 in this study. The values that show XXX or
XXXX indicate a detector failure. Some ramps contain mul-
tiple detector locations. For example, detectors 3090, 3091, and
863 all point to the ramp from northbound I-35W to eastbound
I-494. But only detector 863 data were contained in the data
files (please see the equation at the top of the next page). This
is a fragment from an original data file, exactly as delivered by
MNDOT. This fragment is one of nine total files that covered the
24-h period beginning midnight April 9 through midnight April
10 and covering the 15.5-mi section of highway simulated. A
three-digit line number has been added to the beginning of each
line for discussion purposes. The “” at the end of most lines
indicate that additional columns have been removed for brevity.
The column containing the detector number contains the volume
data for that detector.
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001 VOLUME n OCCUPANCY

002

003 494ER2

004 Wednesday, April9; 1997

005 Printed: 11=13=97
006

007 842 840 841 853 852 105 � � �

008 494=FRANEX 494=NFRAEM 494=PENEM 494 � � �

009 494=SFRAEM 494=PENEX 35W=E494SM � � �

010 ———– � � �

011 00 : 05 9 0 19 2 16 1 4 0 15 1 19 2 � � �

012 00 : 10 9 0 12 1 14 1 7 0 16 1 37 4 � � �

013 00 : 15 14 1 17 2 13 1 8 0 13 1 33 3 � � �

014 00 : 20 3 0 11 1 13 1 6 0 11 1 32 3 � � �

015 00 : 25 10 0 6 0 11 0 5 0 14 1 32 5 � � �

016 00 : 30 6 0 8 1 12 1 3 0 6 0 19 2 � � �

017 ———– � � �

018 00 : 35 4 0 9 1 8 0 3 0 4 0 26 3 � � �

019 00 : 40 7 0 11 1 6 0 2 0 8 0 19 2 � � �

020 00 : 45 5 0 14 2 6 0 4 0 11 1 23 3 � � �

021 00 : 50 9 0 5 0 18 1 4 0 15 1 18 1 � � �

022 00 : 55 2 0 9 1 9 0 3 0 5 0 24 3 � � �

023 01 : 00 3 0 17 2 10 0 3 0 5 0 12 1 � � �

024 ———- � � �

025 01 : 05 4 0 9 1 3 0 3 0 10 1 16 2 � � �
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