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A Real-Time Traffic Simulation Using a
Communication Latency Hiding Parallelization

Anthony Theodore ChronopouloSenior Member, IEEEBnd Charles Michael Johnston

Abstract—This paper implements and analyzes a highway

g - . ! ) ! Analysis Layer
traffic-flow simulation based on continuum modeling of traffic dy- - -
namics. A traffic-flow simulation was developed and mapped onto Simulation Layer |
a parallel computer architecture. Two algorithms (the one-step Data Layer
and two-step algorithms) to solve the simulation equations were 5 % s >
developed and implemented. Tests with real traffic data collected
from the freeway network in the metropolitan area of Minneapolis, Traffic Road Traffic Driver
MN, were used to validate the accuracy and computation rate Data Database Control Guidance

of the parallel simulation system (with 256 processors). The

execution time for a 24-h traffic-flow simulation over a 15.5-mi Fig. 1. Simulation system architecture.

freeway, which takes 65.7 min on a typical single-processor

computer, took only 88.51 s on the nCUBE2 and only 2.39 s on the . .

CRAY T3E. The two-step algorithm, whose goal is to trade off decisions about how best to control and/or route highway
extra computation for fewer interprocessor communications, was traffic. This information is then exported to both the traffic

shown to save significantly on the communication time on both control systems and vehicle guidance systems via the data layer.

parallel computers. Macroscopic or continuum traffic-flow models based on
Index Terms—Communication latency hiding, real-time, simu-  traffic density, volume, and speed have been proposed and ana-
lation, traffic, two-step lax algorithm. lyzed in the past (see, for example, [1]-[6] and the references

therein). These models involve partial differential equations
defined on appropriate domains with suitable boundary con-
ditions, which describe various traffic phenomena and road

VERY important component of the Intelligent Highwaygeometries.

System is a traffic simulation system. Such a system usesThe main objective of this paper is to demonstrate that the
computer hardware and software to simulate traffic on fregarallelization of the traffic-flow simulation component in a
ways and arterial networks. Input/output (I/O) devices provideal-time system is feasible for macroscopic models. Some
real-time traffic data measurements from a network of traffigreliminary results on the issue of parallelizing computational
detectors (loops or cameras). The system uses a mathematig@l dynamics (CFD) methods for transportation problems
traffic-flow model to perform traffic-flow simulation and pre-were presented in [5]. Such a real-time simulation system can
dict the traffic conditions in real time. These predictions can i designed using a parallel computer as its computational
used for real-time traffic control and vehicle guidance. component. We design such a computational component by

Fig.1 shows an architecture for such a traffic simulatioparallelizing a CFD method to solve the momentum conserva-
system. It consists of three layers: a data layer, a simulatiggn (macroscopic) model [4]-[6] and implementing it on the
layer, and an analysis layer. The data layer is responsible f@tUBE2 and Cray T3E parallel computers.
system I/O. Itimports current traffic data from roadway sensors Tests with real data from the 1-494 freeway in Minneapolis,
and provides access to databases containing roadway laygn, were conducted. We run the simulations on a nCUBE2 and
information. Above this, in the simulation layer, the traffic flowon a Cray T3E parallel computer. Processing elements (PEs) of
model is implemented to compute current and future traffiae nNCUBE2 are proprietary processors with rate of 20 MHz.
flow along the highway. At the top, the analysis layer combingsrocessors on the Cray T3E are DEC Alpha 21 164s with a clock
simulation results with traffic management heuristics to makgeed of 450 MHz. Tests were run on the nCUBE2 at Sandia Na-

tional Laboratory, and on the Cray T3E at the NPACI San Diego
Supercomputing Center and at the Pittsburgh Supercomputing
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of cars entering or leaving the traffic flow in a freeway with TABLE |
entries/exits. The traffic flow, density, and speed are related by PE ALLOCATION USING METHOD |
g=k-u Total | Used Idle Th or rem
PEs PEs PEs n
The relaxation timéel’ is assumed to vary with densify ac- )
cording to 1 1 0 426 0
2 2 0 213 0
rk 4 4 0 106 2
T =t <1 + m) 8 8 0 53 2
s 16 16 0 27 21
wherety > 0 and0 < r < 1 are model parameters. The model 32 31 1 14 6
equations are 64 61 3 7 6
. . 128 107 21 4 2
8_U n 8_E _7 256 213 43 2 0
ot dr 512 | 426 86 1 0

wherelU, E, andZ are the following vectors in discretized form
At a fixed discrete time, this essentially means that the quanti-

7= <k> tiesk%, ¢i, andw’, are computed by processpy, , iff the space
q node jAz belongs to the segment SegThis segment-pro-
B < ku ) cessor mapping must be such that the communication delays
T\ uwk+ ﬂ%kﬁ“ for data exchanges, required in the computation, are minimized.
- g This segment-processor mapping is a linear array mapping onto
Z= < %[uf(x) — ]+ gu> : a hypercube (nCUBE) and Torus (T3E).

