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Abstract—Next generation wireless systems will be required
to support heterogeneous services with different transmission
rates that include real time multimedia transmissions, as well
as non-real time data transmissions. In order to provide such
flexible transmission rates, efficient use of system resources
in next generation systems will require control of both data
transmission rate and power for mobile terminals. In this paper
we formulate the problem of joint transmission rate and power
control for the uplink of a single cell CDMA system as a non-
cooperative game. We assume that the utility function depends
on both transmission rates and powers and show the existence of
Nash equilibrium in the non-cooperative joint transmission rate
and power control game (NRPG). We include numerical results
obtained from simulations that compare the proposed algorithm
with a similar one which is also based on game theory and it
also updates the transmission rates and powers simultaneously
in a single step.

Index Terms—Power control, rate control, non-cooperative
games, Nash equilibrium.

I. INTRODUCTION

NEXT generation wireless systems will provide a wide
range of services for mobile users, from multimedia

transmissions performed in real time to transmission of data
that can tolerate delay and which is not performed in real
time. In order to provide these heterogeneous services, efficient
use of system resources in this case requires control of both
transmission data rate and power. This requirement implies the
need for joint rate and power control for mobile terminals, as
opposed to only power control that is currently performed in
wireless systems [1], [3], [4], [7]–[9], [13], [14], [16].

The main goal of power control is to provide adequate
quality for the signal of each mobile terminal at the receiver
without causing unnecessary interference to signals trans-
mitted by other mobile terminals. Power control helps also
to extend the battery life of mobile terminals by ensuring
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that they transmit at the minimum power level necessary
to achieve the required QoS. Game-theoretic approaches to
power control [1], [3], [4], [13] describe QoS for mobile
terminals using utility functions. For power control the utility
function for a given terminal depends usually on both the SIR
and the transmission power of the terminal. In [3], [13] the
utility function depends on low-level system parameters like
modulation, coding, and packet size. In [4] a different utility
function which depends on the channel capacity and decouples
lower layer decisions like modulation and coding is proposed.

Research in the area of joint rate and power control is
emerging and several algorithms have been proposed by re-
searchers. These can be classified as centralized algorithms,
such as those in [6], [11], or distributed algorithms like the
ones in [2], [5], [15]. In the category of centralized algorithms
the approach in reference [6] uses a different model than the
one considered in our paper and is not based on game theory,
while the one in [11] uses a single utility function for the
system called the “system figure of merit” and deals with a
dynamic scenario where some parameters of the links change
during the simulations. In the distributed algorithms category,
the game theoretic approach in [15] uses a similar CDMA
system model as the one considered in our paper, and the
proposed algorithm for joint rate and power control updates
powers and rates in a similar fashion to our proposed approach,
that is jointly in a single step, which results in terminals closer
to the base station achieving higher rates at lower powers while
terminals farther away from the base station transmit at full
power with low rates. The algorithm in [5] uses a two-layered
game in which the first game determines a set of rates and
the second game determines the powers. This is different than
our approach where powers and rates are computed jointly
in a single game. The game-theoretic approach in [2] solves
the problem of joint rate and power allocation using discrete
link adaptation. The system model in [2] is focused explicitly
on GPRS technology where discrete options for the data rate
are specified through specific parameters of the modulation
scheme.

In our paper we consider the uplink of a single cell CDMA
system and the utility function defined in [13], but assume
that each user is capable of variable transmission rates in
addition to transmit powers. We formulate a NRPG which
determines the optimal rate of transmission and allocates the
power required for transmission based on utility maximization.
We discuss existence of Nash equilibria for the NRPG and
present an algorithm which reaches a Nash equilibrium in a
distributed manner by updating transmission rates and powers
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jointly in a single step similar to [15]. We present numerical
results obtained from simulations of the NRPG algorithm
which illustrate its convergence to a Nash equilibrium and
compares it with the one obtained using the approach in [15].
We note that a comparison with the alternative approaches in
[2], [5] is not meaningful due to the significant differences
in either the system model in the case of [2] or the update
procedure in the case of [5]. We also note that we do not
consider the problem of any existing users leaving (or of
new users entering) the network. This is an admission control
problem which is beyond the scope of the paper and was
not considered in any of the aforementioned game-theoretic
approaches to power control [13] or joint rate and power
control [2], [5], [15].

The paper is organized as follows: in Section II, we describe
the system model, and we introduce the utility function to
be used for joint rate and power control. In Section III, we
formulate joint rate and power control as a non-cooperative
game (NRPG), and we investigate the existence of a Nash
equilibrium solution for this game. In Section IV, we formally
state the joint rate and power control algorithm and discuss its
convergence. In Section V, we present numerical results ob-
tained from simulations, and compare the proposed algorithm
with the algorithm in [15]. Final conclusions are presented in
Section VI.

