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s-STEP ITERATIVE METHODS FOR (NON)SYMMETRIC (IN)DEFINITE
LINEAR SYSTEMS*

A. T. CHRONOPOULOSYt

Abstract. In this paper a class of s-step methods for nonsymmetric linear systems of equations is
introduced. These methods are obtained from nonsymmetric generalizations of the conjugate residual method,
which apply to nonsymmetric definite systems [S. C. Eisenstat, H. C. Elmans and M. H. Schultz, SIAM J.
Numer. Anal,, 20 (1983), pp. 345-357]. The s-step methods are derived then in a way similar to obtaining
the s-step conjugate gradient [G. E. Forsythe, Numer. Math., 11 (1968), pp. 57-76], [A. T. Chronopoulos
and C. W. Gear, J. Comput. Math., 25 (1989), pp. 153-168], [A. T. Chronopoulos, Ph.D. thesis, Dept. of
Computer Science, University of Illinois, Urbana, IL, 1986). It is proven that the s-step methods (with s = 2)
converge for all symmetric indefinite matrices, for nonsymmetric matrices with positive definite symmetric
part and for a class of nonsymmetric indefinite problems. The s-step methods require less computational
work but s —1 more vectors of main memory storage than the standard ones. These methods are also more
suitable for parallel computations.
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1. Introduction. Consider the linear system of equations
(1.1) Ax=f

where A is a nonsingular matrix of order n. If the matrix A is symmetric and positive
definite then the conjugate gradient (CG) method [11] can be applied to approximate
the solution of (1.1). At each iteration it computes an approximate solution x; which
minimizes the error functional E(x;) = (x — x;) TA(x — x;). The conjugate residual (CR)
method is a variant of the conjugate gradient method that minimizes the residual error
E(x;) = f— Ax;]; at each iteration.

It is assumed (unless otherwise stated) throughout this paper that the matrix in
(1.1) is nonsingular and nonsymmetric with symmetric part M =(A+A")/2 being
either positive definite or indefinite. If the matrix M is (positive or negative) definite
then the matrix A is called (positive or negative) definite. Luenberger [13] and Paige
and Saunders [16] have obtained conjugate residual and Lanczos based methods for
indefinite symmetric systems. A survey of conjugate gradient methods for symmetric
indefinite linear systems can be found in [1]. Generalizations of the conjugate gradient
method were derived by Concus and Golub [4] and Widlund [18] for a nonsymmetric
system with positive real coefficient matrix. However, on each iteration an auxiliary
symmetric system of equations must be solved. Axelsson [2], Eisenstat, Elman, and
Schultz [9], and Young and Jea [19] devised generalizations of the conjugate residual
method, which apply when the matrix of the system is positive real. Saad and Schultz
[17] obtained an algorithm called GMRES(m), which is based on the Arnoldi iteration
but with residual error minimization property.

In this article, some generalizations of CR are reviewed which can be used to
solve the linear system (1.1). Then s-step iterative methods are derived in a way similar
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to the methods for the symmetric positive definite problems [5], [7]. These methods
are shown to converge. In §2, the generalized conjugate residual (GCR) and
Orthomin(k) methods are presented. In § 3, the s-step minimal residual method (MR)
is introduced. It is shown that the s-step MR method possesses the residual error
minimizing property and subsequent convergence for indefinite symmetric and skew-
symmetric, for positive real nonsymmetric, and for a class of indefinite nonsymmetric
systems. In § 4, s-step generalizations for GCR and Orthomin (k) are derived. In § 5,
convergence theorems for the s-step methods are proved. It is also shown that the
s-step methods are equivalent to the standard methods for positive real matrices. In
§ 6, the work and storage requirements for the new s-step methods is discussed. There
is a modest increase in the main memory storage (s—1 vectors), but less work is
required than with one-step methods.

2. Generalizations of the conjugate residual method. The CR method applied to
the symmetric positive definite (SPD) problem minimizes ||r;.,]|5 along the direction
p: in order to determine the steplength a; in

X1 = X T a;p;.
Also, p; is made AT A-orthogonal to p;_;. Symmetry is used to obtain
(Ap;, Ap;)=0 fori#j.

Positive definiteness is necessary to guarantee that a;={r;, Ap;,)/(Ap;, Ap;)=
(r, Ar;)/(Ap;, Ap;) is positive, and so there is progress towards the solution in every
step. The orthogonality and the norm reducing properties of CR guarantee its conver-
gence in at most n iterations.

If A is nonsymmetric but definite then the norm reducing property of CR is still
valid but the orthogonality only holds locally. That is, p; is guaranteed to be A7
A-orthogonal only to p;_;. This shortcoming is improved in some of the generalizations
of CR.

ALcoriTHM 2.1. (Nonsymmetric generalizations of CR).
Xo, Po=ro=f—Ax,
For i =0 Until Convergence Do

_: (ri, Ap:)
" (Ap, Ap)
X1 =Xt a;p;
rig = 1ri— GAp;
Compute p;iq, Apiiq
EndFor.

