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SUMMARY

A serious difficulty in concurrent programming of a distributed system is how to deal with scheduling
and load balancing of such a system which may consist of heterogeneous computers. In this paper, we
formulate the static load-balancing problem in single class job distributed systems as a cooperative game
among computers. The computers comprising the distributed system are modeled as M/M/1 queueing
systems. It is shown that the Nash bargaining solution (NBS) provides an optimal solution (operation
point) for the distributed system and it is also a fair solution. We propose a cooperative load-balancing
game and present the structure of NBS. For this game an algorithm for computing NBS is derived. We
show that the fairness index is always equal to 1 using NBS, which means that the solution is fair to all
jobs. Finally, the performance of our cooperative load-balancing scheme is compared with that of other
existing schemes. Copyright © 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A distributed system can be viewed as a collection of computing and communication resources
shared by active users. Often, jobs in a distributed system can be divided into different classes

∗Correspondence to: D. Grosu, Department of Computer Science, Wayne State University, 5143 Cass Avenue, Detroit, MI
48202, U.S.A.

†E-mail: dgrosu@cs.wayne.edu

Contract/grant sponsor: NASA; contract/grant number: NAG 2-1383
Contract/grant sponsor: NSF; contract/grant numbers: ASC-9634775, CCR-0312323, DGE-0654014

Copyright q 2008 John Wiley & Sons, Ltd.



D. GROSU, A. T. CHRONOPOULOS AND M. Y. LEUNG

based on their resource usage characteristics and ownership. For example, the jobs that belong to
a single user can form a class. Alternatively, we can distinguish different classes of jobs by their
execution times. Depending on how many job classes are considered we can have single class
or multi-class job distributed systems. In this paper, we consider the load-balancing problem in
single class job distributed systems. The single class job system refers to jobs that have the same
computational requirements and take unit time to execute.
There are three typical approaches to load-balancing problem in single class job distributed

systems: global, non-cooperative and cooperative.
In the global approach there exists only one decision maker that optimizes the response time

of the entire system over all jobs. The goal is to obtain a system-wide optimal allocation of
jobs to computers. This approach has been studied extensively using techniques such as nonlinear
optimization [1,2] and polymatroid optimization [3]. The load-balancing schemes that implement
the global approach are centralized and determine a load allocation resulting in a system-wide
optimal response time.
In the non-cooperative approach each of (infinitely or finitely) many jobs optimizes its own

response time independently of the others and they all eventually reach an equilibrium. This situation
can be modeled as a non-cooperative game among jobs. At the equilibrium solution a job cannot
receive any further benefit by changing its own decision. For an infinite number of jobs, this problem
has been studied in [4]. The equilibrium is called Wardrop equilibrium. For a finite number of
jobs, the equilibrium is the Nash equilibrium [5]. The non-cooperative load-balancing schemes are
distributed. Their main drawback is that under certain conditions [6] the equilibrium load allocation
provides a suboptimal system-wide response time.
In the cooperative approach several decision makers (e.g. jobs, computers) cooperate in making

the decisions so that each of them will operate at its optimum. The decision makers have complete
freedom of preplay communication to make joint agreements about their operating points. This
situation can be modeled as a cooperative game and game theory offers a suitable modeling frame-
work [5]. The cooperative schemes provide a Pareto-optimal response time and also guarantee the
fairness of the resource allocation to all the jobs. The fairness of allocation considered here requires
that the jobs obtain the same response time independent of the allocated computer.
Related work: The problem of static load balancing in single class job distributed systems has

been studied in the past using the global and the non-cooperative approach. This paper investigates
the cooperative approach. Preliminary results on this were reported in our previous paper [7].
The focus of the global approach is on minimizing the expected response time of the entire

system over all jobs. Tantawi and Towsley [2] formulated the load-balancing problem as a nonlinear
optimization problem and gave an algorithm for computing the allocation. Kim and Kameda [8]
derived a more efficient algorithm to compute the allocation. Li and Kameda [9,10] proposed
algorithms for static load balancing in star and tree networks. Tang and Chanson [1] proposed and
studied several static load-balancing schemes that take into account the job dispatching strategy.
Also, there exist several studies on static load balancing in multi-class job systems [11–14]. A
closely related problem to the static load-balancing problem studied in this paper is the scheduling
of divisible loads. Scheduling divisible loads problem is the subject of divisible load theory (DLT)
[15]. DLT considers the scheduling of arbitrarily divisible loads on a distributed computing system.
DLT problems have large data sets where every element within the set requires an identical type
of processing. The set can be partitioned into any number of fractions where each fraction requires
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scheduling. These problems commonly arise in many domains including image processing [16],
databases [17], linear algebra [18], visualization [19] and multimedia broadcasting [20]. Several
divisible load scheduling algorithms based on the global approach were proposed in [15].
There exist only few studies that use the non-cooperative approach for load balancing in dis-

tributed systems. A load-balancing algorithm for single class job systems that computes theWardrop
equilibrium was proposed by Kameda et al. [4]. They also proposed a load-balancing algorithm
for multi-class job systems based on the non-cooperative approach. Grosu and Chronopoulos [21]
proposed a game-theoretic model and an algorithm for load balancing based on Nash equilibrium.
Penmatsa and Chronopoulos [22] extended the non-cooperative model proposed in [21] to include
resource pricing. Roughgarden [23] formulated the load-balancing problem as a Stackelberg game
and showed that it is NP-hard to compute the optimal Stackelberg allocation strategy. The problem
of routing traffic in networks assuming non-cooperative game models was studied in [24–28]. Sev-
eral researchers considered the design of algorithms for resource allocation involving self-interested
participants [29–31]. Nisan and Ronen [31] proposed mechanisms that solve the problem of task
scheduling on selfish unrelated machines.
We are not aware of any research employing the cooperative approach to solve the static load-