II. SYSTEM MODEL AND UTILITY FUNCTION

We consider the uplink communication of a single-cell
CDMA wireless system with N mobile terminals (users)
that transmit data to the base station, for which the SIR
corresponding to a given user j is [13]

γj =
W

rj

hjpj

N∑

k=1,k 6=j

hkpk + σ2

j = 1, . . . , N (1)

where W is the available bandwidth, hj is the path gain of user
j to the base station, rj is the transmission rate, pj is power
of user j and σ2 is the power spectral density of the additive
white Gaussian noise (AWGN) which causes degradation of
the the received signal at the base station. This expression
assumes that users in the CDMA system are assigned pseudo-
random noise (PN) sequences, and that conventional matched
filter detectors are used at the receiver [13]. We note that
because the available bandwidth is shared by all users, the
transmission of any user in the system creates interference
to the other users’ transmissions, and the SIR defined in
equation (1) serves as a measure for the QoS.

In order to achieve satisfactory QoS as implied by transmis-
sion with given rate and SIR values, users should transmit with
the minimum power necessary to achieve these values. This
will minimize energy consumption and will help increase the
battery life for mobile terminals. The level of satisfaction of a
given user i with SINR γi that transmits at rate ri using power
pi can be quantified by using utility functions. The concept of
utility (or payoff) is commonly used in microeconomics and
game theory to denote the level of satisfaction of a decision-
maker with specific products or services as a result of its

actions [12]. In wireless systems utility functions are typically
related to the user SIR, as well as to the transmission rate and
power, and several utility functions have been used for power
and rate control [3]–[6], [11], [13], [15].

In the case of power control for wireless data transmission
utility functions must satisfy the following properties [13]:

• For fixed transmit powers, the utility increases with the
increase in the SIR of the terminal.

• For fixed SIR, the utility decreases as the transmitted
power increases.

For rate control utility functions must satisfy similar prop-
erties:

• For fixed transmission rates, the utility increases with the
increase in the SIR of the terminal.

• For fixed SIR, the utility increases as the rate increases.

These properties of the utility functions are illustrated in the
plots in Figure 1. As SIR increases, the terminal experiences
low error rates and this leads to efficient utilization of system
resources like the mobile terminals’ battery drain [13]. The
asymptotic increase in utility in the high SIR region is due
to the fact that for sufficiently large SIR values, the error
rate approaches zero [13]. Figure 2 (a) shows that for fixed
interference, the utility increases initially as power increases
and then it decreases for higher power values because the
terminal consumes more power. The utility function behaves in
a similar way for varying transmission rates as seen in Figure 2
(b).

In our game theoretic approach to joint rate and power
control we consider the expression for the utility function of
a given user j as in [13], but assume that the users have a
variable rate

uj(rj , pj) =
Lrjf(γj)

Mpj
[bits/J] j = 1, . . . , N (2)

where f(γj) is the efficiency function defined as

f(γj) = (1− 2Pe)M (3)

where Pe is the bit error rate (BER), L is the number of
information bits in a packet of length M . We consider Non-
coherent FSK modulation for which the BER is given as Pe =
1
2e−γ/2. We note that we can express γj in terms of rj and
pj as

γj = cj
pj

rj
(4)

where cj does not depend on rj and pj , is given as

cj =
Whj

N∑

k=1,k 6=j

hkpk + σ2

In this context, the objective of each user in the system is to
adapt its transmitted power and rate in a distributed manner,
such that its corresponding utility is maximized.
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Fig. 2. Shape of the utility as a function of the user transmission rate and power for fixed interference.

III. FORMULATION AS A NON-COOPERATIVE GAME

In a non-cooperative game for rate and power control each
user adjusts rate rj and power pj in order to maximize its
corresponding utility uj . The NRPG is defined by

max
rj∈Rj ,pj∈Pj

uj(r,p) j = 1, . . . , N (5)

where uj is the user utility function in (2) and Rj , Pj are
the strategy spaces of user j. We note that uj is not defined
for either rj = 0 or pj = 0. Moreover uj as a function of
(rj , pj) has no limit at (0,0). So we consider strategy spaces
as Rj = (0, rj , ] and Pj = (0, pj , ], which are convex sets
defined in terms of minimum and maximum rates and powers.
Formally we define the NRPG as G = [N , {Pj , Rj}, {uj}]
with N = {1, 2, ..., N} being the index set for the active
users in the cell, such that each user j selects a rate rj ∈
Rj and a power pj ∈ Pj to maximize utility function uj ,
where Pj represents user j’s strategy set in powers and Rj

represents user j’s strategy set in rates. Let the rate vector
r = (r1, r2, ..., rN )T ∈ R = R1 × R2 × ...× RN , and power
vector p = (p1, p2, ..., pN )T ∈ P = P1 × P2 × ... × PN

(where T represents the transpose operator, Rj = (0, rj ] and

Pj = (0, pj ]) denote the outcome of the game in terms of
selected rates and powers for all users.

A. The Nash Equilibrium for Individual Rate and Power
Games

A Nash equilibrium is a fixed point of a non-cooperative
game where no user can increase the value of its utility
function through individual action. For joint rate and power
control we investigate Nash equilibrium solutions for the rate
and power games defined in the previous section. We will
show that a Nash equilibrium solution in both transmission
rates and transmit powers exists. Next, we will show that a
Nash equilibrium exists in the problem of joint transmission
rates and transmit powers.