Since (r;, Ar;) >0 the norms of the residuals form a decreasing sequence. The direction
vectors must be constructed to reduce the norm significantly at each step. Next, in (i)
and (ii) below, two ways are presented to compute p;,;, Ap;.;.

(i) Generalized conjugate residual method (GCR):

d i i (Ari+l AP') .
=t t ¥ blp, bi= AR oy
Di+1 +1 j;ﬂ i Dj j (Apj,Apj)
Here ||r,+4]|, is minimized over x,+{r,, Aro, - - -, A'r,}. GCR gives the exact solution

in at most n iterations [9]. However, if more than a few iterations are needed then the
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storage requirements become prohibitive. To circumvent this, GCR can be restarted

periodically every (k+ 1) iterations. This method is called GCR (k) [9]. An alternative

is to AT A-orthogonalize p;, to the k preceding directions. This defines Orthomin (k).
(ii) Orthomin (k):

Div1=liert % b;pj
j=i—k+1

where the {bj} are defined as in (i). Both methods coincide for k=1 with CR in the
symmetric case. Note that CR applied to the nonsymmetric problem is Orthomin (1).
Orthomin (0) is a one-dimensional steepest descent method called the minimal residual
method (MR).

In both (i) and (ii) Ap;., must be computed. This can be done either directly or
via the recursion

(2.1) Apiy1 —Ariqt Z b Ap;

J=Ji
where j; =0 for GCR and j; =max (0, i —k+1) for Orthomin (k). Note that the work
for Orthomin (k) is (a) that of GCR for j <k —1 and (b) that of the (k —1)th iteration
of GCR for k—1=j.

Assuming (2.1) is used for computing Ap, the work and storage for these methods
is shown in Table2.1. The work is given in terms of number of inner products
(Dotprods), vector updates (Vupdates), and matrix vector multiplications (Matvecs).
These operations are called vector operations and they involve vectors of size n.
Operations on vectors of dimension s have been ignored in the operations count. The
vector operations and storage requirements in each method for completing the i first
iterations are tabulated. Storage includes the matrix A and the vectors x, r, Ar, {p,}'=}"",
{Ap;PZi"!, for GCR the vector Ar is stored in Ap,,;.

J=Ti

TABLE 2.1.
Vector operations for completing the interations j=0, - - -, i in GCR(Orthomin (k), MR and in GCR (k)
(with k#0 and (i/k) integer.

Vector Operation GCR Orthomin (k) GCR (k) MR
Dotprods (i+1)(i+6)/2 i(k+2)+2+k(3-k)/2  (i/k){k+1)(k+6)/2  2(i+1)
Vupdates (i+1)(i+4) 2i(k+1)+k(3—k)+2 (i/ k) (k+1)}(k+4) 2(i+1)
MatVecs (i+1) (i+1) (i+1) (i+1)
Storage 2i+6 (2k+3) (2k+3) 3

In the next section a nonsymmetric s-step minimal residual method is introduced
and it is shown that it converges for s = 2 for all symmetric or skew-symmetric indefinite
and for some nonsymmetric indefinite systems.

3. The s-step minimal residual method. In solving a linear system of equations
using the MR method the choice of steplength a; minimizes the quadratic function
E(x;,,) = || f— Ax;+1||3- This method guarantees reduction of the residual error at every
iteration only if the matrix A is positive definite. Otherwise, the steplength a; may be
zero. Here, the MR method is extended to an s-step method (s-step MR). It is then
proved that the s-step MR converges for a class of indefinite matrices, in addition to
the definite matrices. Steepest descent methods similar to s-step MR have been studied
in [10] and [12].
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DerINITION 3.1. The minimal polynomial of a nonzero vector v with respect to
matrix A is defined to be the least degree monic polynomial g,(A) so that g.(A)v=0.
Notation 3.1. Let L; denote the affine subspace

s—1
{xi + Y aA'r;: a; scalars and r; =f—Ax,~}

j=0
If it is assumed that the degree of the minimal polynomial of r; is not less than s then
the dimension of L, equals s. Next, the s-step MR method is introduced, which is an
s-dimensional steepest descent method provided that the dimension of L; equals s for
all i

ALGoriTHM 3.1 (The s-step minimal residual method (s-MR)).
Xg, ro=Jf—Ax,
For i =0 Until Convergence Do
Xin=xtair+---+aiA'n,
where x;,,; minimizes E(x) over L;
iy =ri— a}Ari —- - —aiA’r,orri =f—Axiy
EndFor

Since x;,, minimizes E(x) over the affine subspace L; the residual r,;; must be
orthogonal to A times the span of {r, Ar,---,A* 'r}. Thus a},---,aj can be
determined by the s conditions

—(ri’ Ari)+al!(Ari’ Ari)+ te +a;‘g(Ari, Asri) :0’
3.1)
—(r;, A°r)+ aij(A’r, Ar)+ - - - +ai(A’r, A’r,)=0.