The contents of this paper are organized as follows. In

A typical choice of parameters i8; = 60, kj.,, = 180,3 = Section Il, a processor allocation scheme is presented. In
—1,v =180,7 = 50, andr = 0.80. These parameters dependections I, the parallelization of the traffic flow model is
not only on the geometry of the freeway but also on the time dfscussed. In Sections IV and V, the implementation of the
day and even on weather conditions. model on the nCUBE2 and the Cray T3E is described. In

We next outline the discrete model. L& and Az be the Section VI, the simulation tests are shown. In Sections VII-IX,
time and space mesh sizes. We use the following notatiois: a performance study of the simulations is presented. In Sec-
the density (vehicles/mile/lane) at space ngder and at time tion X, conclusions are drawn.
1AL, qj is the flow (vehicles/hour/lane) at space ngder and
attimeiAt, andu; is the speed (mile/hour) at space ngder [I. PE SCHEDULING

. . . - . i+l
and attimeAt. Attime (i +1)At, the density valué;" and All the space nodes in the simulation must be allocated to

volume valuey;*" are computed directly from the density anGeg s is also known as REhedulingFor a given number of
volume at the preceding time stép PEs,P, itis desirable to allocate them in such a way that all PEs
are utilized in the most efficient way possible, while keeping in
(7;1+1 = 5 X 5 mind any load-balancing requirements. Assume that there are
At /o fj n space nodes. Then ideally, we allocate- (n/p) nodes per
+ -5 (Z}Jrl + Z}_ ) . PE. Obviously, the closest we can come is an allocation 6f
[(n/p)] (ceiling operation) or; = |(n/p)] (floor operation),
The method is of first-order accuracy with respectd, i.e., where “floor” equals the integer division and “ceiling” equals
the error isO(At). To maintain numerical stability, time and“floor” +1 if n/p is greater tham;.
space step sizes must satisfy the Courant—Friedrichs—LewyOur first approach to this problem we call Method I: allocate
(CFL) condition(Axz/At) > uy, whereu, is the free-flow r;, or »; space nodes to as many PEs as possible, with the re-
speed (see [4]). Typical choices for the space and time meshe&nder going to the last utilized PE. This algorithm has some
of Az = 100 ftand At = 0.5 s are recommended for numericabide effects. Namely, a8 gets larger, so does the number of idle
stability [6], [11]. PEs. As an example, consider the case whete426 and P is
Let P be the number of processors available in the systean increasing power of two. We are faced with the situation in
The parallelization of the discrete model is obtained by parflable I, whergemis the number of space nodes that the last PE
tioning the space domain (freeway model) into equal segmemi#l need to process (i.e., the number remaining after the initial

Ui +Uj 1 At By — B

Seg,...,Seq._, and assigning each segment to the proces; or r; distribution).
sors (PEsW,, ..., P;, .. The choice of indexesy, . .., jr_1 This scenario is clearly not desirable from a load-balancing

defines a mapping of the segments to the processors [3], [L1perspective. It does, however, free up some PEs for some other
The computations associated with each segment have as thetentially useful work. In a real-time environment, these PEs

goal to compute the density, volume, and speed over that seguld be doing I/O, or applying algorithms to the simulation

ment. The computation in the time dimension is not parallelizedksults in order to effectively manage the traffic flow. However,
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at the largesP values, where the lowest run-times are obtained, temp=6 x 1 =6
nearly 17% of the PE’s are idle—an unreasonably large number.upstream-node- 0 x 2+ 1+6 =7
To obtain better load balancing, a second scheduling methoddownstream-node- (0 +1) x 546 = 11
was developed that was used in our implementation. Py offset=2-1=1

Method 1l seeks to improve load balancing by distributing temp=6x1 =6
the space nodes as evenly across the PEs as possible. This willpstream-node= 1 x 5+ 146 = 12
require some combination of, andr;. If » andl are the number ~ downstream-node- (1 +1) x 5+ 6 = 16
of PEs allocated, andr; space nodes, respectively, then we

know We should also note at this point that this allocation method
n places some constraints upon the simulation. Clearly, there are
"h = {F} @) situations where eithet, or; can be zero. This is an indication
= LEJ ) that there are more processors than are necessary for the given
r number of space nodes (i.e., some PEs would be idle). This sit-
h+i=P () uation is flagged as an error and the program terminated. This
X h+rxl=mn. (4) allocation mechanism is used for all algorithms that follow.
Gi\éenb(l)_ and (2), we combine (3) and (4) to solve fand IIl. THE ONE- AND TWO-STEP ALGORITHMS
and obtain

In this section, we first explain the existing algorithm for
l=r,xP—n the lax-momentum computation. In tbae-stemlgorithm, one
h=P—1(from3) time step is executed before an interprocessor communication

o ) (IPC) is required. In théwo-stepalgorithm, two time steps are
Therefore] PEs each allocate space nodes, arfdPEs each €xecuted before an IPC is required. _ o
allocater;, space nodes. The core of the lax-momentum computations, for a given time

In addition to knowing how many space nodes to allocate &€P @nd space node, is quite simple. The general form of the
each PE, we must devise a mapping of a subset of space ndgdgPutations is as follows (expressed i6'dike pseudocode).

