International Journal of High Performance
Computing Applications

http://hpc.sagepub.com

Implementation of Iterative Methods for Large Sparse Nonsymmetric Linear Systems On a
Parallel Vector Machine
Sangback Ma and Anthony T. Chronopoulos
International Journal of High Performance Computing Applications 1990; 4; 9
DOI: 10.1177/109434209000400402

The online version of this article can be found at:
http://hpc.sagepub.com/cgi/content/abstract/4/4/9

Published by:
®SAGE

http://www.sagepublications.com

Additional services and information for International Journal of High Performance Computing Applications can be found at:

Email Alerts: http://hpc.sagepub.com/cgi/alerts

Subscriptions: http://hpc.sagepub.com/subscriptions
Reprints: http://www.sagepub.com/journalsReprints.nav

Permissions: http://www.sagepub.co.uk/journalsPermissions.nav

Citations http://hpc.sagepub.com/cgi/content/refs/4/4/9

Downloaded from http://hpc.sagepub.com at UNIVERSITY OF TEXAS DALLAS on March 11, 2010

IMPLEMENTATION OF
ITERATIVE METHODS
FOR LARGE SPARSE
NONSYMMETRIC
LINEAR SYSTEMS ON
A PARALLEL
VECTOR MACHINE

Sangback Ma and
Anthony T.
Chronopoulos

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF MINNESOTA
MINNEAPOLIS, MINNESOTA 55455

Summary

We restructure three outstanding iterative methods for
large sparse nonsymmetric linear systems. These
methods are CGS (conjugate gradient squared), CRS
(conjugate residual squared), and Orthomintk). The re-
structured methods are more suitable for vector and
parallel processing. We impiemented these methods on
a parallel vector system. The linear systems for the nu-
merical tests are obtained from discretizing four two-
dimensional elliptic partial differential equations by finite
difference and finite element methods. A vectorizable
and parallelizable version of incomplete LU precondi-
tioning is used. We restructured the subroutines to en-
hance the data locality in vector machines with storage
hierarchy. Speedup was measured for multitasking by
four processors.

The Intemational Journal of Supercomputer Applica-
tions, Volume 4, No. 4, Winter 1330, pp. 9-24.
© 1990 Massachusetts Institute of Technology.

introduction

The two most common ways to approximate the solution
of partial differential equations are by discretization of
the original problems, as by the finite difference method
(FDM) and the finite element method (FEM). They both
lead to sparse banded matrices. For many applications, a
matrix dimension N greater than 10,000 is not un-
common. For this kind of problem a direct method, such
as Gaussian elimination, cannot be used because of the
prohibitive cost. A solution with reasonable cost is the
use of iterative methods. For symmetric matrices, the
conjugate gradient method with proper preconditioning
can be successfully used. For nonsymmetric matrices, the
conjugate gradient method does not apply. This diffi-
culty can be overcome in several ways. We can solve Ax
= f by solving the normal equations: ATA x = AT f.
However, the matrix AT A generally squares the condi-
tion number of the matrix A, which could lead to slower
convergence. The generalized conjugate gradient
method of Concus and Golub (1976) and Widlund
(1978) solves the nonsymmetric linear system Ax = b
when the matrix A has positive definite symmetric part
M = (A + AT)/2. This requires the solution of an auxil-
iary linear system of equations, with M as the coefficient
matrix. Also, the generalized conjugate residual works
for real positive matrices (matrices with positive real part
eigenvalues). However, the original algorithm requires a
prohibitive amount of time and space. Vinsome pro-
posed an algorithm, Orthomin(k), which requires
storage of only % of previous direction vectors. Conver-
gence can be obtained with any £ > 0. The optimal %
depends on the nonsymmetry of the problem. For sym-
metric problems, # = 1 yields the conjugate residual
method.

The conjugate gradient squared method (CGS) was
derived from the biconjugate gradients (BI-CG) method
by simply squaring the residual and direction matrix
polynomials (Sonneveld, 1989). CGS does not require
multiplication by the transpose of a matrix. In CGS the
residual is not biorthogonal and the directions are not
biconjugate. However, it can be viewed as the result of
polynomial preconditioning, with the polynomial
varying from iteration to iteration. Thus, it turns out
that CGS is in practice faster than BI-CG. CGS com-
putes exactly the same parameters as BI-CG and so has
exactly the same breakdown conditions. In fact, along
the iteration of CGS one can superimpose a BI-CG iter-

Downloaded from http://hpc.sagepub.com at UNIVERSITY OF TEXAS DALLAS on March 11, 2010

“In this paper we restructure several
iterative methods. The restructured
versions have the vector updates, ma-
trix-vector products, and dot products
of each iteration grouped together, as
far as possible. This provides better
data locality. The twe inner products
are executed simultaneously, and this
reduces by one the synchronization
points of these methods.

ation with additional cost of one matrix-vector multipli-
cation but without the need for multiplication by the
transpose.

One important advantage of the CGS method over
BI-CG is the absence of multiplication by the transpose.
This is necessary when applying the linear iterative
solver as an inner iteration of a Newton step to solve a
nonlinear system of equations: F(X) = (. If the iterative
method only requires multiplication by the Jacobian ma-
trix A = (9F)/(dx), then we can approximate it by
Taylor’s expansion:

_ Fx + ev) — F(x)

€

Av

This kind of approximation cannot be applied to ap-
proximate ATv, and explicit evaluation of the Jacobian is
then required. Another form of BI-CG gives rise to the
conjugate residual squared (CRS) algorithm (Chrono-
poulos and Ma, 1989). The behavior of CRS is very sim-
ilar to that of CGS.