balancing problem in distributed systems. The cooperative approach was used extensively in net-
working to solve the problem of fair bandwidth allocation between applications [32–34].
Motivation and contribution: The existing studies on static load balancing considered optimal

allocations that minimize the overall system expected response time. However, in such allocations
some jobsmay experiencemuch longer expected response time than others.We consider the problem
of static load balancing that has the objective of finding an allocation of jobs to computers that
yields an equal or approximately equal expected response time for all the jobs. We say that such an
allocation is fair (to all the jobs). Fairness of allocation is a major issue in modern utility computing
systems such as Amazon Elastic Compute Cloud [35] and Sun Grid Compute Utility [36]. In such
systems, users pay the same price for the compute capacity they actually consume. Guaranteeing the
fairness of allocation to the users in such fixed price settings is an important and difficult problem.
Our goal is to find a formal framework for characterizing and designing fair allocation schemes. The
framework is provided by cooperative game theory. Using this framework we formulate the load-
balancing problem in single class job distributed systems as a cooperative game among computers.
We show that the Nash Bargaining Solution (NBS) provides a Pareto-optimal operation point for
the distributed system. We give a characterization of NBS and an algorithm for computing it. We
prove Pareto optimality and fairness of the allocation. We study the performance of our proposed
load-balancing scheme via simulation. We make comparisons with two other static representative
schemes: (i) a scheme that yields the system-wide optimal expected response time that is used as a
baseline scheme for our experiments and (ii) a scheme that allocates jobs to computers in proportion
to their computing power and yields the worst expected response time of the static schemes in the
literature. This comparison shows that our new allocation scheme yields a very good performance
and fairness. To the best of our knowledge this is the first work that models the static load-balancing
problem in distributed systems as a cooperative game that uses the NBS as a solution. Previous
research considered the cooperative approach and the NBS for solving the bandwidth allocation
problem in networking [34].
Organization: This paper is structured as follows. In Section 2 we present the NBS concept for

cooperative games and state several lemmas and theorems needed for our results. In Section 3 we
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introduce our cooperative load-balancing game and derive an algorithm for computing the solution.
In Section 4 the performance and fairness of our cooperative solution is compared with those of
other existing solutions.

2. COOPERATIVE GAME THEORY CONCEPTS

In a cooperative game, players have complete freedom of preplay communication to make joint
agreements about their operating points. A formal definition of a cooperative game is as follows.

Definition 2.1 (A cooperative game). A cooperative game consists of

(i) M players.
(ii) A non-empty, closed and convex set X ⊆RM , which is the set of strategies of the M players.
(iii) For each player i , i = 1, 2, . . . , M , an objective function is fi . Each fi is a function from

X to R and it is bounded above. The goal is to maximize simultaneously all fi (x).
(iv) For each player i , i = 1, 2, . . . , M , a minimal value of fi , denoted u0i , is required by player i

without any cooperation to enter the game. The vector u0= (u01, u
0
2, . . . , u

0
M ) is called the

initial agreement point.

Example 1 (A cooperative game in distributed systems). In the context of resource allocation
in distributed systems the players could represent computers. The objective function fi (x) could
represent the inverse of the expected response time at computer i , where x is the vector of job arrival
rates at each computer. The initial values u0i of each computer represent a minimum performance
guarantee the computers must provide to the users.

Definition 2.2 (The set of achievable performances). The set of achievable performances with re-
spect to the initial agreement point u0 is the set G defined by G={(U, u0)|U ⊂RM is a non-empty
convex and bounded set, and u0 ∈RM is such thatU0={u∈U |u≥u0} is non-empty}whereU ⊂RM

is the set of achievable performances.

We are interested in finding solutions for the cooperative game defined above that are Pareto
optimal. In the following we define the notion of Pareto optimality [37].
Definition 2.3 (Pareto optimality). Assume that x ∈ X and f(x)= ( f1(x), . . . , fM (x)), f(x)∈U .
Then x is said to be Pareto optimal if for each x ′ ∈ X , fi (x ′)≥ fi (x), i = 1, . . . , M imply fi (x ′)=
fi (x), i = 1, . . . , M .

Remark. Pareto optimality means that it is impossible to find another point that leads to superior
performance for one player, without strictly decreasing the performance of another player. For the
game given in Example 1, an allocation x is Pareto optimal if it is impossible to find another
allocation x ′ that leads to a lower response time for all the computers in the system.

In general, for an M-player game the set of Pareto-optimal points form an M − 1 dimensional
hypersurface consisting of an infinite number of points [38]. What is the desired operating point
for our system among them? To answer this question we need additional criteria for selecting the
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optimal point. Such criteria are the so-called fairness axioms that characterize the NBS [39]. Owing
to its fairness properties the NBS is a natural candidate for the design of fair allocation schemes in
distributed computing. In the following we discuss the NBS for cooperative games [40,41].
Definition 2.4 (NBS (Stefanescu and Stefanescu [41])). A mapping S : G→RM is said to be an
NBS if:

(i) S(U,u0)∈U0;
(ii) S(U,u0) is Pareto optimal; and satisfies the following axioms:
(iii) Linearity axiom: If � : RM→RM , �(u)=u′ with u′j = a ju j+b j , a j>0, j = 1, . . . , k then

S(�(U ),�(u0))=�(S(U,u0)).
(iv) Irrelevant alternatives axiom: If U ⊂U ′, (U,u0)∈G and S(U ′,u0)∈U , then S(U,u0)=

S(U ′,u0).
(v) Symmetry axiom: IfU is symmetrical with respect to a subset J ⊆{1, . . . , M} of indices (i.e.

if u∈U and i, j ∈ J , i< j imply (u1, . . . , ui−1, u j , u j+1, . . . , u j−1, ui , u j+1, . . . , uM )∈U )
and if u0i = u0j , i, j ∈ J then S(U,u0)i = S(U,u0) j , for i, j ∈ J .