to each PE. Given that each PE knows its identity via a uniquél} this notation, theddandevenreferences correspond to suc-
valued parameteP;,i = 0...P — 1, then the mapping is de- cessive time steps. Tlewenk, even@ndevenwariables are the

fined via the following pseudocode: previous time steps values for density, flow, and speed, respec-
tively, and theoddk, oddgandodduvariables are the current
time step density, flow, and speed for which a new solution is

if P, < hthen being sought:

upstream-node= FP; x r;, + 1

downstream-node= (F; +1) x 7 for each segmerfieg; on processoP; do

else for each space nodewithin Seg; do
temp=r, x h oddK;] = k[j] + (evenky + 1]1+
offset= P, — h J J J

evenkj — 1] — C*(evendy + 1] —
evengj — 1))/2 (5)
odddj] = gfj]+ (evendj + 1] +
evend; — 1])/2 —
D*(evenuj + 1]*evendy + 1]*
We introduce here the conceptgbstreamanddownstream evenKj + 1] +
space nodes. If we think of the traffic as moving from upstream V*evenKj + 1] —
to downstream, then an upstream node is the leftmost or lowest evend; — 1]*eveny; — 1]*evenkj — 1] —
index node within a segment, and the downstream node is the V*evenkj — 1]) + E*((evenKj + 1]*F —

upstream-node- offsetx »; + 1 4+ temp
downstream-node- (offset + 1) x r; + temp
end if

rightmost or highest index node within a segment. evendj + 1])/77j + 1] + (evenkj — 1]*F —
Note that the firsth PEs were chosen to allocatg space evendy — 1])/7y — 1]) (6)
nodes. It could just as easily have been the fiREs allocating  oddyj] = odddj]/oddK;] (7)
r; space nodes. The following example helps clarify this proceend for
dure: end for
Given P = 3 andn = 16, then HereC, D, E, I, andV are constants across all processors,
r=116/3] =5 r, =[16/3] =6 andoddk{j], oddg[j] andoddulj] are thek;, ¢ andu}; described
[=6x3—-16=2h=3-2=1 in Section I. In a straightforward implementation, onceale
- two PE’s allocate 5 space nodes, and one PE allocates 6.values are computed and distributed to the neighboring seg-
For Fy: upstream-node=- 0 x 6 +1 =1 ments (on neighboring PESs), theenvariables are loaded with
downstream-node= (0 +1) x 6 = 6 the odd values, and the computation resumes for the next time
P offset=1-1=0 step.
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odd Y +evendj + 1]/2 + E*evenly + 1|*F/T[j + 1]
:;: o P [ Ex bxd=Pos Lo [ P b et Dx [ [ e x| x x| . + evenqj + 1]/T[j + 1] . .
evemfx bx fx | x| x|xtx x | x [ x| x| x|[x]x x| x| x| x]x]x +D*evenLﬁj + 1]*evenLﬁj + 1]*evenl{j + 1]
+D*V*evenKj + 1]
odd
even (b)
S LAESPNENYNF ENVNVNVNVN ANAATALA We ignoreoddubecause it is simply a function oddkand
e e D) e o) e oddgand is easily obtained once they are known. We can see
oid that each new computation has inputs from mﬂtyacem(bqth
even @ upstream and downstream) atuwtrentnodes from the previous
odd (even) time step. In a sense, each new (odd) computation is in-
o e L ’P; s PE e dependent for each node, given that the neighboring nodes’ data
i1 i i are known. Therefore, it should be possible to deeond com-

putationon at leaspart of the nodes within a segment before in-

curring the cost of an IPC. The challenging question now is what

The major steps of the one-step algorithm are demonstrahca)ado with the upstream and downs_tream boundaries and their
elghbors. During each IPC, we will send both the boundary

in Fig. 2, which depicts a hypothetical situation with three PES ' : i
; values from the first complete time step and the inputs necessary
and 15 space nodes. Each segment can be viewed as a bourl%%%
al

I the neighbor tacomputethe second time steps’ boundary
value problem whose upstream and downstream nodes con . :
. ... __.Values. When these computations are complete, we will be ready
new boundary values for each time step. Thus, after partitioni

the space nodes into segments of dizedessach (five in our pcgbegln the next two-step iteration. This is the two-step algo-

example), each processor will allocate spacefar2 nodes to rithm. It incurs a very small overhead in central processing unit
pi€), P P (CPU) time, but the IPC time is cut almost in half. The assump-

hold the boundary value as well tion is that the extra computations in completing the second time

) The flow of the algorithm (t'me) begins at the bottom of theteps boundary are more than made up for by the saved IPC. We
figure and proceeds upward [Fig. 2(a)—(c)]. We begin the al-. . : . : .

. . . . ) will quantify these savings in Section VI. Finally, the two-step
gorithm at some arbitrary timg, with all even variables set

to some initial value [step (a)]. From (5) and (6) in the alg algorithm places one additional constraint on our PE allocation

. ’ Ofechnlque: bothr;, and; must be three or more in order for
rithm, we note that the new (odd) values for ngdare com- .
. . : there to be enough nodes for the partial second step to be per-
puted from previous (even) values from nogles1, j, andj+1 formed
[step (b)]. After new values are computed, each PE exchange s : .
eturning once again to our example and Fig. 3, we can see

values with its neighbors to update their boundaries [step (Cﬂln'e major steps of this algorithm

Note that the upstream boundary on the farthest upstream Segéteps (a) and (b) are exactly as they were in the one-step algo-

ment, and the downstream boundary on the farthest downstrer.'lg}wm_ In step (c), the “inner” space nodes are computed for the

segment, will be determined by other means [marked by a boé(cond time step. Step (d) is the new IPC. Note that not only the

in step (b)]. These data are either prerecorded roadway data @gﬂndary value from the first time step [step (d), items 2 and 3]

case) or could be obtained, in real time, from sensors stratel%-t also the additional data necessary for the neighbor to com-
cally placed upon an actual roadway. Once the new (odd) valueuste the “missing” information are sent so it can complete the
have been moved into the old (even) variables, the algorithmpl