Computers with a hierarchy of storage have been
designed. They can be ranked, according to the pro-
cessing speed, as follows: (1) scalar/vector registers, (2)
cache memory (or local memory), (3) main memory, and
(4) auxiliary disk. To make efficient use of the memory
hierarchy, we need to maximize the data locality. In
other words, the ratio (Memory References)/(Floating Point
Operations) must be as low as possible. Practically, it
means that we must keep the data either in cache or
local memory or in vector registers as long as possible.
Examples of vector computers with a memory hierarchy
are the CRAY-2, Alliant FX/8, and IBM 3090. For these
computers the numerical computations not only should
be suitable for vectorization but also should have good
data locality in order to achieve near-maximum perfor-
mance. For parallel computer systems processor
synchronization is a serious botdeneck in achieving peak
performance. Thus, reducing the number of synchroni-
zation points in a numerical computation makes it more
suitable for parallel processing.

For an iterative method, preconditioning the given
linear system substantially reduces the number of itera-
tions. We used incomplete LU factorization (ILU(0))

Downloaded from http://hpc.sagepub.com at UNIVERSITY OF TEXAS DALLAS on March 11, 2010

(Meijerink and Van Der Vorst, 1977) in this paper.
However, ILU factorization hasto solve Ly = z, Ux =
3, which is a serial recurrence. For a vector machine, this
causes serious slowdown. In this paper we adopted the
von Neumann series approach by Van Der Vorst (1982).
Also, the above-mentioned recurrences become a bottle-
neck in parallel execution. Radicati di Brozolo and
Robert (1988) proposed a technique to handle this
problem, and achieved a high speedup on an IBM 3090
with six processors. Our results on a CRAY-2 with four
processors seem to confirm this.

In this paper we restructure the iterative methods
Orthomin(k), CGS, and CRS. The restructured versions
have the vector updates, matrix-vector products, and dot
products of each iteration grouped together, as far as
possible. This provides better data locality for these
computations. The two inner products are executed si-
multaneously, and this reduces by one the synchroniza-
tion points of these methods. We implemented the stan-
dard and restructured methods on a four-processor
CRAY-2 supercomputer. We used the vectorizable ILU
preconditioning on a single processor and an over-
lapped submatrix parallel ILU(O) version (Radicati di
Brozolo and Robert, 1988) on the four-processor
system. The numerical tests are two-dimensional elliptic
partial differential equations discretized by finite differ-
ence and finite element methods.

Section 1 gives a general background for block-tri-
diagonal matrices; section 2 describes three iterative
methods, their restructured versions, and the precondi-
tioning schemes. Section 3 deals with vectorization and
parallelization aspects of implementation on the
CRAY-2, and section 4 describes the test problems. In
section 5 numerical results are shown, and finally, in
section 6, conclusions are drawn.

Results and Discussion

1. A MODEL PROBLEM

Let us consider the second-order elliptic partial differen-
tial equation problem in two dimensions in a rectangu-
lar domain © in R? with homogeneous boundary
conditions:

—(au,), — (bu,), + (cu), + {du), + fu =g, (1)

where © = 0 on o) and a(x,y), &(x.,y), c(x,y), d(x,y),
and g(x,y) are sufficiently smooth functions defined on
Q, and a,b > 0, c,df = 0 on (). Discretization of the
above equation by FDM or FEM leads to a linear system
of equations, where the matrix is sparse. Let) be (0,1)
x (0,1), with n grid points and A = 1/(n + 1) as the
mesh size in both x and y directions, and the unknowns
be ordered in the natural ordering. For the finite difter-
ence solution we used central difference for the first-
order terms and five-point difference for the second-
order terms. Hence, the whole discretization has a trun-
cation error of O(A?%), where A is mesh size. This leads to
a block-tridiagonal matrix with five diagonals. The FDM
discretization gives a linear system of equations:
Ax = f
of order N = n2 If ¢(x,y) or d(x,y) is nonzero, then

resulting matrix A is a nonsymmetric, block-tridiagonal
matrix of the form

A = [C,D,,E,], (2)

where D,,1 <k < n, CL,E,, 1 <k <n — 1 are ma-
trices of order n. The blocks have the following form

C, = Diaglc}, . .., c¥]
E, = Diag[et, . .., ¢]
D, = [d1% d4, d2}%], 1 <i<n,

with d1} = d2% = 0,and d* > 0, ¢} < 0, ¢t < 0, d14 < 0,
d2t < 0.

On the other hand, let L{z) be the partial differen-
tal operator. The finite element method seeks an ap-
proximate solution of the form

N
u = 2 (T (3)
k=1
where &, are the basis functions which are one at node
k, and zero at other nodes. If we use Lagrangian basis
functions with square elements, then the resulting ma-
trix is also block-tridiagonal (see Johnson, 1987; Lapidus
and Pinder, 1981). In this case the matrix has nine diag-
onals, rather than five for FDM. The form of the re-
sulting matrix is

Downloaded from http://hpc.sagepub.com at UNIVERSITY OF TEXAS DALLAS on March 11, 2010

A = [Cy,D,E,] 1 <sk<n, 4)

where D,, 1 <= bk < n, CL,E,,] <k <n — 1 are
matrices of order n. The blocks have the following form
C, = [cltche2b], 1si<mn,
D, = [d1},d4d2%], 1 <i<n,
E, = [eltete2t], 1 <i<n,
withdlf = d2t = 0,and d¥* > 0,4 < 0,4 <0, d1*
< 0,d2*<0.

2. ITERATIVE METHODS

We next describe three conjugate gradient-like iterative
methods to solve Ax = f, where A is a nonsymmetric
matrix of order N. The Orthomin(k) works for the sym-
metric part of A being positive definite, and the conju-
gate gradient squared, and conjugate residual squared
converge for general matrices provided that the iteration
does not break down. Here, we used right precondi-
tioning, because in this form we can compute the same
residual as in the nonpreconditioned case.