Definition 2.5 (Bargaining point (Stefanescu and Stefanescu [41])). u∗ is a bargaining point if it
is given by S(U,u0). We call f−1(u∗) the set of bargaining solutions.

Remarks. Axioms (iii)–(v) are called the fairness axioms. Essentially they say the following. The
NBS is unchanged if the performance objectives are affinely scaled (Axiom iii). The bargaining
point is not affected by enlarging the domain (Axiom iv). The bargaining point does not depend
on the specific labels, i.e. players with the same initial points and objectives will obtain the same
performance (Axiom v).

Stefanescu and Stefanescu [41] gave the following characterization of the Nash bargaining point.
Theorem 2.1 (Nash bargaining point characterization (Stefanescu and Stefanescu [41])). Let X be
a convex compact subset of RM. Let fi : X→R, i = 1, . . . , M be concave functions, bounded
above. Let f(x)= ( f1(x), f2(x), . . . , fM (x)),U ={u∈RM |∃x∈ X, f(x)≥u}, X (u)={x∈ X |f(x)≥u}
and X0= X (u0) be the set of strategies that enable the players to achieve at least their initial per-
formances. Then

(i) there exists a bargaining solution and a unique bargaining point u∗;
(ii) the set of the bargaining solutions f−1(u∗) is determined as follows: Let J be the set of

players able to achieve a performance strictly superior to their initial performance, i.e.
J ={ j ∈ {1, . . . , M}|∃x∈ X0, f j (x)>u0j }. Each vector x in the bargaining solution set ver-

ifies f j (x)>u0j , for all j ∈ J and solves the following maximization problem:
max
x

∏
j∈J

( f j (x)− u0j ), x∈ X0 (1)

Hence, u∗ satisfies u∗j>u0j for j ∈ J and u∗j = u0j otherwise.

Remark. From the assumption on J , the product in Equation (1) is positive. The players outside of
J are not considered in the optimization problem.
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Yaiche et al. [34] formulated an equivalent optimization problem and proved the following results.
These results are needed for proving Theorems 3.1 and 3.2.

Proposition 2.1 (Yaiche et al. [34]). If each f j : X→R, ( j ∈ J ) is one-to-one on X0⊂ X then
f−1(u∗) is a singleton.

Remark. Following the terminology used in [34], we call the point in this set the NBS in the
remainder of this paper.

Theorem 2.2 (Yaiche et al. [34]). Suppose that for each j ∈ J, f j : X→R, is one-to-one on X0.
Under the assumption of Theorem 2.1, we consider the following problems:

(PJ ): max
x

∏
j∈J

( f j (x)− u0j ), x∈ X0 (2)

(P ′J ): max
x

∑
j∈J

ln( f j (x)− u0j ), x∈ X0 (3)

then

1. (PJ ) has a unique solution and the bargaining solution is a single point.
2. (P ′J ) is a convex optimization problem and has a unique solution.
3. (PJ ) and (P ′J ) are equivalent. The unique solution of (P ′J ) is the bargaining solution.

The theorem above was given by Yaiche et al. [34] who used it to solve a cooperative game for
bandwidth allocation and pricing in broadband networks. In the following section we use this
theorem to derive a solution for our cooperative load-balancing game.

3. LOAD BALANCING AS A COOPERATIVE GAME AMONG COMPUTERS

We consider a single class job distributed system that consists of n heterogeneous computers. Here
the single class job system refers to jobs that have the same computational requirements and take unit
time to execute. Each computer is modeled as an M/M/1 queueing system (i.e. the Poisson arrivals
and exponentially distributed processing times) [42] and is characterized by its average processing
rate �i , i = 1, . . . , n. Jobs are generated by the users with a total average arrival rate �. The total job
arrival rate � must be less than the aggregate processing rate of the system (i.e. �<

∑n
i=1�i ). The

system model is presented in Figure 1. The computers must collaborate in making the decision on
how to split the flow of jobs arriving at the system such that the job expected response time at each
individual computer is minimized. The decision on how the flow of jobs is allocated should also
guarantee a fair treatment of jobs. More specifically, jobs should have approximately equal expected
response times at each computer independently of the computer to which they are allocated. The
expected response time of jobs processed at computer i is given by

Fi (�i )=
1

�i − �i
, i = 1, . . . , n (4)
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Figure 1. The distributed system model.

where �i is the average arrival rate of jobs at computer i . Thus, the problem is to determine the
fraction of the job flow (�i ) that each computer (i) must process. The cooperation among computers,
which is needed to make the decision, is materialized by either peer-to-peer communication or by
considering a central dispatcher that receives the processing rates from computers and makes the
decision on their behalf according to an agreed algorithm.
We model the above load-balancing problem as a cooperative game in which each computer i is

a player that minimizes the expected response time, i.e.

min
�i

Fi (�i ), i = 1, . . . , n (5)

In the description of the general game in the previous section we use a vector as the argument to the
objective functions of the game. As Fi depends only on �i we do not use the vector {�i , �2, . . . , �n}
as its argument.
The load-balancing strategy of computer i is represented by �i . The minimization of the re-

sponse time at each computer should be done such that the vector of load-balancing strategies
{�i , �2, . . . , �n} is feasible. A feasible vector of load-balancing strategies satisfies the following
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constraints:

�i < �i , i = 1, . . . , n (6)

n∑
i=1

�i =� (7)

�i ≥ 0, i = 1, . . . , n (8)

The first constraint is the ‘stability’ condition and the second one is the ‘conservation law’ for
the system of M/M/1 queues used to model the set of computers. As minimizing 1/(�i − �i ),
i = 1, . . . , n, is equivalent to maximizing −�i , i = 1, . . . , n, the optimization problem associated
with the above game is

max
�i

(−�i ), i = 1, . . . , n (9)

subject to

−�i >−�i , i = 1, . . . , n (10)

n∑
i=1

�i =� (11)

−�i ≤ 0, i = 1, . . . , n (12)

We now formally define the cooperative load-balancing game among computers considering the
model described above.