S . : .
ready to proceed with stef, . second time step [step (d), items 1 and 4]. Several computations
As mentioned previously, in any system with high IPC |

are performed in step (e). Once the first time steps’ boundary
tency, the designer must structure the algorithm so that lar %S been loaded [step (d), item 2], the PE can then complete the
amounts of computation are performed between communicat cond time step for its own upstream node [step (€), item 5],
P P Rhith the partial information delivered in step (d), item 1, it can

steps. The only possible way to reduce the number of IPCs c%?nplete the upstream boundary for the second step [step (€),

tween processing elements here is to see if more than one ¢ - 6]. Similar processing is applied to the data from step (d)
putation can be done before an IPC is necessary. Whethero['u ! P 9 PP P,

| )
. ltétns 3 and 4, to compute a new downstream node [step (f), item
can be done or not depends upon the functional form of the comy; and boundary value [step (g), item 8 and step (h), item 9].

putation. If we rewrite (5) and (6) and reorder the terms, we ¢ Re algorithm is now ready to proceed with ste
see more clearly the data interdependencies between the current 9 ytop Ra2-

node and its neighbors

Fig. 2. The one-step algorithm.

IV. IMPLEMENTATION ON THE NCUBE2

oddKj] = evenKy — 1]/2 — C/2*evendj — 1] The nCUBEZ2 is a multiple-instruction multiple-data (MIMD)
+E[4] hypercube parallel processing computer. Each PE contains
+C/2*evendj + 1]+ evenkj + 1]/2 a proprietary processor with a 20-MHz clock and 4 MB of

odddj] = F*evenkj — 1]*F/T[j — 1] local memory. Peak theoretical performance is 4.1 millions
+E*evenqj — 1]/T7j — 1]+ evenqj — 1]/2 of floating point operations per second (MFLOPS) per PE.
+Drevend; — 1]*evendj — 1]*evenkj — 1] The hypercube architecture is a distributed-memory message
+D*V*evenkj — 1] passing architecture. In a hypercube of dimensipthere are
+qli] P = 29 processors, labele@l 1,..., P — 1. Two processors
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oid R
oen|x Ix [xlxlix|x|9 x || x| x| x]x]x U xlelx]xle|® . "
0100 {0101 11007 21101
odd | x {x | x| x x| x]x fx [xfxjxfx|x X x| x| x| x]x[x —_— ——
el x ix {x |x|x]x|x X [x | x|[x|x|x|Xx X x| x]x]x{x|x / U NN AT USSR / J
odd 0000 20001 10001 1001
everix Ix |x x| x|x x x b x[x|8 s x| x|« |@ 0110/ el ol e~ T i
odd |« |x {x {x{x|x]|x x x| x| x| x]|x|x x| x x| x| x| xfx / /
ey x| x [ x| x|x]|x xlxdx|xfxix|x x x| x| x]|xfx]|x I I R R B )
—— —
0010 gloo1l 101084 1011
evenl x 1y [y |y x|7 x x| xtx]x)7 el lx|x]x|7]<|0 B e i
odd XX {x{x|x]x]|x X jx X X[ XX | X PSR R R L T
even . . . . . .
Xlefxixjejnjaf |x|x XX ¥]XIN Pl lxlxixlxlx Fig. 4. Hypercube of dimension four with gray code mapping of linear arrays
in its subcubes.
odd
oven| |5 x| | x 615 x|« 615 x]|xlx] |«]®
odd | x [x [« |x|x]|x]x x x| x| x| x|[x]x x x| x| x| xlx{x TABLE I
gerlxxleiwlefeje] pxluxjx]x]rlx s R COMPUTATION AND COMMUNICATION TIMES (NCUBE)
odd | Operation | Time(USEC) | Comm/Comp
event| x x x| x /1/: ANEIEIE A—"'-’.'H‘* Pl x [ x{x < |@
odd | x |x | x|« |« >|< "ih:/—l x| x| x )! '/'.:*"' >|( x | x1x|x|x
v x ) x Ix x| x| x]x x| x| x]x|x x| xfxpxx{x[x 8-bytc 111 -
transfer
odd
A N NARBEE 8-byte add 123 90
odd | x |y >I( ,! ; X X L >I< )In X X ; l >I< X | %
erl x| x |« x| x| x x| x{x{x]x|x x e fxfx]x]xlx
: 8-byte 128 86
multipl
o ply
evens ]
o S A AN
even| 3/} x 1'( )! N [N x| /[N P X x4 xS ™
odd
even @
add
evem | x| x Clx x| x}r X | x| x| x| x|x X ¥ [ xtx x| xpx]|x
down  up down 4P down
Py PE; Py

Fig. 3. The two-step algorithm.

P; and P, are directly connected (neighbors) iff the binary
representations of and . differ in exactly one bit. Each edge

of a hypercube graph represents a direct connection between
two processors. Thus, any two processors in a hypercube %(_35_ The Cray T3E toroidal mesh.
separated by at mogtother processors. Fig. 4 illustrates a hy-

percube graph of dimensiah= 4. The number of processors

to be allocated to a job is chosen by the user, but must be a
power of two.