2.1. ORTHOMIN(k)

The generalized conjugate residual method (GCR) (Ei-
senstat, Elman, and Schultz, 1983) is a direct generaliza-
tion of the conjugate residual method (CR) for sym-
metric and positive definite linear systems. In the ab-
sence of round-oft error, GCR gives the exact solution
in at most N iterations. The main difference between
GCR for nonsymmetric matrix and CR for symmetric
matrix is that in the ith iteration of GCR, we have to
keep in storage all previous : — 1 direction vectors, and
compute p; based on AT A orthogonality of p; and p;, j
< . Thus, as ¢ gets larger, the costs and storage become
prohibitive. The GCR method converges for A nonsym-
metric with the symmetric part positive definite.

Vinsome (1976) proposed the Orthomin(k), as a
practical version of GCR with storage requirement for &
directional vectors. Eisenstat, Elman, and Schultz (1983)
proved that Orthomin(k), £ > 0 converges. Note that
Orthomin(l) is the CR algorithm for a symmetric ma-
trix. Here, Pr is the nght preconditioner. We used right
preconditioning, since it minimizes the residual norm
rather than minimizing the norm of Pr 7;, where r; is
the ith residual vector.

2.1.1 ALGORITHM ORTHOMIN(Kk)

1. Choose xg.
2. Compute ry = f — A X,

3. po =Ty
For i = 0 step 1 Until Convergence Do
o = {rA p)
C(ApLA D)
5. xip1 = x; + a; Py
6. iy =7 — a; AP
7. Compute A P, 7,4 ;.

8. pie1 = Pyrisy + 2, bip;, where

J=Ji

oy APTLAD)
o Appap) 7

10. Api+l = AP,7i+] + 2 b;AP]

i=1i

Endfor

In this algorithm j; = max(0,i — k + 1), j; = 0 for
the GCR method. The number of vector operations (i.e.,
operations on vectors of length N, including multplica-
tion/division and addition/subtraction) per iteration is (6%
+ 10N + 1 Mv + 1 Wprec, where Mu stands for ma-
trix-vector product and Wprec is the preconditioning
work. We ignored isolated scalar operations.

In the following we present the restructured version
of Orthomin(k).

2.1.2 ALGORITHM FOR RESTRUCTURED
ORTHOMIN(k)

1. Choose x,.
2. Compute 7, = [— Axq,P, 79,4 7q

(r9,A70)

, b, =0
(Arg,Arg)

3. po = ro,a0 =
For : = 0 step 1 Until Convergence Do

i-1
4. p; =P+ D b

i=ii-1

i-1
5. Ap,= AP, + > blAp;.
J=ji-1

6. x;.y =X+ g P
T ria=rn—aAp
8. Compute P, 1;,,,A P, 1;41.

Downloaded from http://hpc.sagepub.com at UNIVERSITY OF TEXAS DALLAS on March 11, 2010

_ (A P'r Ti+1:APj)

9. b = — LTl
(A pA p;)
10. G4y = (ri+l7A Pr ;r:'+l)
(A Pr Ti+11A Pr 'ri+l) + Z b}(A Pr TH-I:A P;)
i=Ji
Endfor

The equation for e; is proved as follows:
(Apir v Apic) = (Ar + z b}:A Pj,A Piv1) (5)
i=ji
= (Ar; A P:‘H)

= (Ar; A1) + 2 bj(AT,—+1,A Pj),

=i

and

(riv 1. Apiv1) = (riv L Ariy + E bi A p;), (6)
i=

= (rie A 1)

Here, we have used the fact that for j <4, (r;, A p) =
(A p;, A p;) = 0 (Eisenstat, Elman, and Schultz, 1983).

The difference between algorithms 2.1.1 and 2.1.2
is in the computation of a;. In steps 4—7, four SAXPY
(Single A times X Plus ¥) or vector update operations
can be grouped together in a DO-loop, reducing
memory references using vector registers or local
memory as the temporary storages. Also the two inner
products are in steps 9 and 10, which are grouped to-
gether in a single DO-loop. This reduces the number of
synchronization points by one per iteration, which would
give better performance in parallel execution. We note
that no increase in vector operations resulted from mod-
ifying the original algorithm.

2.2 CGS

The biconjugate gradient method was proposed by
Fletcher (1976) to solve indefinite linear systems. CGS
results from squaring the BI-CG matrix polynomials for
r; and p; (Sonneveld, 1989). The CGS method has sev-
eral advantages. First, it does not require multiplication
of the transpose of a matrix times a vector. Second, in
CGS the residual 7, = &,(A)%rg, while 7, = ¢,(A)ryin
BI-CG, where ¢, is a matrix polynomial. Hence, it

Downloaded from http://hpc.sagepub.com at UNIVERSITY OF TEXAS DALLAS on March 11, 2010

might have twice as fast the effect of reducing the re-
sidual error over BI-CG, which may lead to faster con-
vergence than BI-CG. This may not be true in general
(see Van Der Vorst (1989b). CGS breaks down when-
ever BI-CG does. In the absence of breakdown the CGS
method converges in less than N/2 iterations. However,
there are no easily checked conditions under which it
converges. Each step requires about twice the amount of
work necessary for the symmetric CG. Here, Pr is the
right preconditioning operator.

2.2.1 ALGORITHM CGS
1, g = f - Axo
2. qp=p_1 =0
3. pP_1 = 1

For : = 0 step 1 Until Convergence Do

4 p; = Fhrip = £
Pi-1

5. w; = r; + biqi
6. pi = u; + bi((]s + bipi—l)
7. v = A Prpi'
8. aqg; = f'gv‘-
9. a; = &

F;

10 iv1 = U — a;U;
Il x;00 = x; + aP(u; + ¢;4 1)
12. i) = 1 — a.’APr(ui + q1+1)'

Endfor

Vector operations per iteration are 19N + 2Mv +
2Whrec, where Mv stands for matrix-vector product, and
Wprec for preconditioning work.