Definition 3.1 (The cooperative load-balancing game). The cooperative load-balancing game con-
sists of

(i) n computers as players.
(ii) The set of strategies, X , is defined by the following constraints:

−�i ≥−�i , i = 1, . . . , n (13)

n∑
i=1

�i =� (14)

−�i ≤ 0, i = 1, . . . , n (15)

(iii) For each computer i , i = 1, 2, . . . , n, the objective function fi (�i )=−�i , �i ∈ X . The goal
is to maximize simultaneously all fi (�i ).

(iv) For each computer i , i = 1, 2, . . . , n, the initial performance u0i =−�i . This is the value of
fi required by computer i without any cooperation to enter the game.
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Remark. To satisfy the compactness requirement for X we allow the possibility that �i = �i . How-
ever, this requirement is eliminated because we assume that all n computers in the set J of players
are able to achieve performance strictly superior to their initial performance. Let the initial agree-
ment point be u0i =−�i , i = 1, . . . , n. We assume that all computers agree that they will choose �i
such that −�i>− �i . This ensures that �i<�i . This is also the ‘stability’ condition for the M/M/1
system.

The cooperation among computers participating in this game is needed to obtain the initial agree-
ment points. This can be accomplished by the computers themselves exchanging their processing
rates or by involving a third party with which the computers communicate, in this case the job
dispatcher.
In order to obtain a load-balancing scheme for the distributed system we need to solve the

game defined above. The solution concept we adopt here is NBS. We next characterize NBS and
then provide an algorithm that computes it. Our results are given in the following theorems and
proposition.

Theorem 3.1. For the load-balancing cooperative game defined above there is a unique bar-
gaining point and the bargaining solutions are determined by solving the following optimization
problem:

max
�

n∏
i=1

(�i − �i ) (16)

subject to

�i < �i , i = 1, . . . , n (17)

n∑
i=1

�i =� (18)

�i ≥ 0, i = 1, . . . , n (19)

Proof. Given in the appendix.

Theorem 3.2. For the load-balancing cooperative game defined above the bargaining solution is
determined by solving the following optimization problem:

max
�

n∑
i=1

ln(�i − �i ) (20)

subject to

�i < �i , i = 1, . . . , n (21)

n∑
i=1

�i =� (22)

�i ≥ 0, i = 1, . . . , n (23)
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Proof. Given in the appendix.

Remark. Theorem 3.2 implies that the solution (NBS) is Pareto optimal.

As a first step in obtaining the solution for our load-balancing cooperative game we solve the
optimization problem given in Theorem 3.2 without requiring �i (i = 1, . . . , n) to be non-negative.
The solution of this problem is given in the following proposition.

Proposition 3.1. The solution of the optimization problem in Theorem 3.2. without the constraint
�i≥0, i = 1, . . . , n is given by

�i = �i −
∑n

j=1� j − �

n
(24)

Proof. Given in the appendix.

In practice, we cannot use this solution because there is no guarantee that �i (i = 1, . . . , n) is al-
ways non-negative. Note that �k is negative when �k<(

∑n
j=1� j − �)/n. This means that computer

k is very slow. In such cases we make the solution feasible by setting �k = 0 and remove computer
k from the system. Setting �k equal to zero means that we do not assign jobs to the extremely slow
computers. Assuming that computers are ordered in decreasing order of their processing rates, we
eliminate the slowest computer and recompute the allocation for a system with n − 1 computers.
This procedure is applied until a feasible solution is found.
Based on this fact and Proposition 3.1, we derive an algorithm (called COOP) for obtaining NBS

for the load-balancing cooperative game. In the following we present this algorithm:

COOP algorithm:
Input: Average processing rates: �1, �2, . . . �n; total arrival rate: �
Output: Load allocation: �1, �2, . . . �n;

1. Sort the computers in non-increasing order of their average
processing rate (�1≥�2≥ · · · ≥�n);

2. c←
∑n

j=1� j−�

n
3. while (c>�n) do

�n← 0
n← n − 1
c← (c − �n+1

n+1 ) n+1n
4. for i = 1, . . . , n do

�i← �i − c

In order to execute COOP we need the values of the total average job arrival rate � and also
the values of the processing rates �i , i = 1, . . . , n. The value of the average job arrival rate at the
system is estimated by considering the number of arrivals over a fixed interval of time (as presented
in [43]). The value of the processing rates is estimated using the same technique by considering
the number of jobs completed over a fixed interval of time.
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COOP must be run periodically or when a change in load (�) is detected. We assume a single
job dispatcher that runs on a dedicated computer. COOP can be implemented and executed by the
dispatcher or it can be replicated and executed by every computer in the system.
In the first case, the computers send their processing rates (�i , i = 1, . . . , n) to the dispatcher that

runs COOP. The processing rates determine the initial agreement point in the proposed cooperative
load-balancing game. Once these are received the dispatcher executes COOP to compute the load
allocation for each computer (�i , i = 1, . . . , n). Once the load allocation is computed the job
dispatcher splits the incoming flow of jobs into n subflows, one for each computer. One commonly
used technique for splitting the job flow is as follows [1]. When a new job arrives in the system it
will be allocated to computer i with a probability given by �i/�. Note that

∑
�i/�= 1 from the

stability condition given in (3).
In the second case, all the computers execute COOP concurrently. The computers exchange

information about their processing rates (�i ) only at the initialization of the system. Thus, before
executing COOP an all-to-all broadcast communication step is required. This information exchange
requires O(n log n) messages assuming that a hypercube-type all-to-all broadcast algorithm is used.
This exchange of information is needed for the decision on the initial agreement points in the
proposed cooperative load-balancing game. After this exchange each computer runs the COOP
algorithm to compute its own allocation. Once the allocation is determined each computer requests
its fraction of load from the dispatcher. Note that the dispatcher is needed only for sending the jobs
from the flow of jobs it receives.
The following theorem proves the correctness of COOP algorithm.