Table Il summarizes interprocessor communication times forThe Cray T3E (model 900) is a distributed shared-memory
neighbor processors and basic floating-point operation times fdiMD architecture with a three-dimensional (3-D) torus
the nCUBEZ2 [13]. We see that communication even betwe&pology and bidirectional channels. Each PE consists of a
neighboring processors is many times slower than floating-polDEC Alpha 21164 processor, a system control chip, local
operations. memory, and a network router. The custom-made control chip

In an architecture with high communication latencies (such amplements the distributed shared memory, which consists of
nCUBEZ2), the algorithm designer must structure the algorithatl the local memories in the PEs. Each processor is connected
so that as much computation as possible is done between cémnsix other processors in a 3-D toroidal mesh, as seen in
munication steps. Fig. 5. All PEs in opposite “faces” of the mesh are connected

Two important factors that influence the delivered perfoto each other. The T3E supports low-latency, high-bandwidth
mance on this machine are load balancing and reduction of cotommunications via this mesh and is capable of delivering a
munication overhead. 64-bit word every system clock in all six directions, for a raw

V. IMPLEMENTATION ON THE CRAY T3E
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TABLE Il of this, the Crayshmemge{) andshmemput() shared-memory

COMPILER OPTIMIZATION RESULTS routines were selected.
Option T, (sec) T,/B
None B=5652 |1.00 VI. SIMULATION TESTING
-h pipeline3 | 5.178 0.931 The simulation was implemented on the 1024-node nCUBE2
-h unroll 5.838 1.033 computer located at the Massively Parallel Computer Research
-h split 7.004 1.239 Laboratory, Sandia National Laboratories, Albuquerque, NM.
-h inline3 5.808 1.028 The simulation was also run on the Cray T3E at the San Diego
-h vector3 5.765 1.020 NPACI, San Diego, CA, and Pittsburgh PSC Supercomputing
-hscalar3 | 5.647 0.999 Center, Pittsburgh, PA.
-03 5.714 1.011 As a test site, a multiple entry/exit section of the 1-494
-02 5.721 1.012 highway was chosen in Minneapolis, MN. This section of
01 6.083 1.076 eastbound 1-494 extends from 1-394 in the west to Nicollet

bandwidth of 600 MB/s, with data bandwidths of 100—4g@Vvenue in the east. Itis 15.5 mi long, with 17 exit and 19 entry

MB/s after protocol overheads.
The DEC Alpha 21 164 processor is capable of issuing foft
instructions per clock period, giving it a theoretical peak rate

ramps. Data for the simulation were recorded on April 9, 1997,
pd span a 24-h period beginning at midnight of that day. The
pendix shows a sample of the data. To test the simulation,

900 MFLOPS. Each PE supports 128 MB of local memory. the time and space mesh sizes were chosektas 0.5 s and

Optimization on the T3E is not a straightforward process. T
user is given fine-grained control over what aspects of optimiza-
tion they wish to control. There are no less than 26 selectab
options, most having more than one level of control. Without
in-depth knowledge of the exact relationships among the com-
piler, the source code, and the objectives of the application, it
nearly impossible to know which combination of optimizations
would be optimal. Most were selected based on their descr]
tions, together with some basic benchmarking of those whase

Az = 100 ft. The discrete model contained 814 space nodes.
e tests were analyzed in two ways: comparison with real
ata and computational performance.

Sraffic data are collected at thpstream/downstream bound-
aries of the freeway section and aheck-station sitegcheck-
nodes) inside the freeway section. Figs.12—15 show plots drawn
after the collected data. Lé¥ be the number of discrete time
oints at which real traffic-flow data are collected. We compare
Re simulated traffic flow volume and speed data with those from

t%e check-stations. There were a total of 23 check-stations. The

yielded better performance, others worse. Table IIl shows the

effects could not be predicted beforehand. Some combinatiK
ne

the complete simulation code, but on a smaller data set size for
expediency).

All pairs of options were tried, the most obvious being
pipeline3with scalar3, since they both resulted in improve-
ments. This combination resulted in a run time of 5.211 s
(a ratio of 0.923). But a better combination was discovered:
pipeline3with unroll, resulting in a run time of 5.170 s (a ratio
of 0.915), and the best run time of all the options/combinations
tested. Note that no three-option combinations were tested due
to time constraints. Thanroll directive instructs the compiler
to unroll all loops generated by the compiler. Thipeline
directive instructs the compiler to aggressively pipeline the
software to the CPU, including speculative loads and opera-
tions. Both of these compiler directives will result in longer
compilation times but faster execution times.

Because the T3E maps a linear array of PEs into a mesh, the
mapping of highway segments to processors is a straightforward
linear mapping. For performance reasons, it is important that

neighboring segments are mapped to neighboring processors.

The most problematic implementation issue is the paradigm
with which distributed memory is implemented. The T3E has
several different IPC mechanisms to choose from. At the highest

ollowing error moduli are used to measure the effectiveness of

options as benchmarked (these benchmarks were made usmgSImmatlon in comparison with the actual data:

Max Absolute Error
= MAX; <;<~|Observeg — Simulateq|

Max Relative Absolute Error
Observed — Simulate
 MAK, g di

Observed

Mean Absolute Error
N

1 .
=5 > |Observed — Simulated|
J=1

Mean Relative Error
N

_ 1 Z |Observed — Simulated)|
N : Observeg

F=1
Relative Error with 2-Norm

Zf;l (Observed — Simulated)?
~
>, Observed

Standard Deviation
1
=\~ > (Observeg — Simulated)?.