As we did for Orthomin(k), we can also restructure
the computation in algorithm 2.2.1, to obtain a form
that is more suitable for computers with a memory
hierarchy.

2.2.2 ALGORITHM FOR RESTRUCTURED CGS
1. Compute ry = [— Axg, P, r9,A P, 1y,

(To,ro)

For : = 0 step 1 Until Convergence Do
3. u; = r; + biqi'

Downloaded from http://hpc.sagepub.com at UNIVERSITY OF TEXAS DALLAS on March 11, 2010

4. Py, = P + bP g,

5. AP, u;=AP,v; + bAP, 4,

6. v, =AP. u;+ b (AP, q; + bv;_)).
7. Giv) = w; — au;.

8. Compute P, q;, .

g, X;p1 = x; + a,‘(Prui + Prqi+l)'

10. Compute A P, ¢, ,.

Iorey =1, — (AP, w, + APqgy).
12. Compute P, r;,;, and A P, ;.

13, b,,, = ZrvTo)

(ri,To)
4. a.,, = (7i+|,rz)

(A Prriyy,70) —-if%n+hfw
Endfor

In steps 13 and 14, a,,b; in CGS are the same as those
in BI-CG (Chronopoulos and Ma, 1989). In BI-CG
(Fletcher, 1976), we have
(Apups) = (Ar, + b_ A Pi-1.bi) = (AryBy) (7%
= (Arr + b By
Here, we have used (Apjpi) = (rir) = 0,7 <4,
from Eqgs. (5.2) and (5.3) of Fletcher (1976). (Here, 5, _,
in Fletcher [1976] is b; in algorithms 2.1.1 and 2.1.2.).
Thus, (Ap;,p) becomes

= (Arym) + biy(Arupioy) = (A7) + b (AT PiZy)

a.:

— T — T
= (Aryry) + bi—l(ri:—)
i—-1
bi y

i

Let ¢ 4(A), y(A) be the polynomials, such that the re-
sidual vectors and direction vectors in BI-CG are r; =
i(A)(ro), p; = Yi(A), do(A) = I, Yo(A) = I. Now,
using Eq. (7) and the fact that ; = ¢,(A)2r, in CGS, we
get b;,a; in steps 13 and 14. Note that the dot products
are collected in steps 13 and 14, and steps 3 through 7
consist of SAXPY or double SAXPY computations,
which can be grouped in one DO-loop. Also both steps 8
and 9 and steps 9 and 10 could be grouped into one
DO-loop, respectively. The differences between the
standard and restructured algorithms are in computing
the matrix-vector products and computing o;. In algo-
rithm 2.2.2, A dmes P,q;, and A umes P,r; were com-

= (Arp1) = (ru7i)

puted. In both cases, the number of the matrix-vector
product is the same. For the computational costs, algo-
rithm 2.2.2 has two more SAXPY operations (only one
more in the nonpreconditioned case) in steps 4 and 5.

23 CRS

CRS is a modification of CGS (Sonneveld, 1989). It is
developed from the conjugate residual method, just as
CGS is developed from the conjugate gradient method.
Hence, its behavior and performance are expected to be
similar to those of CGS. It turns out that CRS is a special
case of CGS, with 7y = ATr,. Hence, if AT is available,
then CRS takes the same number of operations per iter-
ation as CGS. If A7 is not available, then we must intro-
duce additional linear combinations over CGS. The fol-
lowing algorithm is then obtained.

2.3.1 ALGORITHM CRS

1. 7'0=Ax0_f

2 go = por = 0

3. APTqO:P,qQZAP,p_l=0
4. p, =1

For : = 0 step 1 Until Convergence Do

5. p, = FL AP b, = L
P
6. u; = 7 + bg,Pu; = Pr; + b, P g, AP u,
= AP, + bAP g,
7. pi = u; + bilg; + bpi_y)
8 v, = APu; + bAP,q;, + b2APp,_,
9. 0, = FL AP, u;
10. ¢, = &
G,
1. g4y = u; — au,APq; o, = APu; — a; APu;,P.giy,
= Pu; — a,Pv;
12. r;py = 1, — 20,APu; + a?AP,y;
13, x4 = % — a; Pr(u; + qiyy)
Endfor

In step 8, v; = AP,p;, = AP.u; + bAP.q; +
b2AP,p;_, was used. The only difference from CGS is
in steps 4 and 8 in computing p, and o;. (In Polak et al.
[1987] a similar algorithm appears but requires four
matrix-vector products.)

Vector operations per iteration are 29N + 2Mv +
2Wprec, where Mv stands for matrix-vector product,

Downloaded from http://hpc.sagepub.com at UNIVERSITY OF TEXAS DALLAS on March 11, 2010

and Wprec for preconditioning work. For the precondi-
tioned case the costs are 34N + 2Mv + 2Wprec; 5N for
the additional costs comes from computing P, (u; +
g; 1) In steps 6 and 11.

We omit the restructured version, since it is identical
to CGS, if 7y = ATr,,.

2.4 PRECONDITIONING

For the preconditioning matrix Pr, we look for matrices
such that

PA=~1I

or P A has the clustered eigenvalues, and the linear
system Prx = y is easy to solve. One natural choice is the
ILU factorization (Meijerink and Van Der Vorst, 1977),
where A = LU + E, where L;; = U;; = 0,if A;; =
0, and E; = 0if A,-’j # 0. In other words, L,UU have
the same sparsity patterns as A. Let NZ(A) denote the set
of pairs of [;,f] for which the entries a,; of the matrix A
are nonzero, the nonzero pattern of A.

2.4.1 ALGORITHM FOR THE
ILU FACTORIZATION
For : = 1 step 1 Until N Do
Forj = 1 step 1 Until N Do
If (z,) belongs to NZ(A)) Then
min{i,j)—1
s = Ay — X Ly
i=1
It G=) Then L;; = s,
If ¢ <j) Then Uy = -2
Endif
Endfor
Endfor

Here, we set U;; = 1, for 1 < ¢ < N. Denoting L and
U by @, the ILU(0) preconditioner matrix for the fi-
nite difference matrix is generated as follows.