DEFINITION 3.2. For k=0, +1,+2, - - -, and z, = A"r let the moments i of the
vector r# 0 be defined by uy; =z z.

Remark 3.1. Let W,=(AR,)T(AR,) and m;=r] AR, where R;=[r,---, A" 'r;].
The system (3.1) above can be written as W,a = m, where a=[a},- - -, aj]".

The matrix W, is nonnegative semidefinite [3]. It is positive definite if the subspace
R; has dimension s.

Remark 3.2. The error functional E(x) has a nontrivial minimum x;;, # x; on the
affine subspace L; if the zeroth moment of A/, j=1,- - -, s with respect to the vector
r; is nonzero for at least one index j.

Proof. Consider the approximate solution %,y = x; + (uo;/ w;, j)Aj “'r,. Since uo, S
0 the inequality E{(x;+;) = E(X;1+1) < E{(x;) holds. 0

The condition m; # 0 guarantees that a (unique) solution a#0 exists for W,
nonsingular. If W; is singular then it has rank greater than or equal to 1, because r; # 0
implies that the entry u, ; # 0. In this case a can be computed by using the generalized
inverse of W,.

Remark 3.3. If A is definite E(x) has a nontrivial minimum, because pu,,=
(r;, Mr;)> 0 where M is the symmetric part of A.

Remark 3.4. The s-step MR method in exact arithmetic generates the same iterates
x; as the GMRES (s) method. However, GMRES (s) is stable, for large s, because it
forms an orthonormal basis for the Krylov basis which generates the affine subspace
L,. The s-step MR may suffer from instability for large s.

The rest of this section contains results on convergence of the s-step minimal
residual and GMRES (s) methods. All that is needed is to find conditions under which
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the error functional E(x) has a nontrivial minimum in L;. Let the eigenvalues of a
symmetric matrix B of dimension n be denoted by

A (BY=---=A(B).

. LEMMA 3.1. For the nonsingular matrix Alet M = (A+ AT)/2 and N=(A—AT)/2
be its symmetric and skew-symmetric parts. Then the symmetric and skew-symmetric parts
of A> are M*+ N* and MN + NM, respectively. The matrices M and N* are symmetric
with  eigenvalues 0=A,(M?)=---=A(M?* and A, (N)=---=1,(NH=0,
respectively.

Proof. Computing the symmetric and skew-symmetric part of A? yields
M?+ N? and MN + NM, respectively. Since M is symmetric, M? is symmetric with
positive eigenvalues. Since N is skew symmetric, N? is symmetric with negative
eigenvalues. 0

The following theorem provides sufficient conditions under which s-MR and
GMRES (s) (with s=2) converge.

THEOREM 3.1. Assume that the degree of the minimal polynomial r, is greater than
sz2.If (a)d = A,(M?)+ A, (N?)>00r(b) d =—[A;(N?)+ A,(M?)]> 0, then the matrix
A? is definite and s-MR or GMRES (s) converge to the solution. The residuals satisfy

(Fix1, fie) ==[1- dz/)\l(A2TA2)]i(ro, ro).

Proof. 1t is easy to show that in a direction p; the residual norm is minimized for
a; = (r;, Ap;)/ (Ap;, Ap;) and the minimum is |7 ||>= | n||>— (r:, Ap;)*/ Ap:, Ap;). Now,
to prove the inequality note that if the one-dimensional steepest descent in the direction
p; = Ar; is followed, instead of the steepest descent defined by the s directions R;, the
following inequality is obtained

- (ri, Azri)z
(3.2) ”ri+1||§§“ri+1”§=”rillg_m-
The following inequality also holds:
(3.3) (i, ri)/(ri,AZTA2ri)§I/Al(AZTAz)-

Since M” and N? are symmetric matrices the following inequalities hold
(3.4) A(M?)+ 1, (NP =A,(M?+ N?),
(3.5) A MDA (NH]= A (M*+ N = -7, (M*+ N?).

Inequality (3.4) or (3.5) combined with assumptions (a) or (b), respectively, yields
|A,(M?+ N?)|= d > 0. Thus, under (a) or (b) the symmetric part of A” is either positive
or negative definite and

I(ri, Az"i)/("i, ri)[ = I(ri, [M2+ Nz]ri)/(ri, "i)[i Enin [)‘k(M2+N2)| zd

The last inequality combined with inequalities (3:2) and (3.3) proves the inequality in
the theorem statement. 0

This result is of interest only for indefinite matrices. Note that in Theorem 3.1
condition (a) means that the matrix A has a small skew-symmetric part, while condition
(b) means that it has a large skew-symmetric part.
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CoRroLLARY 3.1. For A nonsingular, symmetric, or skew-symmetric indefinite, the
s-step MR and GMRES (s) methods (with s =2) yield residuals satisfying

7 2= 11— (A (AD)/ A (A*TA?) ] (10, 7o),

and the methods converge.