j=1

level are standard message passing interfaces (like the standduel error statistics are sampled in Tables IV and V. The relative
PVMapplication programming interface) to the lower level (andrrors Rel. 2-Norn are at a level of about 10% for the volume
faster) interfaces built around shared-memory operations. Itist lower for the speed measurements. These error levels are
at this level that an IEEE POSIX-like shared memory interfaa®mnsistent with past simulations carried out by simulation sys-
is defined which is much more efficient than PVM. Becausems based on a single-processor computer (see [1] and [11]).
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TABLE IV TABLE VI
ERROR STATISTICS FORTRAFFIC-FLOW VOLUME MFLOPS ResuLts (nCUBE)
Volume Error (vehicles/5-min) Algorithm T, (sec) MFLOPS
Site | Max. | Max. | Mean | Mea | Rel 2- | Std. 1-step 6729.9 0.71
ADs. Rel. Abs. Rel. Norm  |Dev.
1 | 977 [ 055 | 202 | 147 | 014 | 272 2-step 5739.9 0.83
2 845 | 130 | 183 | 147 | 0.13 253
3 64.1 | 1221 114 | 11.8 | 0.09 16.0 TABLE VII
4 | 772 |068 | 173 | 137 | 012 | 235 ONE-STEP PERFORMANCE (NCUBE)
5 726 | 497 | 17.6 | 219 0.15 24.0 #Pes | Tp (sec) Sp Ep IPC IPC %
6 634 | 1.69 | 12.1 | 13.2 [ 0.10 17.2 Time of Tp
(sec)
7 725 |1 348 | 120 | 141 | 0.10 17.4 1 67299 | N/A N/A N/A N/A
2 3427.2 1.96 0.98 77.26 225
TABLE V
ERROR STATISTICS FORTRAFFIC-FLOW SPEED 4 1757.4 3.83 0.96 78.20 4.45
Speed Error (mph) 8 936.1 7.19 0.90 97.62 | 1043
Site | Max. | Max | Mean | Mea | Rel.- | Std. 16 520.0 1294 | 0.81 100.95 | 1941
Abs. | Rel. | Abs. | Rel. | 2Nrm | Dev
32 3048 | 22.08 | 0.69 | 100.76 | 33.06
1 74 1019 | 13 | 26 | 003 | 1.7 64 1963 | 3428 | 054 | 9749 | 49.66
2 64 | 0.16 1.3 25 | 003 | 1.7
3 50 |0.10 14 26 | 003 | 18 128 1463 | 46.01 | 0.36 88.36 | 59.59
4 6.5 | 0.15 1.7 32 | 0.04 | 21 256 120.53 | 55.84 | 0.22 96.52 | 80.08
5 74 1014 | 1.7 30 | 0.04 | 21
6 8.1 |0.14 1.6 30 | 0.04 | 2.1 . )
; 09 | 017| 20 36 | 005 | 25 In this testing, recall thaf\z = 0.5 s. If the number of space
) ) ) ) ) ) nodes operated on by this PENS then the one-step single PE

total number of operations is
VII. PERFORMANCESTUDY ns- 600 - V- 34 = 20400 - ns- N.

In general, the serial (or single PE) computational perfofhe two-step algorithm is somewhat more complicated. Its
mance of a given algorithm implemented on a given computegeudocode looks like the following:
architecture is expressed in terms of MFLOPS. In order to
derive this measure, an estimate of the number of floating-pofa¥ ns 5-minute time steps do
operations (FLOPS) is needed for the algorithm in questiontor 300 seconds do
Upon examining (5)—(7) in the algorithm, we see there are for each space node in 1st step on this PE
some 32 floating-point operations contained within the main (g
simulation loop. There are, in actuality, 34 such operations (this (34 FLOP)
pseudocode was somewhat simplified for purposes of clarity). end for
In general, each space node computation requires 34 FLOP. Ifadvance time\¢ seconds
we rewrite the one-step algorithm pseudocode in terms of thefor each space node in 2nd step on this

number of FLOPS performed, we arrive at the following: PE do
(34 FLOP)
for ns 5-minute time steps do end for
for 300 seconds do IPC
for each space node on this PE do (34 FLOP)o
(34 FLOP) (34 FLOP)o
end for (34 FLOP) ¢ ¢
IPC (34 FLOP) 0 o
advance time\t seconds advance time\t seconds
end for end for
end for end for
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TABLE VI
Two-STEP PERFORMANCE (NCUBE)
#PEs Tp (sec) Sp Ep IPC Time IPC %
(sec) of Tp
1 5739.9 N/A N/A N/A N/A
2 2911.2 1.97 0.99 51.26 1.76
4 1481.4 3.88 0.97 40.91 2.76
8 778.2 7.38 0.92 57.81 743
16 425.2 13.50 0.84 59.82 14.07
32 2427 23.65 0.74 57.61 23.73
64 1536 3737 0.58 57.86 37.67
128 109.4 5247 0.41 55.21 50.46
256 88.5 64.85 0.25 55.09 62.24
NCUBE2 Compute Time
7000 T T
1-gtap 8-
2-step =

Time (Sex|

Fig. 6.

Time (Sec)

Fig. 7. Speedup of one- and two-step algorithms.

Some explanation is in order. The space node loops certaiﬁﬁr
make sense in terms of the number of nodes that are being solvagd

sooo

8000

4000

3000

2000

1000

Compute time of one- and two-step algorithms.

NCUBE2 Speedup
—TT T

100

505

NCUBEZ Efficiency

Time {Sec)

0.2

Fig. 8. Efficiency of one- and two-step algorithms.