For : = 1 step 1 Until N Do

Gii-1 = Qi)
Cii = Gy — Qo051 " Gy neillijpyy] S TSN,

Giivl

Qv

Endfor

For the finite element case, the ILU(0) preconditioner
matrix is generated as follows.

For : =] step 1 Until N Do

Qii—nx—1 = Gii—nx—1
ai,i—m: = ai,i—nx - ai,i—nx—lai—nx—l.i—ﬂx
Qii—nx+1 = Qiji—nx+1 = Ciimnxlipxionx+1
Qii—1 T Qi) = Qe 18ionx—1,i—1 ~ Qi axlli_nyxi—1
Qii = Qi — G @1 — Qi_pnz—1,iii—nx—1
T G i@y T Qi 1@ i—nx 41
- Qiit1 — Cii—nxlionait] 7 Gionx+ i+ 1%ii-nx+1
Qiiv1 = _
Gy
. Gigens—1 ~ Biin@ic Livnx-1
Qiitnx—1 = -
a;;
~ Qiivnx — Fiia1Gi-1i+nx
a’i,i+m: - N
a;;
. Qiitnx+1
Ciitnz+l = "~
G
Endfor

3. VECTORIZATION AND PARALLELIZATION

3.1 VECTORIZATION

Implementation on a vector computer requires proper
vectorization of the computations to take advantage of
the full single-processor capacity. Vectorization for these
methods is relatively straightforward. The matrix is
stored in diagonals, so that matrix-vector multiplication
is fully vectorized. Also the inner products and linear
combinations are vector operations. The only computa-
tion that needs further attention is that of the precondi-
tioning step,

LUx =y,

which consists of solving the two triangular systems, L z
= yand U x = z where L and U are the incomplete LU
factors, consisting of five diagonals (nine in FEM). Solu-
tion of these systems requires back-solving, which is a
serial operation. We can solve this problem by using a

Downloaded from http://hpc.sagepub.com at UNIVERSITY OF TEXAS DALLAS on March 11, 2010

von Neumann series expansion, proposed by Van Der
Vorst (1982), or by using the block preconditioning ap-
proach of G. Meurant (1984). In this paper we adopted
the first method. Assume the given matrix A is block-tri-
diagonal. We can write A = LU + err. Assume further
that the diagonal entries of L and U are 1, by scaling of
the original problem. Then we can write L = I + E +
F, where E is the matrix consisting of subdiagonal
L;;_,, F is the matrix consisting of the rest of the sub-
diagonals L;;, j <¢ — 1. Solving
I+ E+ F =y,

amounts to

I+ E)yy; =9, — Fz;_\.

Assuming E is small relative to I in norm, we expand in
von Neumann series,

= (I +E) 'y - Fz_y) (8)
={ - E+E2—EY+ ..)y — Fy_y),

i
and we truncate the power series at the mth term. In the
report of Van Der Vorst (1982) m = 2 was chosen for
the incomplete Cholesky preconditioned conjugate gra-
dient methods. We also chose m = 2. The assumption
about the norm of E relative to [is satistied if the matrix
is diagonally dominant. None of our four test problems
seems to violate this assumption. The backward solution
tor U is computed similarly. This scheme vectorizes the
computation, with vector length = nx, where nx is the
number of grid points in the x-direction using the nat-
ural ordering. The wavefront technique can also achieve
vectorization by appropriate renumbering of the nodes
(Filippone and Radicati di Brozolo, 1988; Van Der
Vorst, 1989a).

3.2 PARALLELIZATION

In the codes of Orthomin, CGS, and CRS with or
without preconditioning, the iteration loop cannot be
executed in parallel, since the residual vectors and the
directional vectors require the previous ones to be up-
dated. Note that in these codes, most of the execution
time is spent in the computational kernels, such as the
matrix-vector product, the dot product, the SAXPY, or

matrix
A
PEO
PE1
PE2
PE3

Fig. 1 Parallelization of
matrix-vector product

Block 1

Block 2

Block 3

Fig. 2 Parallel execution
of ILU matrix-vector
product with
overlapping

Block 4

B © RS R R R

Downloaded from http://hpc.sagepub.com at UNIVERSITY OF TEXAS DALLAS on March 11, 2010

the double SAXPY. So we could realize reasonable
speedup from parallelization of these kernels. For the
preconditioning block, the recurrence in (8) poses diffi-
culties to the parallelization. We adopted the technique
of Radicati di Brozolo and Robert (1988). It solves the
preconditioned matrix system by dividing into four sub-
matrices, ignoring the original relation between those
submatrices. However, we can make up for this loss of
connection by introducing an overlapping region be-
tween consecutive submatrices. Then we take the
average of the computed values by the subsystem in the
overlapped regions. According to Radicati di Brozolo
and Robert (1988) this overlapping strategy gives better
performance than the nonoverlapping one.

The implementation of this parallelization is illus-
trated in Figures 1 and 2.

4. TEST PROBLEMS
Problem 1 (Elman, 1982):

= (b{x3hu), — (cleyhu), + (d0e,3)u), + (e(x,3)u),
+ flx,y)u = glx,y),
= (0,1) X (0,1)
where b(x,y) = e 2,¢(x,3) = Blx + 7).d(x,3) = B{x + y)e~®
i

e{x,3) = ylx + yhflay) = ,
(1 + xy)
u(x,y) = xe¥sin(mx)sin(ary),

with Dirichlet boundary condition and gix,y) the corre-
sponding right-hand side function. By changing v and
8. we could control the degree of nonsymmetry of the
discretization matrix. In our paper, we set y = 50, B =
1. We have used the five-point difference scheme for
the second-order derivatives and the central difference
scheme for the first-order derivatives. For an initial
guess vector, we have chosen x() = 0.5*mod(;50)/10.