The following example gives an application of Theorem 3.1.

Example. Let A be of even dimension and with skew-symmetric part consisting
of the repeated diagonal block [§ ’], with b>0. If either d =[—b*+A,(M?)]>0 or
d =[b*>—A,(M?]>0 then s-MR and GMRES (s) (with s =2) converge.

In the next section s-step generalizations for the nonsymmetric extensions of
conjugate residual in [9] are introduced.

4. The s-step GCR and s-step Orthomin (k) methods. The s-step MR is used to
obtain s-step generalizations for GCR and Orthomin (k). The s directions
{r,,- -+, A" 'r} are formed and are AT A-orthogonalized simultaneously to all (in
GCR) or k (in Orthomin (k)) of the preceding directions {p}, - - -, p;}'=i, where j; =0
or i —k+1 for GCR or Orthomin (k), respectively. The norm of the residual |r,,,| is
minimized simultaneously in all s new directions in order to obtain x;.,. This method

is summarized in the following algorithm.

ALGoriTHM 4.1 (The s-step generalized conjugate residual method (s-GCR)).
Xo5 P(1)= ro=f—Ax,, - ,P(S):Arlro
For i =0 Until Convergence Do

Select @) to minimize E(x;¢,) =] f— Ax;4] in

Xi+1 :xi'f'a}P:!'*" --+aip;

over L,;= {x,-+ Y alp]

j=1

Compute 1,1y =f—Ax;41,and Ariiq, - - -, Ay o

Select {b{*™} to AT A-orthogonalize {p}.,, - - -, pi+1} against {p}, - - -, p;HZ},

where

Pisi =l t Z {b§1’1)P} R bﬁ'l’S)P;}

J=Ti
pri=Ar,+ Z {b;('z’l)P} +---t b]<2’S)p;}

J=h

Pii=A"r+ T {b"pj+- - -+ b pj}.

J=n

EndFor

The parameters {bﬁ"'”)} and a; are determined by solving linear systems of equations
of order s. For simplicity in the notation the i index is dropped from the parameters
b. Next some notation is introduced in order to specify the algorithm more precisely.

Remark 4.1. (1) Let W, =[(Ap!, Ap))], where 1=j, [=s.

(2) Let a;=[al,---,ai]” be the steplengths in updating x; and m; =
[(ri, ApD), - - -, (n, Api]".

(3) QI' = [(Alri+1 s Ap}), T, (Alri+1 5 APJS')]T and b;l = {b§I’M)}fn=1 forj=j;,---,iand
I=1,---,s
(4) P=[pi,--,pil

(5) Ri=[n, Ar;, - - -, As_lri]

The notation P, and R; will also be used to denote the subspaces generated by
{pi,---,piand {r, Ar,, - - -, A*'r}, respectively.
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The following linear systems of order s must be solved in executing one step of
s-step GCR (Orthomin (k)):
Wa,—m; =0,
Wbi+c/=0 forj=j,---,iandI=1,---,s,

The matrix W, is invertible if and only if p;,- - -, pi are linearly independent. This
follows from the fact that the bilinear form (AT A-, -) is an inner product.

Next, both the s-step GCR and the s-step Orthomin (k) are presented in one
algorithm.

ALGORITHM 4.2 (The s-step GCR, Orthomin (k) algorithm).
X0 P0=[r0:f_Ax07 ArO, to ,AS—er]
For i =0 Until Convergence Do

Compute m;, W,

Call Scalarl

X1 =X+ Pa;

riv1 =1 _A_Pigi

Compute ¢;,j=ji, ",

Call Scalar2

Compute R;

P =R+ Z I)J[bjl];ll
J=Ji

Compute AP, or,

AP =AR;+ 2 AP;[L’JI];';l

J=ii

EndFor

Scalarl: Decomposes W, and solves Wa;, = m,.

Scalar2: Solves ij,’: —g]’- forj=j,---,iand I=1,---,s, where j;=0,i—k+1
for s-step GCR and s-step Orthomin (k), respectively.

Obviously, for s=1 the algorithm coincides with the standard GCR and
Orthomin (k) algorithms. Note that in s-step Orthomin (0), s directions are used to
improve the solution. The s-step Orthomin (0) is the s-step MR method. The s-step
Orthomin (1) method coincides with s-step conjugate residual if A is SPD [S], [7].
This will be shown in § 5. In general, s will be chosen to be less than k, because s
must be small for stability as in the SPD case [5].

The solution of the linear systems may cause a quick loss of orthogonality of the
s-dimensional direction subspaces P; because the matrix W, may have a very large
condition number. Numerical tests [5], [6], [8] have shown that the condition number
of W, is small for s =5. For s > 5 iterative refinement could be used, without increasing
the amount of vector computation (for s small). Also, the direction vectors within each
subspace P; could A7 A-orthogonalized. Then no linear systems need be solved at
each iteration. However, this would slightly increase the computational work.