TABLE IX
TwoO-STEP TO ONE-STEP COMPARISON (NCUBE)
Tp Gain IPC Time Gain
# 1-step 1-step
PEs 2 -step 2 -step
1 1.18 N/A
2 1.18 1.52
4 1.19 1.92
8 1.20 1.69
16 1.22 1.69
32 1.25 1.75
64 1.28 1.69
128 1.33 1.61
256 1.37 1.75
TABLE X
MFLOPS ResuLts(Cray T3E)
Algorithm T, (sec) MFLOPS
1-step 73.676 64.91
2-step 67.040 71.42

makes sense that there would be two additional nodes solved
for (markedo) since the second step does not operate on all the
space nodes that the first step does (two less). In actuality, the
two-step algorithm requires slightly more computation than the
one-step. In the one-step case, the segment end-nodes are ex-
changed between neighboring PEs during the IPC to be used
as segment boundary values for the next compute cycle. This
cannot happen in the two-step case, since the segment end-nodes
have yet to be calculated for the second step. This forces neigh-
boring PEs to both compute the boundary values, but for dif-
ferent purposes: one as the segment end-node and the other as
the boundary value for the next compute cycle. Thus, we must
form two additional node computations (markeg) for a

| number of operations of

for in both the first and second steps of the algorithm. Plus ibs- 300(34N + 34(N — 2) + 34 - 4) = 20400 - ns(N + 1).
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Cray T3E Efficiency
——T T

506
TABLE XI
ONE-STEP PERFORMANCE (Cray T3E)
# PEs Tp Sp Ep IPC | IPC %
(sec) Time | of Tp
(sec)

1 73.68 | N/A N/A N/A N/A

2 37.42 1.97 0.98 0.74 1.93

4 19.63 | 3.75 0.94 1.17 5.94

8 1098 | 6.71 0.84 1.13 10.29

16 6.61 11.15{ 0.70 1.12 16.98

32 4.29 17.16 | 0.54 1.18 27.43

64 342 [21.55] 034 1.12 32.85

128 2.82 12613 | 0.20 1.12 39.61

256 236 | 31.18 | 0.12 1.14 48.16

Cray T3E Compute Time
80 T T
iy =
8
g

1 10 100

Fig. 9. Compute Time of one- and two-step algorithms.

Time (Sec)

Fig. 10.

To derive the desired MFLOPS value, we need only divide the
total number of operations by both the single PE execution tinaﬁ

Cray T3E Speedup
T T

1 10 PEs 100

Speedup of one- and two-step algorithms.

and 16. For this simulation, ns= 288 and N = 814.

Table VI summarizes the MFLOPS results for nCUBE2.

VIIl. nCUBE2

! =
N 1-5tep
L 2step —— ]
g 00| ‘ -
E LERS ‘b.."‘, T
04 . 1
03 F w 4
02| 4
0.4 L . - -
t 10 PEs 100
Fig. 11. Efficiency of one- and two-step algorithms.
TABLE XII
Two-STEP PERFORMANCE(Cray T3E)
# PEs Tp Sp Ep IPC IPC %
(sec) Time of Tp
(sec)
1 67.04 N/A N/A N/A N/A
2 34.75 1.93 0.97 0.55 1.58
4 18.15 3.69 0.92 0.57 3.14
8 10.34 6.48 0.81 1.10 10.64
16 6.26 10.72 0.67 1.10 17.55
32 4.27 15.69 0.49 1.12 26.09
64 3.38 19.84 0.31 1.10 32.49
128 2.63 25.45 0.20 1.12 4241
256 2.39 28.05 0.11 1.12 46.97
TABLE Xl
Two-STEP TOONE-STEP COMPARISON (Cray T3E)
Tr Gain IPC Time Gain
# I-step 1-step
PEs 2 -step 2-step
1 1.10 N/A
2 1.08 1.35
4 1.09 2.04
8 1.06 1.03
16 1.05 1.02
32 1.00 1.05
64 1.01 1.02
128 1.08 1.00
256 0.99 1.01

Here, we see the two-step algorithm outperforming the
one-step algorithm when the software is run on a single PE, as
mentioned at the end of Section VII.

For the parallel performance analysis (for both the nCUBE2
d T2E), we evaluate the following measures: the serial exe-

cution time(73), the parallel execution timél’p), the parallel
speedufSp), and the parallel efficiencyE ). Additionally,
T can be broken down further to component measuragot,
computationandoutput The computation time is simply the
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Fig. 12. Occupancy data.

D ccupancy D ata

150 —
Occupancy (%)

100

§0

15

10 Check Node
500

Time (Min)
Fig. 13. Volume data for 1-494.

time for the discrete model computations. This time can be fUPE sizes, the two-step algorithm, by way of halving the number
ther decomposed intealculation timeandIPC time of IPCs, still saves an additional 12% at the 256 PE size, where
NCUBE2 performance data are presented first as Tables WIC times are the highest (as a fraction of total compute time).
and VIII, then as Figs. 6-8. Table IX contains the two-step ov€mn average, the IPC time is reduced by 42% by the two-step al-
the one-step gains. gorithm. A theoretical expected peak value would be 50%, but
Based on the single PE timings, the restructuring of the code practice cannot be obtained. The data content of the IPC for
which eliminates the odd and even swapping, saves a totaltlo¢ two-step algorithm is more than twice that of the one-step al-
15%. Even assuming that this fraction remains constant acrgesithm, which will result in slightly longer IPC times. Overall,
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Fig. 14. 1-494 upstream boundary data.
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Fig. 15. 1-494 downstream boundary data.