Problem 2 (The Convection Diffusion; Sonneveld,
1989):
— €(ty + u,) + cos(a)u, + sin(a)u, = 0
u(x,y) = x% + y2 on aQ
Q = (0,1) x (0,1)

We have used the five-point difference scheme for the
second-order derivatives and the central difference

RSB

scheme for the first-order derivadves. For small € values,
we might need to use the upwind difference scheme for
the first derivative to maintain diagonal dominance. In
our experiment of € = 0.1 we used central difference.
We used a@ = 0.5. For initial value, we have chosen x(i)
= 0.5*mod(;,50)/10.

Problem 3 (Berkeley; Sonneveld, 1989):

—€(uy t o) + v, +vu, =0
v, = 29(1 — x%),u, = —2x(1 —),
0 =(-1,1)*(0,1)
u(x,y) = 0x = —1
u(x,y) = 0,x =1
u(x,y) =0y =1
w(x,0) = 1 +atanh(10(2x + D)y=0,-1=sx<0
u

—=0,y=00=<x=<1
an

The boundary conditions are Dirichlet on all sides of the
rectangle, except Neumann boundary on the half side
[0,1] of the x-axis. For small e values, we might need to
use the upwind difference scheme for the first derivative
to maintain diagonal dominance, but for this problem
we used € = 0.1, and central differences. We have used
the five-point difference scheme for the second-order
derivatives and the central difference scheme for the
first-order derivatives. For an initial guess vector, we
have chosen x{z) = 0.5*mod(:,50)/10.

Problem 4 (Sonneveld, 1989):

— Uy + U + (1 + 3 (—uy, + w)) = flx,5)
Q= (0,1) x (0,1)

where
ufx,y) = %N + x2(1 — x)%n(1 + y?)

with Dirichlet boundary conditions, f{x,y) the corre-
sponding right-hand side is computed to have the solu-
ton u(x,y). We have used the five-point difference
scheme for the second-order derivatives and the cen-
tral difference scheme for the first-order derivatives.
For an initial guess vector, we have chosen x(i) =

0.5*mod(;,50)/10.

Downloaded from http://hpc.sagepub.com at UNIVERSITY OF TEXAS DALLAS on March 11, 2010

5. NUMERICAL RESULTS

The CRAY-2 is a four-processor machine. Each pro-
cessor can execute independent tasks concurrently. All
processors have equal access to the large central
memory. The CRAY-2 at Minnesota Supercomputer
Center has 512 megawords of central memory. Each
CRAY-2 processor has eight vector registers (each 64
words long) and has data access through a single path
between its vector registers and main memory. Each
processor has 16K words of local memory with no direct
path to central memory but with a separate data path
between local memory and its vector registers. Also,
there are six parallel pipelines: common memory to
vector register, load/store vector register to local
memory, load/store floating addition/subtraction,
tloating muluplicaton/division, integer addition/subtrac-
tion, and logical pipelines. The central memory is di-
vided into four quadrants, and assignment of four
quadrants to four processors takes place and changes at
each memory cycle. Hence, if more than one processor
requests an access to the same quadrant, then a memory
conflict will occur.

First, we ran experiments with Nx = Ny = 128 for
problems 1, 2, and 4 and Nx = 128, Ny = 64 for
problem 3, where Nx is the number of nodes in x-direc-
tion, and Ny in y-direction. For both FDM and FEM we
used the vectorizable ILU(0) preconditioning, as de-
scribed in sections 2 and 3.1. For Radicati’s technique,
we let the two consecutive submatrices overlap in region
of two Nx nodes. For both FDM and FEM, we used nat-
ural ordering. We have not implemented Eisenstat’s
trick (Eisenstat, 1981). Table 1 contains the number of
iterations needed for residual error norm at 107® for
Orthomin{4), CGS, and CRS with ILU(0) precondi-
tioning; Table 2 shows the number of vector FLOPS per
iteration, where vector FLOP means componentwise ad-
dition or multplication of length N, where N is the di-
mension of the matrix. Figures 3 through 6 show plots
of the total FLOPS needed for each error norm. Qur
tests confirm the results reported by Sonneveld (1989).
CRS turns out to be very similar to CGS.

Table 3 shows the speedups of Orthomin(4) and
CGS for the Berkeley problem. (For one CPU we repeat

Table 1

Number of Iterations with Error Tolerance =
1.e — 6

Problem Finite Difference Finite Element
1: Nx =128, Ny = 128,y = 50, = 1
Orthomin (4) 3731111112 341/106/110
CGS 253/56/57 246/44/50
CRS 234/55/61 216/45/52
2:e =01, = 05 Nx =128 Ny = 128
Orthomin (4) 707/167/160 705/122/230
CcGS 212/73/14 178/110/109
CRS 212/72/75 176/110/111
3:e =01 NMc=128 Ny = 64
Orthomin (4} 324/99107 26837277
CGS 205/72/67 139/33/39
CRS 207777115 140/34/36
4: Nx = 128, Ny = 128
Orthomin (4) 3781121125 312/98/109
CGS 222/78/80 180/57/59
CRS 208/65/78 181/55/63

The number after the first slash (/) is obtained by precenditioning; the number after the
second slash is obtained by Radicati’'s parallel preconditioning.

Table 2
Number of Vector Floating Point Operations per
Iteration

Vector FLOPS
Method Finite Difference Finite Element
Orthomin (4) 43/56 51772
CGS 37/62 53/94
CRS 37(47)/62(77) 53(63}/34(109)

The number in the parentheses for CRS is the one for the case when A" is not available.