5. Convergence of s-step GCR and s-step Orthomin (k). In this section convergence
proofs for the s-step methods are given and their relation to their one-step counterparts
is discussed. Unlike the standard GCR and Orthomin (k) (i.e., s =1) it will be shown
that the s-step GCR and Orthomin (k) converge even for some indefinite matrices.

Next relations among the direction and the residual vectors of s-GCR (see [9]
for analogous relations for GCR) are established. This will prove the convergence of
s-GCR in at most [n/s] iterations.
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THEOREM 5.1. Let A be either definite or indefinite with A® definite. The solution
vectors x; and the subspaces R;, P; generated by s-GCR at the ith iteration satisfy the .
following relations provided that the degree of the minimal polynomial of r, does not
exceed s{(i+1) and s(i+1)=n.

(i) Piis AT A-orthogonal to P, for i #j,
(ii) r, is orthogonal to AP, for i> j,
(i) (r, Ap)=(r, A'r) forI=1,--- s,
(iv) r, is orthogonal to AR, for i> j,
(v) AP, is orthogonal to AR, for i>j,
(vi) (Api, Apl)=(Api, Ar) for 1=1, j=s5,
(vii) (r;, Ap))=(ro, Ap}) forj=iand 1=Iss.
(viii) {Ro, Ry, -, R}={Py, Py, -, P}={rg, Ary,- - -, A(Hl)s-l"o}-
(ix) Ifr,#0, then ai_,#0.
(x) x4, minimizes ||r.;,||3 over the translated subspace x,+{P,, - - -, P}.

Proof. The definition of the direction vectors P, implies (i). From r,=
r,.1— AP, ,a; ,and (i), (ii) follows by induction. The defining relations for {p}, - - -, p5}
and (ii) give (iii).

To prove (iv) the defining identity for AP, is rewritten

AR;=AP,-U{AP,_,, -+, APy}

where I{ } is a linear combination of the vectors involved. Then (iv) is obtained by
use of (ii). The same equation and (i) gives (v). Condition (vi) is shown from the
definition of p/, j=1,---,s and (i). The identity r;=r_1—AP_,a;_, and induction
give (vii).

To prove (viii) note that the Krylov subspace basis contains the other two sets of *
vectors defined in (viii). Also, it is easy to check that {P,,: - -, P;} is contained in
{R,, - - -, R;} because every direction can be written in terms of A'r,, I=1,--- s By
(i) the dimension of {P,, - - -, P;} equals (i+1)s, which is the dimension of the Krylov
basis given as the last set in (viii). Therefore all the subspaces are equal.

Condition (ix) states that the new (nonzero) residual lifts the iteration out of the
current Krylov subspace. Then the assumption on the degree of the minimal polynomial
of r, proves that the directions {p}, - - -, pi} are independent.

First, let A be definite. If Gramm-Schmidt A” A-orthogonalization of P, starting
with the vector p} is used, we can see that the definiteness of A guarantees that a}# 0
forj=1,---,s, as in the standard GCR. Second, let A be indefinite with A° definite;
then (r,_,, Api_)=(r,_,, A’r,_;)>0. Minimizing ||r,.,| only along the direction p}
implies

a;=(r;, Api)/(Api, Api) = (i, A’r)/(Api, Api) > 0.
Now, since the step x;.; = x; + P,g; gives the minimum residual norm in the subspace
P, it is clear that a;# 0. This. can be easily checked if we use Gramm-Schmidt A7
A-orthogonalization of P, starting with the vector p;, and then obtain the steplengths
al.

To prove (x) the norm of the residual is expanded as follows:

[ricill = (ro, 1) =2 ¥ T aj(ro, Apj)+ ¥ X X ajaj'(Ap}", Ap).

j=01I=1 j=0m=11I=1

Since (ry, Ap}) =(r, ApJ’-) by (vii), the above expression can be rewritten in matrix form:

i i
||ri+1”=("o, ro)—2 Z ng’;nj+ Z gjrvngj-
j—-o =0
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Now it can be seen that minimizing ||r,.,]| over the affine subspace xo+{P;, " - -, P;}
is equivalent to solving the linear systems

Wa.=m

JZj =

j=0,- i

This is precisely the definition of g; in s-GCR and (x) is proved. 0

CoROLLARY 5.1. Under the assumptions of Theorem 5.1 the s-step GCR converges
to the solution in at most [n/s] iterations. If the matrix A is definite and x, is the same
Jor GCR and s-GCR then x,; of GCR is the same (in exact arithmetic) as x; of s-GCR.

Proof. The first claim follows from Theorem 5.1 (iv) and (viii), and the second
claim follows from (x). O

The following theorem, whose proof is completely analogous to Theorem 5.1,
shows the relations satisfied by the vectors generated by s-Orthomin (k). This theorem
shows that s-Orthomin (k) is a generalization of Orthomin (k) for A definite. Further-
more, the iteration does not break down for a class of nonsymmetric indefinite matrices.