these data show that the two-step algorithm is ideally suitedftw the previous time step, are prefixed withen In the one-step
the nCUBE?2 architecture, where IPCs are quite costly comparadorithm, after thedd data are computed, the data are simply
to computation. copied into theevervariables for use in the next time step. How-
ever, in the two-step algorithm, the computations are done “in
IX. CRAY T3E place,” asitwere, so thgt the first. stepis stpred int(Ixh‘fdzvari—
ables and the second time step is stored int@trevariables,
Table X summarized the MFLOPS results for T3E. thus avoiding the overhead of the copy operation. This has the
One may wonder why the two-step algorithm outperforms theenefit of lower computation times but the disadvantage of ap-
one-step algorithm when the software is run on a single PE. Tipioximately doubling the size of the core computational section
is a side effect of the implementation of the two-step algorithrof the code.
Let us recall from (5)—(7) in the algorithm that the space nodesCray T3E performance data are presented first as Tables XI
currently being solved for have their data stored into locatiolasd XlI, then as Figs. 9—11. Table XlII contains the two-step
prefixed withodd, while the data for the same space node, botver one-step gains.
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Fig. 16. 1-494 and I-35 intersection near Minneapolis.

We see that the two-step algorithm is faster than the one-stems) are modeled. With increase in problem size, even higher
algorithm for P < 32. For P > 64, the one-step is faster be-efficiencies are to be expected.
cause a) the IPC time is very fast on the T3E, and even halving
it does not lead to great savings overall and b) there are slightly
more computations in the two-step algorithm than the one-step.
Thus, there is a breakpoint (iR) for the gain of the two-step,
and it occurs af” = 32. This breakpoint is so small here be- Fig. 16 is a small section of a schematic from 1-494 near Min-
cause the numbéiV) of road space nodes assigned to each FEapolis (see Sections V and VII). Specifically, this is the inter-
in our simulation is very small (e.g., 12 or 13 nodes per PE fehange at I-494 and I-35W. It should be treated as example data
P = 64). In realistic simulations, we expect thié to be much only. The detector locations correspond to simulation site lo-

larger and, thus, the two-step algorithm will be even faster. cations, e.g., detector 120 corresponds to exit ramp 14, located
at space node 382 in this study. The values that show XXX or

XXXX indicate a detector failure. Some ramps contain mul-
tiple detector locations. For example, detectors 3090, 3091, and
A very important component of an intelligent highway mang63 all point to the ramp from northbound I-35W to eastbound
agement system is a traffic simulation system. The design|o494. But only detector 863 data were contained in the data
a real-time traffic simulation system is a challenging problerfiles (please see the equation at the top of the next page). This
In this paper, the design of a parallel (macroscopic) traffic sinis a fragment from an original data file, exactly as delivered by

ulation system is demonstrated. This system could be usedv#SDOT. This fragment is one of nine total files that covered the
a component of a real-time simulation system. This parallgh-h period beginning midnight April 9 through midnight April
system was implemented on the NCUBEZ2 and on the Cray T3B and covering the 15.5-mi section of highway simulated. A
parallel computer. Tests were run with real traffic data to valihree-digit line number has been added to the beginning of each
date the accuracy and computational rate of the system. A 24rfe for discussion purposes. The *” at the end of most lines
15.5-mi simulation, with real traffic data, took 2.39 s on the Crayidicate that additional columns have been removed for brevity.
T3E and 88.51 s on the NCUBE2 versus 65.65 min on a tyfphe column containing the detector number contains the volume
ical single processor system (a 133-MHz Pentium). Two algdata for that detector.

rithms were implemented, offering tradeoffs in execution time,
IPC time, and memory size. The two-step algorithm, when com-
pared to the one-step, reduced significantly the communication
time on both parallel computers and would be of considerableThe authors would like to thank D. Berg, a traffic engineer
savings when larger highway segments (e.g., entire beltway sfyem the Minnesota Department of Transportation, for pro-

APPENDIX
SAMPLE HIGHWAY SCHEMATIC AND DATA FILE

X. CONCLUSION
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VOLUME \ OCCUPANCY

494ER2
Wednesday, April, 1997

Printed: 11/13/97
842 840 841 853 852 105
494 /FRANEX 494 /NFRAEM 494 /PENEM 494
494/ SFRAEM 494/ PENEX 35W/E494SM
00: 05 0 19 2 16 1 4* 0 15 1 19 2
00:10 0 12 1 14 1 I 0 16 1 37 4
00:15 14 1 17 2 13 1 8 0 13 1 33 3
00: 20 3 0 11 1 13 1 6 0 11 1 32 3
00:25 10* 0 6 0 11 0 5 0 14 1 32 5
00:30 6 0 8 1 12 1 3* 0 6 0 19 2
00: 35 0 9 1 8 0 3* 0 4 0 26 3
00 : 40 ™ 0 11 1 6 0 2% 0 8 0 19 2
00 : 45 5 0 14 2 6 0 4 0 11 1 23 3
00:50 9* 0 5 0 18~ 1 4* 0 15 1 18 1
00:55 2 0 9 1 9 0 3* 0 5 0 24 3
01:00 3* 0 17 2 10 0 3* 0 5 0 12 1
01:05 4 0 9 1 3 0 3* 0 10 1 16 2
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