Theorem 3.3 (Correctness). The allocation {�1, �2, . . . , �n} computed by the COOP algorithm
solves the optimization problem in Theorem 3.2 and it is the NBS of the proposed cooperative
load-balancing game.

Proof. Given in the appendix.

Remark. The time complexity of this algorithm is O(n log n). This is mainly due to the procedure
used to sort the computers which is O(n log n). Steps 2–4 take O(n). If the algorithm is used to
compute the allocation several times for the same distributed system then there is no need to perform
the sorting operation each time. Thus, repeated use of the algorithm for the same distributed system
requires only O(n) operations for each use. In general, determining the NBS is an NP-hard problem
[44]. Here it is possible to obtain an O(n log n) algorithm because in the proposed cooperative load-
balancing game the player’s objective functions are continuous and concave.

Example 2 (Applying COOP). We consider a distributed system consisting of three computers with
the following processing rates: �1= 8.0 jobs/s, �2= 5.0 jobs/s, and �3= 2.0 jobs/s. The total arrival
rate is �= 7.0 jobs/s. The computers are already sorted in decreasing order of their processing rate
and we execute Step 2 in which we compute c

c= 15.0− 7.0

3
= 8

3

The while loop in Step 3 is executed because c>�3. In this loop �3= 0, n= 2, and c is updated
to 3 and then the algorithm proceeds to Step 4. In this step, the values of the loads are computed:
�1= 8.0− 3.0= 5.0 jobs/s, �2= 5.0− 3.0= 2.0 jobs/s, and �3= 0 jobs/s.
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Remark. In some cases COOP does not allocate load to some of the slowest computers in the
system. This is due to the fact that the fast computers’ processing rates are so high that allocating
more jobs to them and no jobs to slower computers yields a smaller expected response time for
all jobs.

In order to characterize the fairness of load-balancing schemes we adopt here the fairness index
proposed in [45]:

I (T)= [
∑n

i=1Ti ]2
n
∑n

i=1T 2
i

(25)

Here T= (T1, T2, . . . , Tn), where Ti is the expected response time of jobs that are processed at
computer i . We selected this index because it satisfies the continuity property, which requires that
any change in allocation should be reflected in the fairness metric. This property is not satisfied by
other well-known fairness metrics such as min–max ratio [45].
Remark. The fairness index is a measure of the ‘equality’ of response times at different computers.
Hence, it is a measure of load balance. If all the computers have the same expected job response
times then I = 1, the system is 100% fair to all jobs and it is load balanced. If the differences on
Ti increase, I decreases and the load-balancing scheme favors only some jobs.

For the proposed load-balancing cooperative game we can state the following.

Theorem 3.4 (Fairness). The fairness index equals 1 when we use the COOP algorithm to solve
the proposed load-balancing cooperative game.

Proof. Given in the appendix.

This means that all jobs receive a fair treatment independent of the allocated computer.

Remarks. (i) Although COOP appears to be simple, it is very powerful since it provides a Pareto-
optimal allocation of jobs to computers, it guarantees the fairness of allocation and it has a low
computational complexity. (ii) COOP is a static algorithm. However, it can deal with dynamically
changing loads if it is run periodically or when a change in load (�) is detected.

4. EXPERIMENTAL RESULTS

4.1. Simulation environment

The simulations were carried out using Sim + + [46], a simulation software package written in
C++. This package provides an application programming interface, which allows the programmer
to call several functions related to event scheduling, queueing, pre-emption, and random number
generation. The simulation model consists of a collection of computers connected by a communi-
cation network. Jobs arriving at the system are distributed by a central dispatcher to the computers
according to the specified load-balancing scheme. Jobs that have been dispatched to a particular
computer are run-to-completion (i.e. no pre-emption) in FCFS (first-come-first-served) order.
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Each computer is modeled as an M/M/1 queueing system [42]. The main performance metrics
used in our simulations are the response time and the fairness index. The simulations were run over
several millions of seconds, sufficient to generate a total of one to two million jobs typically. Each
run was replicated five times with different random number streams and the results averaged over
replications. The standard error is less than 5% at the 95% confidence level.
We perform several types of experiments in order to study the impact of system utilization and

heterogeneity on the performance of the proposed scheme. Because each of these experiments
considers a different system configuration and simulation setup we describe the configuration and
the setup in the subsections corresponding to each type of experiment.

4.2. Performance evaluation

For comparison purposes we implement two other representative static schemes: (i) a scheme that
yields the system-wide optimal response time that is used as a baseline scheme for our experiments
and (ii) a scheme that allocates jobs to computers in proportion to their computing power and yields
the worst response time of the static schemes in the literature [47]. All the schemes considered in
this study assume the existence of a job dispatcher that runs the load-balancing algorithm. A brief
description of these schemes is given below:
Proportional scheme (PROP) [47]: According to this scheme jobs are allocated in proportion

to the processing speed of computers. The computers estimate and report their average processing
rates to the dispatcher. The dispatcher computes the load allocated to each computer and sends the
jobs for execution. The following centralized algorithm is used for obtaining the load allocation.