THEOREM 5.2. Let A be either definite or indefinite with A° definite. The solution
vectors x; and the subspaces R;, P, generated by s-Orthomin (k) at the ith iteration satisfy
the following relations provided that the degree of the minimal polynomial of r, does not
exceed s(i+1) and s(i+1)=n.

(i) P is AT A-orthogonal to P, forj=i—k,--+,i—1, izk,
(ii) r, is orthogonal to AP, forj=i—-k—1,---,i—-1,izk+1,
(i) (r;, Ap))=(r, A'r) for1=1,- -+, s,
(iv) r is orthogonal to AR,_,,
(v) (Ap:, Ap))=(Ap!, A'r) for 1=j,I=s,j=i—-k ---,i, and k=i.
(vi) (r;, Ap)=(ri_«, Ap}) for 1=I=s.

(vii) Ifr;#0, then ai_, #0.

(viii)  x;,, minimizes || r;1,|| over the space x;_,,+{P_,- -+, P;}.

REMARK 5.1. If A is indefinite and the assumptions of Theorem 3.1 hold, then
A’ is definite and Theorems 5.1 and 5.2 hold with s=2.

Next it is proved that s-Orthomin (k) converges but may require an infinite number
of steps. The following theorem gives a bound on the norm of the residual error for
all the s-step methods considered here. Theorem 5.3 and Proposition 5.1 are an
adaptation of results on GCR and Orthomin (k) in [9].

THEOREM 5.3. Let {r;} be the residual vectors generated by s-Orthomin (k), s-GCR,
s-MR or GMRES (s). The following inequalities on the norm of the residual error hold.
For A definite,

A (M)?

Iz 1- 2200 )

For A indefinite, A® definite, with s even, s =2, and under the hypothesis (a) or (b) of
Theorem 3.1,

IriclZ=01-d?/ 1 (A*TA?) |3

Proof. Consider the s-step minimal residual method at the ith iterate x; of s-
Orthomin (k). The iterate and the residual given by s-MR are

Xa=%+airn+---+ajA'rn,
Fo1=F—ajAr,—- - —aiA’r

where P,={r,---,A° 'r,} is the direction subspace of the s-dimensional steepest
descent, and Wg; = m;. The matrix W, of inner products of the subspace P; has the
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special form
“/i = [(A1+lri’ Ak+1ri)]’ lé l, kés’

and m; =[(r, Ar), - - -, (r,, A°r;)]". The matrix W; of moments is positive definite as
long as the degree of the minimal polynomial of 7, is greater than or equal to s. Since
the residual r,,, generated by GCR, s-Orthomin (k) ((iv) of Theorem 5.1, Theorem
5.2) is orthogonal to AR; the inequality ||#;+;]|2 = || Fi+1]|2 follows.

If A is definite then the first iterate of s-MR is the same as the sth iterate of GCR.
This is because the two methods minimize the same error functional on the same
translated Krylov subspace xo+{ro, - - -, A°"'r,}. Using s iterations of 1-MR we obtain
the bound for the definite case

An(M) ]

I3 a3l 12200

Similarly, we obtain the bound for the indefinite case by use of Theorem 3.1 and s/2
iterations of 2-MR. a

Let IT denote the set of polynomials g; of degree not exceeding s(i+1) such that
9:(0) = 1. The spectrum of A is denoted by o (A). The Jordan canonical form of A is
denoted by J = T 'AT. The condition number of the nonsingular matrix T is defined
as k(T)= | T LI T]-

PrOPOSITION 5.1. Let {r;} be the residual vectors generated by s-GCR. Then for A
indefinite, A° definite, with s even, s=2 and under the hypothesis (a) or (b) of
Theorem 3.1,

2= min g (A 37l =[1-d%/ 2 (ATTAD D2 r 3.

qs(i+1)€
If A has a complete set of eigenvectors then
”n”gé K(T)As(i+l)”ro”§
where

Agen= min  max |gy.in(A)]
s+ €Il Aea(A)
If the matrix A is normal then ||r.||3= Agiin i roll3-

Proof. From r,=r,_,—AP,_,a,_; and Theorem 5.1 (ix) it follows that r;=
gsi+1(A)r, for some polynomial g+, in II. Theorem 5.1 (x) implies that |r,[5=
ming, ., e |46+ (A) 7o |3 and the first inequality is proved.

The polynomial g,(A) =1+ aA® is used to obtain

min gy (A)Z1r]l2= [[g(A)T 2] 0125 g2(A) 32 Iro 13-

as(i+1)€
Since
(x, A’x (A%x, Azx)]
A 2=max|:1+2ar > +a? d
”‘12( )”2 nas (x, %) (x, %)
and
2 2
AxAN) ) 4074,

(x, x)
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and by Theorem 3.1 the symmetric part of A’ is either positive or negative definite and

(x, A*x)

(%, x)

= min |A(M?+N?)|zd>o0.
k=1,-,n

Thus, the following inequality is true:
lg.(A)|3=1+2ad+A,(A*TA%)a>.