Downloaded from http://hpc.sagepub.com at UNIVERSITY OF TEXAS DALLAS on March 11, 2010

the experiment until we get the CPU utilization ratio of
96%. We believe this CPU time is close enough to the
real CPU time in a dedicated mode. For Tables 4 and 5,
we repeated the experiments until we achieved the CPU
utilization ratio of 85%. Considering the serial portion
we believe this is close enough to the maximum.) We did
not include CRS, because it is expected to be quite sim-
ilar to CGS. For FDM with Nx = 124, Ny = 64, precon-
ditioned CGS achieves an unusually high speedup of
3.66, which 1s due to the decrease in the number of iter-
ations in the parallel case. On the other hand, Nx =
128, Ny = 64, with FEM, preconditioned CGS gives an
unusually low speedup of 2.41, which is due to the un-
usual increase in the number of iterations. It seems that
this unusual decrease or increase sometimes happens
with Radicati’s technique, and this phenomenon is also
reported by Radicati di Brozolo and Robert (1988). We
used the microtasking library for the parallelization of
the inner DO-loops. Since the experiments were not
performed in dedicated mode, we believe that the max-
imum speedup possible may be higher than shown here.
For Nx = 128 or 256, the average speedup of the non-
preconditioned case is around 3.1, while for Radicati
preconditioning cases it is around 2.7. These are some-
what lower than values reported by Radicati di Brozolo
and Robert (1988).

Table 4 shows the total CPU time for the original
algorithms and restructured ones for one CPU. Table 5
shows the same thing for four CPUs. The test problem
for Tables 3—5 was the Berkeley problem with Nx =
256, Ny = 128, and € = 0.1. Since we have relied on the
compiler to make efficient use of the local memory and
the vector registers, the saving through restructuring is
minimal, especially for CGS and CRS, which need more
operations in the restructured version. But for Ortho-
min, restructuring is indeed faster, since restructuring
versions have the same number of operations.

6. CONCLUSIONS

We implemented and tested three CG-like methods for
both five-diagonal and nine-diagonal block-tridiagonal
matrices arising from two-dimensional discretization of
elliptic partial differential equations by finite difference

Downloaded from http://hpc.sagepub.com at UNIVERSITY OF TEXAS DALLAS on March 11, 2010

1072
Error

Norm
107°

107
1071

10781

X S I I

2,000 4,000 6,000 8000 10000
Vector Flops

1072

Error
Norm I

1073

10

107

T T

T

107

R A

2,000 4000 6000 8,000 10,000
Vector Flops

=8

Fig. 3 Problem 1 Finite
difference (top) and finite element
{bottom) methods. (O) Orthomint4); (*)
CGS; {+) CRS.

1072
Error

Nom
10°*

10

1071

1071

I I I

2,000 4000 6,000 8000 10000
Vector Flops

1072
Error

Norm
1078

10

1075

S R I

2,000 4000 6000 8,000 10,000
Vector Flops

Fig. 4 Problem 2 Finite
difference {top) and finite element
{bottom) methods. {O) Qrthomin(4}; (*)
CGS; (+) CRS.

o

Downloaded from http://hpc.sagepub.com at UNIVERSITY OF TEXAS DALLAS on March 11, 2010

10—2 10—2
Error Error
Norm Nom
107 1072
107 J 107
10751 107}
107% 1%
"SR I R o L 1 | |
2,000 4000 6,000 8000 10,000 2000 4,000 6,000 8,000 10,000
Vector Flops Vector Flops
1072 102
Error Error
Nomm Norm
1073 107?
10 (i
10751 1075
107 107
I I P I I
2,000 4000 6000 8,000 10,000 2,000 4000 6,000 8,000 10,000
Vector Flops Vector Flops
Fig. 5 Problem 3 Finite Fig. 6 Problem 4 Finite
differenca (top} and finite element difference {top) and finite element
(bottom) methods, {O) Orthomin(4); {*) {bottom) methods. (O) Orthomin(4); (%}
CGS; (+} CRS. CGS; {+) CRS.
Table 3
Speedup with Four Processors for Problem 3 with Error Tolerance = 10~2
Finite Difference Fnite Element
Method M4 xX 18 x 64 256 x 128 64 x 3 128 x 64 26 x 128
Orth {4) 2.29 3.01 3.16 3.14 3.15 3.05
CGS 211 319 3.2 2.,19 3.19 3.05
Orth (4)-ILU {Q) 3.05 3.17 257 230 3.05 2.54
CGSHLU (0) 247 366 285 3.09 241 271
2950 .ﬁéﬁ?

Downloaded from http://hpc.sagepub.com at UNIVERSITY OF TEXAS DALLAS on March 11, 2010

Table 4

Comparison of Restructured Algorithm vs. Original One: Total Elapsed
Time (psec) for One CPU with Error Tolerance = 107°

Finite Difference Finite Element
Method Original Restructured Original Restructured
Orthomin {4} 577 5,36 6.31 8.21
CGS 41 398 348 344

No preconditioning was used,

and finite element methods. As with a serial machine,
CGS and CRS turn out to be more efficient over Ortho-
min(4), as was reported by Sonneveld (1989). CGS and
CRS seem to behave very similarly. Restructuring of the
code for CRAY-2 reduced the CPU time by 5% on the
average for one CPU. At least for Orthomin, this re-
structuring is guaranteed to be faster, since it has the
same costs. For CGS and CRS, the overall saving may
depend on the relative costs of memory references and
synchronization of the particular machine. If we use the
cache or local memory between main memory and
vector registers, or the main memory and disk storage,
the restructuring version is expected to be faster than
the standard one.

For Radicati’s parallel preconditioning with overlap
size of 2 Nx, the number of total iterations needed is
about the same as that in the serial case, but the speedup
ranges from 2.6 to 3.2, in general. Since the experi-
ments were performed in a nondedicated mode, the
maximum speedup will be higher.