PROP algorithm:
Input: Average processing rates: �1, �2, . . . �n; total arrival rate: �
Output: Load allocation: �1, �2, . . . �n;

for i = 1, . . . , n do
�i←� �i∑n

j=1� j

This allocation seems to be a natural choice but it does not minimize the average response time of
the system and it is not fair.
Overall optimal scheme (OPTIM) [1,2]: This scheme minimizes the expected response time over

all jobs executed by the system. The loads at each computer (�i ) are obtained by solving the
following nonlinear optimization problem:

min
1

�

n∑
i=1

�i Fi (�i ) (26)

subject to the constraints

�i < �i , i = 1, . . . , n (27)

n∑
i=1

�i =� (28)

�i ≥ 0, i = 1, . . . , n (29)
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The following centralized algorithm is used for obtaining the load allocation.

OPTIM algorithm:
Input: Average processing rates: �1, �2, . . . , �n; total arrival rate: �
Output: Load allocation: �1, �2, . . . , �n;

1. Sort the computers in non-increasing order of their average
processing rate (�1≥�2≥ · · · ≥�n);

2. c←
∑n

i=1�i−�∑n
i=1
√

�i
3. while (c>

√
�n) do

�n← 0
n← n − 1

c←
∑n

i=1�i−�∑n
i=1
√

�i
4. for i = 1, . . . , n do

�i← �i − c
√

�i

This scheme provides the overall optimum (global approach) for the expected response time. For
this scheme, the expected response time of homogeneous jobs is the same for all jobs before they
are allocated to computers but not after the allocation has been made. As the jobs do not obtain the
same expected response time after they are allocated this scheme is not fair.
We next evaluate (via simulations) the schemes presented above under various system loads and

configurations.

4.2.1. Effect of system utilization

To study the effect of system utilization we simulated a heterogeneous system consisting of 16
computers with four different processing rates. In Table I we present the system configuration.
The first row contains the relative processing rates of each of the four computer types. Here, the
relative processing rate for computer Ci is defined as the ratio of the processing rate of Ci to the
processing rate of the slowest computer in the system. The second row contains the number of
computers in the system corresponding to each computer type. The last row shows the processing
rate of each computer type in the system. We choose 0.013 jobs/s as the processing rate for the
slowest computer because it is a value that can be found in real distributed systems [1].
System utilization (�) is defined as the ratio of total arrival rate to aggregate processing rate of

the system

�= �∑n
i=1�i

(30)

Table I. System configuration.

Relative processing rate 1 2 5 10

Number of computers 6 5 3 2
Processing rate (jobs/s) 0.013 0.026 0.065 0.13
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Figure 2. Fairness index and response time vs system utilization.

In Figure 2 we present the fairness index and the response time of the system for different values
of system utilization ranging from 10 to 90%. This corresponds to a total arrival rate ranging from
0.066 to 0.596 jobs/s. In Table II we present the arrival rate and utilization of each computer at
medium load (�= 50%).
The main performance metric we consider here is the fairness index. The COOP schememaintains

a fairness index of 1 over the whole range of system loads and it is the only fair scheme here. It
can be shown that PROP has a fairness index of 0.731, which is a constant independent of the
system load. In the case of OPTIM, the expected response time for all jobs is the same before they
are allocated to computers but not after the allocation has been made. This behavior of OPTIM is
captured by the fairness index that varies from 1 at low load, to 0.88 at high load.
It can be observed that at low loads (� from 10 to 40%) all the schemes except PROP obtain

almost the same response time. The poor response time of PROP scheme is due to the fact that the
less powerful computers are significantly overloaded. At medium loads (� from 40 to 60%), the
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Table II. Arrival rate and utilization of each computer at medium load (�= 50%).

COOP PROP OPTIM

Arrival rate Utilization Arrival rate Utilization Arrival rate Utilization

1 0.1217 93.9 0.1040 79.8 0.1139 87.6
2 0.1217 93.2 0.1040 79.8 0.1139 87.4
3 0.0567 87.4 0.0520 79.9 0.0536 82.1
4 0.0567 87.4 0.0520 79.9 0.0536 82.0
5 0.0567 88.0 0.0520 80.1 0.0536 82.5
6 0.0177 67.4 0.0208 79.2 0.0188 72.2
7 0.0177 67.9 0.0208 80.8 0.0188 72.1
8 0.0177 67.1 0.0208 80.3 0.0188 73.3
9 0.0177 66.7 0.0208 81.1 0.0188 71.8

10 0.0177 68.2 0.0208 80.3 0.0188 72.7
11 0.0047 36.3 0.0104 79.7 0.0079 61.0
12 0.0047 37.8 0.0104 82.6 0.0079 61.2
13 0.0047 36.1 0.0104 79.9 0.0079 60.5
14 0.0047 36.7 0.0104 81.1 0.0079 59.9
15 0.0047 36.0 0.0104 80.7 0.0079 62.1
16 0.0047 35.1 0.0104 81.1 0.0079 61.8