The right-hand side expression is minimized by « = d/A,(A*TA?), giving a minimum
of [1—(d*/A(A*TA?)). This proves the second inequality. The third and fourth
inequality can be easily proved by considering the Jordan decomposition of A. D

If the spectrum of A lies entirely in the positive or negative open half plane then
an analysis by Manteuffel [15] shows that minqx(‘_ﬂ)enllqs<,»+1)(A)H§ and A1) approach
zero as i~ o0 which also implies convergence of s-GCR.

CoROLLARY 5.2. Let {r;} with i=j(k+1) be the residual vectors generated by
s-GCR (k). For A indefinite, A® definite, with s even, s =2 and under the hypothesis (a)
or (b) of Theorem 3.1,

Jj
urﬂkmn%é[ min llqs<k+1><A>n3] ol

Gs(k+1y€ll
and hence
Irl2=[1-d%/ A (APTAH P2 3.
Thus, s-GCR (k) converges. If A has a complete set of eigenvectors then
[0 nll3 = [c(T) s n] 7013

If the matrix A is normal then |[1iuci)ll3 = [Asi ] |70ll3-

Proof. The proof follows from Theorem 5.1 and Proposition 5.1. 0

Residual error bounds, which involve the spectral radius of the skew-symmetric
part of A, are now given. The next lemma can be found in [9].

LeEMMA 5.1. For any real vector x #0 and A positive definite,

(x, Ax) _ A, (M) _
(Ax, Ax)~ A (M)A (M)+p(N)*™

¢

where p(N) is the spectral radius of the skew-symmetric part of A.
Proof. See [9]. ul
If this lemma is applied to the matrix A or — A” the following inequality is obtained.
CoOROLLARY 5.3. If A is definite or indefinite under the hypothesis of Theorem 3.1
then the following inequality holds:

(x, A’x) _ d _
(A’x, A’x) ~ dd,+p(MN+ NM)*’

C2

where d;=max,_; ..., [\ (M*+ N?)[} and (M*+ N?), (MN + NM) is the symmetric
and skew-symmetric part of A%, respectively.

Proof. By the assumptions Ais positive or negative definite. The inequality follows
by using Theorem 3.1 and by applying Lemma 5.1 to A> or —A>. O

THEOREM 5.4. Let {r;} be the residual vectors generated by s-Orthomin (k), s-GCR,
s-MR and GMRES (s). Then for A definite

”ri+1“§§[C1]S“ri”§,
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and for A indefinite, A’ definite, with s even, s =2, and under the hypothesis (a) or (b)
of Theorem 3.1,

Iral3=lel 2 nl3-

Proof. As in Theorem 5.3 the proof is reduced to proving the inequalities for the
s-MR case. Then by making use of Corollary 5.3 in a way similar to proving Theorem
3.1, the inequalities are proved. 0

Next, it is shown that if the matrix is symmetric, skew-symmetric, or its symmetric
part is the identity matrix, then s-Orthomin (1) is equivalent to s-GCR.

THeEOREM 5.5. If A=M, A=N, or A=I—N, with M and N symmetric and
skew-symmetric, respectively, then s-Orthomin (1) is equivalent to s-GCR.

Proof. 1t suffices to show that b; =0 for j<i—1. From Remark 3.1 this is true if
_C,I: =[(Ar4, AP}), co (A, APJS')]T =0 forj=i-1

It must be shown that

(A"ritq, AP;',) =0

fork,v=1,---,s.
(i) For A=M, or A= N this is equivalent to

(Fis1, AK(AP;)) =0

for k,v=1,---,s and j=i—1; this is true from Theorem 5.1 (ii) and (vii).
(ii) For A=1— N, it follows that

(Ary, AP;) ={Fir1, AP;)'*' (Fix1s NAP;) =—(ti41, AZP;)) =0.

Since A’=T1—-2N+ N?and (I -2N)r.,, Ap}) =0 from the preceding cases, it follows
that

(Azrx'+1, AP}I) = (Nzri+1, AP;) = (r,-H s NZAP}I) = (r,»ﬂ, AZAP;'/) =0.

The cases (A“r,.,, Ap;) =0 for k=3, - - -, s follow inductively. 0

CoOROLLARY 5.5. For A indefinite and A° definite, with s even and s=2, and
under the assumptions of Theorem 3.1, s-Orthomin (1) converges in at most [n/s]
iterations. 0

Next, the s-step methods are compared to their one-step counterparts.

6. Work and storage comparison of s-step and one-step methods. In this section the
computational work and storage of the s-step methods is compared to the standard
ones. The vector work and storage for the single iteration of an s-step method is given
in Table 6.1. For comparison of the mathematically equivalent methods GMRES (s)

TABLE 6.1
Vector operations for the jth iteration of the s-step (GCR, Orthomin (k), MR, GCR (k)), and GMRES
(s); sy =s(s+1)/2+s.