Table 5

Comparison of Restructured Algorithm vs. Original One: Total Elapsed
Time (Wsec) for Four CPU with Error Tolerance = 10 °

Rinite Difference Finite Element
Method Original Restructured Original Restructured
Orthomin (4) 1.83 175 2.07 2.02
CGS 1.26 1.22 1.14 1.07

No preconditioning was used.

Downloaded from http://hpc.sagepub.com at UNIVERSITY OF TEXAS DALLAS on March 11, 2010

ACKNOWLEDGMENT

We thank the referees,
whose comments helped
enhance the quality of
presentation of this paper.
The research was partially
supported by University of
Minnesota graduate school
grant-in-aid 0350-2104-07,
and NSF grants CER
DCR-8420935 and
CCR-8722260. We ac-
knowledge the Minnesota
Supercomputing Institute
for providing time on the
CRAY-2.

BIOGRAPHIES

Anthony T. Chronopoules ob-
tained his B.Sc. and M.S.
degrees in mathematics
from the University of
Athens (Greece) and the
University of Minnesota in
1979 and 1981, respec-
uvely. He received his
Ph.D. in computer science
from the University of Illi-
nois at Urbana-Cham-
paign in 1986. Since 1986
he has been an assistant
professor in the Depart-
ment of Computer Science
at the University of Min-
nesota, His interests in-
clude numerical algorithms

and parallel processing.

Sangback Ma received his
B.S. degree from Seoul
National University of the
Republic of Korea in 1978,
and his M.S. degree in
mathematics from Univer-
sity of Minnesota. Since
1987 he has been working
toward a Ph.D. in com-
puter science. His interests
lie in the numerical solu-

tion of partial differential
equations and its imple-
mentation on parallel
vector computers.

SUBJECT AREA
EDITOR

Iain Duff

REFERENCES

Chronopoulos, A., and Ma,
S. 1989. On squaring
Krylov subspace iterative
methods for nonsymmetric
linear systems. TR 89-67.
Minneapolis: University of
Minnesota, Computer Sci-
ence Department.

Chronopoulos, A., and
Gear, C. 1989a. S-step
iterative methods for sym-
metric linear systems. J.

- Compuut. Appl. Math.

25:153-168.

Chronopoulos, A., and
Gear, C. 1989b. On the
efficient implementation of
preconditioned s-step con-
Jugate gradient methods
on multiprocessors with
memory hierarchy. Parallel
Comput. 11:37-53.

Concus, P., and Golub, G.
1976. A generalized con-
jugate gradient method for
unsymmetric systems of
lhinear equations. Lecture
Notes in Econom. and Math.
Systems 139:56—65.

Eisenstat, S. 1981. Efficient
implementation of a class
of preconditioned conju-
gate gradient methods.
SIAM . Sci. Statist. Comprat.
2:1-4.

Eisenstat, S., Elman, H.,
and Schultz, M. 1983.
Vaniational iterative
methods for nonsymmetric

systems of linear equa-
tions, SIAM J. Numer. Anal.
20:345-357.

Elman, H. 1982. Iterative
methods for large, sparse,
nonsymmetric systems of
linear equations. Ph.D.
thesis, Yale University, De-
partment of Computer
Science.

Filippone, S., and Radicati
di Brozolo, G. 1988. Vec-
torized ILU precondi-
tioners for general sparsity
patterns. Technical report.
IBM ECSEC, Italy.

Fletcher, R. 1976. Conju-
gate gradient methods for

indefmite systems. Lecture
Notes in Math. 506:73—89.

Johnson, C. 1987, Numer-
ical solutions of partial differ-
ential equations by the [erate
element method. Cambridge,
U.K.: Cambridge Univer-
sity Press.

Koniges, A., and
Anderson, D. 1987,
ILUBCG2: A precondi-
tioned bi-conjugate gra-
dient routine for the solu-
tion of linear asymmetric
matrix equations arising
from 9-point discretiza-
tions. Comp. Phys. Commun.
43%:297-302.

Lapidus, L., and Pinder,
G. 1981. Numerical solution
of partial differential equations
in engineering and. science.
New York: Wiley.

Meijerink, J., and Van Der
Vorst, H. 1977. An itera-
tve solution method for
linear systems of which the
coefficient matrix is a sym-
metric M-matrix. Math.
Comp. 31:148—-162.

Meurant, G. 1984. The
block preconditioned con-
jugate gradient method on

Downloaded from http://hpc.sagepub.com at UNIVERSITY OF TEXAS DALLAS on March 11, 2010

vector computers. BIT
24:623-633.

Polak, S., Hejjer, C.,
Schilders, W., and
Markowich, P. 1987. Semi-
conductor device mod-
eling from the numerical
point of view. Internat. .
Numer. Methods Engrg.
24:763-838.

Radicati di Brozolo, G.,

and Robert, Y. 1988. Par-

allel and vector conjugate
gradient-like algorithms for
sparse nonsymmetric

systemns. Technical report. |
IBM ECSEC, Italy.

Sonneveld, P. 1989. CGS, |
a fast Lanczos-type solver “
for nonsymmetric systems. ‘
SIAM]. Sci. Statist. Compnut.
10:36—52.

Van Der Vorst, H. 1982.
A vectorizable variant of
some ICCG methods.
SIAM]. Sci. Statist. Compru.
3:350-356.

Van Der Vorst, H. 1989a.
High performance pre-
conditioning. SIAM [. Sci.
Statist. Comput.
10(6):1174—1185.

Van Der Vorst, H. 1989b.
The convergence behav-
iour of some iterative solu-
tion methods. Report
89-19. Delft University of
Technology, The
Netherlands.

Vinsome, P. W. 1976.
Orthomin, an iterative
method for solving sparse
sets of simultaneous linear
equations. SPE 5729, So-
ciety of Petroleum Engi-
neers of AIME.

Widlund, O. 1978. A
Lanczos method for a class
of nonsymmetric systems
of linear equatons, SIAM
. Numer. Anal.
15:801-812.