COOP scheme provides significantly better response time than PROP being close to the response
time of OPTIM. For example, at load level of 50% the response time of COOP is 19% less than
PROP and 20% greater than OPTIM. At high loads, COOP and PROP yield the same response time,
which is greater than that of OPTIM. COOP does not provide the global optimal response time as in
the case of OPTIM but provides a Pareto-optimal allocation (see Remark following Theorem 3.2).
At high loads, COOP allocates heavy loads to the fastest computers almost overloading them. It also
allocates more load to the slowest computers compared with that allocated in the case of medium
and low system loads. Overall, the effect is that at high loads the global response time obtained by
COOP becomes the same as that of PROP. The fairness achieved by COOP comes at the cost of
increasing the response time of the system. The increase in the response time of COOP necessary
to achieve fairness varies from under 5% at low loads to under 25% at high loads.
An interesting issue related to the fairness is the impact of static load-balancing schemes on

individual computers. In Figure 3 we present the response time at each computer for all static
schemes at medium load (�= 50%). Our scheme (COOP) guarantees equal response times for
all computers. The value of the response time for each computer is equal to the value of overall
response time (39.44 s). This means that jobs would have the same response time independent of
the allocated computers. We can observe that some of the slowest computers are not utilized by
the COOP scheme (C11–C16). The PROP scheme overloads the slowest computers and the overall
response time is increased. The difference in the response time at C1 (fastest) and C16 (slowest) is
significant, 15 s compared with 155 s. In the case of OPTIM the response times are less balanced
than COOP and unlike COOP the slowest computers are utilized. Still, the overall system response
time is lower in OPTIM.
In the case of PROP and OPTIM, jobs are treated unfairly in the sense that a job allocated to a

fast computer will have a low response time and a job allocated to a slow computer will have a
high response time.
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Figure 3. Response time at each computer (medium system load).

In Figure 4 we present the response time at each computer in the system when the system is
heavily loaded (�= 80%). The COOP scheme guarantees the same response time at each computer
and utilizes all the computers. The difference in the response time between the fastest and slowest
computers is large in the case of PROP (350 s) and moderate in the case of OPTIM (130 s). COOP
scheme provides a fair and load balanced allocation, which is a desirable property in some systems.

4.2.2. Effect of heterogeneity

In a distributed system, heterogeneity usually consists of processor speed, memory, and I/O. A
simple way to characterize system heterogeneity is to use the processor speed. Furthermore, it
is reasonable to assume that a computer with high-speed processor will have matching resources
(memory and I/O). One of the common measures of heterogeneity is the speed skewness, which
is defined as the ratio of maximum processing rate to minimum processing rate of the computers.
This measure is somehow limited, but for our goals it is satisfactory.
In this section we investigate the effectiveness of load-balancing schemes by varying the speed

skewness. We simulate a system of 16 heterogeneous computers: 2 fast and 14 slow. The slow
computers have a relative processing rate of 1 and we varied the relative processing rate of the
fast computers from 1 (which correspond to a homogeneous system) to 20 (which correspond to a
highly heterogeneous system). The system utilization was kept constant, �= 60%. In Table III we
present the processing rates of the computers in the system and the total arrival rates used in each
type of experiment.
In Figure 5 we present the effect of speed skewness on the fairness and the response time.

The COOP scheme maintains a fairness index of 1 over the whole range of system heterogeneity.
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Figure 4. Response time at each computer (high system load).

Table III. System parameters.

Speed Processing rate of Processing rate of Total arrival
skewness C1, C2 (jobs/s) C3–C16 (jobs/s) rate (jobs/s)

1 0.013 0.013 0.124
2 0.026 0.013 0.140
3 0.039 0.013 0.156
4 0.052 0.013 0.171
6 0.078 0.013 0.202
8 0.104 0.013 0.234

10 0.130 0.013 0.265
12 0.156 0.013 0.296
14 0.182 0.013 0.327
16 0.208 0.013 0.358
18 0.234 0.013 0.390
20 0.260 0.013 0.421

The fairness index of OPTIM varies from 0.98 for slightly heterogeneous systems to 0.92 for highly
heterogeneous systems. The fairness of PROP is the worst among the static schemes considered
here, reaching 0.88 for highly heterogeneous systems. This is due to the fact that COOP overloads
the slow processors thus obtaining a higher response time at these processors.
It can be observed that increasing the speed skewness, OPTIM and COOP schemes yield low

response times, which means that in highly heterogeneous systems COOP and OPTIM are very
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Figure 5. The effect of heterogeneity on the fairness index and the response time.

effective. COOP has the additional advantage of a fair allocation, which is very important in
some systems. For systems with speed skewness less than 12, COOP and PROP yield the same
response time. The improvement in the response time of COOP for speed skewness greater than
12 is due to the fact that COOP idles some of the slowest processors when the power of the fastest
processors in the system is increased. PROP scheme performs poorly because it overloads the slowest
computers.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a game-theoretic framework for obtaining a fair load-balancing
scheme. The main goal was to derive a fair and Pareto-optimal allocation scheme. We formulated
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the load-balancing problem in single class job distributed systems as a cooperative game among
computers. We showed that the Nash Bargaining Solution (NBS) of this game provides a Pareto-
optimal operation point for the distributed system and it is also a fair solution. For the proposed
cooperative load-balancing game we presented the structure of the NBS. Based on this structure
we derived a new algorithm for computing it. We showed that the fairness index is always 1 using
our new cooperative load-balancing scheme, which means that the solution is fair to all jobs. We
compared by simulation the performance of our cooperative load-balancing scheme with that of
other existing schemes. The simulations were run on a variety of system configurations that allowed
us to compare the schemes in a fair manner and to obtain a high level of confidence on the results.
As a general conclusion of the simulations we can state that COOP obtains an overall response
time close to the one obtained by the global optimal scheme. The main advantage of COOP is
that it treats all the jobs fairly in the sense that jobs would experience the same response time
independently of the allocated computers. COOP is suitable for systems in which the fair treatment
of the all users’ jobs is an important consideration.
We plan to perform actual runs on distributed systems consisting of heterogeneous computers

in order to validate our results. We plan to design and investigate load-balancing games that con-
sider the cost of communication among computers in determining the load-balancing strategies.
In addition, we will extend the techniques used in this paper to solve the load-balancing problem
in multi-class job distributed systems where the jobs are grouped into different classes according
to their sizes. Another interesting extension of this work will be to design a mechanism based
on the proposed load-balancing scheme that takes into account the selfish behavior of the ma-
chines and the jobs. Future work will also address the development of game-theoretic models for
load balancing in the context of uncertainty as well as game-theoretic models for dynamic load
balancing.