Vector
operation s-GCR s-Orthomin (k) s-GCR (k) s-MR GMRES (s)
Dotprods (+1)s?+s, min ([(j+1)s2+s,], [ks®’+5]) (fmod (k)+1)s>+s, 51 5
Vupdates  2(j+1)s+s min ([2(j+1)s*+s], [2ks’+5]) 2(jmod (k)+1)s®’+s  2s 5
Matvecs s s s s s

Storage 2(j+1)s+2 (2ks+s+1) (2ks+2s5+1) s+2 s+2
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and s-MR the work for GMRES (s) is included. Note that the work for the s-
Orthomin (k) is (a) the same as s-GCR if j =k —1 and (b) the same as iteration k—1
of s-GCR if (k—1) <. Storage (at the (i —1)-th iteration) includes the matrix A and
the vectors: x;, r;, AR, { P,}Y,Zi ,{AP,})Z} ; for s-GCR the vectors AR, are storedin AP,,,.

Next, the s-step methods are compared to the standard ones.

Remark 6.1. Let A be definite and let the s-step and the standard methods start
with the same initial solution iterate x,. The iterate x; produced at the i —1 iteration
of the s-step methods s-MR is the same as x,; produced at the si—1 iteration of
GCR(s). Similarly, the iterate produced at the i —1 iteration of s-GCR, s-GCR (k) is
the same as the iterate produced at the si—1 iteration of GCR, GCR((k+1)s),
respectively. The proof of this remark is derived from Theorem 5.1(ii).

From Theorems 4.1(b) in [9] and 5.2(ii) in this paper, it follows that the methods
Orthomin ((k+1)s—1) and s-Orthomin (k), respectively, minimize the norm of the
residual error on two different subspaces of the same dimension (k+1)s. This does
not imply that the two methods produce (in exact arithmetic) the same solution iterates.
Nevertheless, it seems useful to compare the work and storage of these two methods.

It is clear that in order to obtain (in exact arithmetic) the same iterate from the
s-step methods and their equivalent standard ones the same matrix vector products
are needed. However, the linear combinations (measured as vector updates) and the
dotproducts may vary. Table 6.2 contains the total number of the dotproducts and
vector updates for computing the iterate x; of s-step GCR and Orthomin (k) and the
iterate x,; of their one-step equivalent methods. The table entries for GCR and s-GCR
can be easily derived from Tables 2.1 and 6.1.

TABLE 6.2
Vector operations to form x,; of GCR and Orthomin ((k+1)s —1) or x; of s-GCR and s-Orthomin (k);
si=s(s+1)/2+s.

Vector

operation GCR s-GCR Orthomin ({(k+1)s—1) s-Orthomin (k)

Dotprods (i2s%+5si)/2  (s2i2+3si)/2  si[(k+1)s+1]- i(ks®+5,)—
(k+1)s[k+1)s—5]/2 s(k*+3ks+1)/2

Vupdates i2s2+4si sPi(i—1)+2si 2s%i(k+1)— 2iks® —
(k+1)s[(k+1)s—5]-2 s2(k®+3k—2)+2s(2s — 1)

The gap in vector computations in the case of GCR and s-GCR can be easily
read off Table 6.2. For Orthomin ((k+1)s—1) and s-Orthomin (k), consider only the
terms involving i and ignore the rest assuming that k and s are small. Then
Orthomin ((k+1)s—1) requires is(s —1)/2 more inner products and 2si more vector
updates than the s-Orthomin (k). This is due to the fact that in s-step methods the
directions within the s-dimensional subspaces P, are not orthogonalized. Note that
the storage for s-Orthomin (k) is increased by s vectors compared to the storage of
Orthomin ((k+1)s—1).

7. Summary and future work. s-step generalizations of some Krylov subspace based
iterative methods for nonsymmetric linear systems of equations have been derived. It
is proved that the s-step GCR, s-step Orthomin (k) and s-step MR methods converge
for all symmetric, nonsymmetric definite, and some nonsymmetric indefinite coefficient
matrices. The GMRES(s) method in exact arithmetic gives the same solution iterate
as the s-step MR method. Thus all the convergence theorems proved for s-MR apply
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for the GMRES(s) method. In {8] the s-step GMRES(m) method is derived and
comparisons to the methods derived here are made on parallel vector computers.

Numerical tests [8] on problems arising in the discretization of elliptic partial
differential equations suggest that they are stable for small s (s =<5). The basic vector
computations (inner products, vector updates, matrix vector products) are grouped
together in the s-step methods and thus they are expected to have superior performance
to the standard methods on parallel and vector computers. The implementation of
these methods on parallel vector computers is the subject of work which will be
published elsewhere.

Acknowledgment. The author thanks the anonymous referees whose constructive
comments helped enhance significantly the quality of presentation of this article.
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