APPENDIX A

In this section we present the proofs of the results in this paper.

Proof of Theorem 3.1. In Theorem 2.1 we consider fi (�i )=−�i that are concave and bounded
above. The set defined by the constraints is convex and compact. Thus, the conditions in Theorem 2.1
are satisfied and the result follows. �

Proof of Theorem 3.2. Using the fact that fi (�i )=−�i are one-to-one functions of �i and applying
Theorem 2.2 the result follows. �

Proof of Proposition 3.1. The constraints in Theorem 3.2 are linear in �i and fi (�i )=−�i has
continuous first partial derivatives. This imply that the first-order Kuhn–Tucker conditions are
necessary and sufficient for optimality [48].
Let �≤0, �i≤0, i = 1, . . . , n denote the Lagrange multipliers [48]. The Lagrangian is

L(�i , �, �i )=
n∑

i=1
ln(�i − �i )+ �

(
n∑

i=1
�i − �

)
+

n∑
i=1

�i (�i − �i ) (A1)
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The first-order Kuhn–Tucker conditions are

�L
��i
=− 1

�i − �i
+ �+ �i = 0, i = 1, . . . , n (A2)

�L
��
=

n∑
i=1

�i − �= 0 (A3)

�i − �i ≥ 0, �i (�i − �i )= 0, �i≤0, i = 1, . . . , n (A4)

We have �i − �i>0, i = 1, . . . , n. This implies that �i = 0, i = 1, . . . , n.
The solution of these conditions is

1

�i − �i
− �= 0, i = 1, . . . , n (A5)

n∑
i=1

�i =� (A6)

By adding the equation given by (A5) for all i we obtain

n − �

(
n∑
j=1

� j −
n∑
j=1

� j

)
= 0 (A7)

Solving for � we obtain

�= n∑n
j=1� j − �

(A8)

By replacing � in (A5), we obtain

�i = �i −
∑n

j=1� j − �

n
(A9)

�

Lemma A.1. Let �1≥�2≥ · · · ≥�m. If �m<(
∑m

j=1� j − �)/m then the objective function from
Theorem 3.2 is maximized, subject to the extra constraint �m≥0, when �m = 0.

Proof. We add a new condition to the first-order conditions (A2)–(A4). The new set of conditions
is as follows:

�L
��i
=− 1

�i − �i
+ �+ �i = 0, i = 1, . . . ,m − 1 (A10)

�L
��m
=− 1

�m − �m
+ �+ �m + �m = 0 (A11)
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�L
��
=

m∑
i=1

�i − �= 0 (A12)

�i − �i ≥ 0, �i (�i − �i )= 0, �i≤0, i = 1, . . . ,m (A13)

�m ≥ 0, �m�m = 0, �m≤0 (A14)

We have �i − �i>0, i = 1, . . . ,m. This implies that �i = 0, i = 1, . . . ,m

1

�i − �i
− �= 0, i = 1, . . . ,m − 1 (A15)

1

�m − �m
− �+ �m = 0 (A16)

m∑
i=1

�i =� (A17)

�m ≥ 0, �m�m = 0, �m≤0 (A18)

From Equation (A18) the value of �i is either zero or positive. We consider each case separately.
Case 1: �m>0. Equation (A18) implies that �m = 0 and the solution to the conditions is

�i = �i −
∑m

j=1� j − �

m
, i = 1, . . . ,m (A19)

Case 2: �m = 0. It follows from Equation (A18) that �m≤0.
The restriction �m≥0 becomes active when 1/(�m − �m) − �=−�m>0 which implies that

�m<(
∑m

j=1� j − �)/m and lemma is proved. �

Proof of Theorem 3.3. The while loop in step 3 finds the minimum indexm for which �m<(
∑m

j=1� j− �)/m.
If m= n (that means that all �i are positive) we apply Proposition 3.1 and the result follows.
If m<n we have �i<(

∑i
j=1� j − �)/ i for i =m, . . . , n. According to Lemma A.1 �m, . . . , �n

must be 0 in order to maximize the objective function from Theorem 3.2. The algorithm sets �i = 0
for i =m, . . . , n in the while loop.
Because �m<(

∑m
j=1� j − �)/m implies 0<�mm≤

∑m
j=1� j − � and then �<

∑m
j=1� j , we can

apply Proposition 3.1 to the first m indices (that corresponds to the first m fast computers) and the
values of the load allocation {�1, �2, . . . , �m} maximizes the objective function and are given by

�i = �i −
∑m

j=1� j − �

m
, i = 1, . . . ,m (A20)

This is done in step 4. All �i , for i = 1, . . . ,m are guaranteed to be non-negative because �i>(
∑m

j=1� j− �)/m. The load allocation {�1, �2, . . . , �m} is the solution to the optimization problem in
Theorem 3.2. According to Theorem 3.2 this is also the NBS of our cooperative load-balancing
game. �
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Proof of Theorem 3.4. Using Proposition 3.1, Ti for all na allocated computers (�i �= 0, i = 1, . . . ,
na) can be expressed as

Ti = 1

(�i − �i )
= 1

�i − �i +
∑na

j=1� j−�

na

= na∑na
j=1� j − �

(A21)

Thus, all Ti , i = 1 . . . , na are equal and this implies I (T)= 1. �
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