First, we will consider that the players wish to maximize
their utilities only with respect to transmission rates. For a
given power vector p, the utility function uj of user j is
defined on R and the game is formally represented as G(p) =
[N , {Rj}, {uj(.,p)}].

Then, a Nash equilibrium in rates is formally defined as
Definition 1: A rate vector r = (r1, ..., rN ) is a Nash

equilibrium of the NRPG G(p) if, for every j ∈ N ,
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uj(rj , r−j ,p) ≥ uj(rj ′, r−j ,p) for all rj ′ ∈ Rj , where
r−j = (r1, . . . , rj−1, rj+1, . . . , rN )T is the N−1 dimensional
vector of user rates that does not contain user j’s rate.

In fact, the game G(p) is a “dummy game”, since user j′s
utility function depends only upon his own strategy rj . Then
a Nash equilibrium is formed by any set of N maximizing
strategies of the N users. This is noteworthy because each
user has only one maximizing strategy in his strategy set.

We next present two results similar to [13] that prove the
existence of Nash equilibrium in the case of fixed power
(rate) and variable transmission rate (power). These results
are similar to [13], but they are proved in a simpler way.

Proposition 1: For each p ∈ P , there is a unique maxi-
mum point of uj in Rj . (The game [N , {Rj}, {uj(.,p)}] has
a unique Nash equilibrium.)

Proof: Fixing p, write simply uj(rj) for uj(rj , r−j ,p).
We can show that uj(.) has a unique maximizing point r̂j

on (0,∞) and

(a) r̂j ∈
(
0,

Mpjcj

2(M−1)

)

(b) uj strictly increases on (0, r̂j)
(c) uj strictly decreases on (r̂j ,∞)
The derivative of uj with respect to rj is,

∂uj

∂rj
=

L

Mpj
(1− e

− pjcj
2rj )M−1φ(rj) (6)

where
φ(rj) = 1− e

− pjcj
2rj − Mpjcj

2rj
e
− pjcj

2rj (7)

Since the first factor is positive, the sign of (6) is given by
φ(j). We have

∂φ(rj)
∂rj

=
1
r2
j

e
− pjcj

2rj

(
−pjcj

2
+

Mpjcj

2
− M2p2

jc
2
j

4rj

)
(8)

hence:

∂φ(rj)
∂rj





< 0, if rj ∈ (0,
Mpjcj

2(M−1) )

= 0, if rj = Mpjcj

2(M−1)

> 0, if rj ∈ ( Mpjcj

2(M−1) ,∞)

(9)

Since limrj→0 φ(rj) = 1, and φ( Mpjcj

2(M−1) ) = 1−Me
1−M

M <

0, it follows that φ(rj) has a zero in the interval (0,
Mpjcj

2(M−1) )
(denoted by r̂j), and changes the sign from plus to minus
at this point. Hence, we will have (a) and (b). Further, since
limrj→∞ φ(rj) = 0, and φ(rj) increases on ( Mpjcj

2(M−1) ,∞), it
follows that φ(rj) is negative in this interval. Hence φ(rj) is
negative on (r̂j ,∞), which implies (c).

It follows that the unique maximizing point of uj in the
domain Rj is r∗j = min {r̂j , rj}∀j = 1, 2, ..., N . Hence,
r =(r∗1 , ..., r∗N ) is the unique Nash equilibrium. ¤

A NRPG in transmitted power is defined for each fixed
r ∈ R as G(r) = [N , {Pj}, {uj(r, .)}].

A Nash equilibrium in transmitted powers is defined for-
mally as

Definition 2: A power vector p = (p1, ..., pN ) is a Nash
equilibrium of the NRPG G(r) if for every j ∈ N ,

uj(r,pj ,p−j) ≥ uj(r,pj ′,p−j) for all pj ′ ∈ Pj , where p−j =
(p1, . . . , pj−1, pj+1, . . . , pN )T is the N−1 dimensional vector
of user power that does not contain user j’s power.

Theorem 1: For each r ∈ R, the game
[N , {Pj}, {uj(r, .)}] admits a Nash equilibrium.

Proof: For any fixed r and p−j , uj has a unique
maximizing point p̂j on (0,∞) and

(i) p̂j ∈ (0,
2(M−1)rj

Mcj
)

(ii) uj strictly increases on (0, p̂j)
(iii) uj strictly decreases on (p̂j ,∞)

Since the derivative of uj with respect to pj is

∂uj

∂pj
=

L

Mp2
j

(1− e
− pjcj

2rj )M−1ψ(pj) (10)

where

ψ(pj) = −rj + rje
−pjcj
2rj +

Mpjcj

2
e
− pjcj

2rj (11)

the proof is analogous to the proof of (a)-(c) in Proposition 1.
Now let us recall the following definition:
Definition 3: A function f is quasi-concave on a convex set

D if, for every α ∈ R, the set {x ∈ D; f(x) ≥ α} is convex.
From (ii) and (iii) it results that all sets {pj ∈

(0,∞); uj(pj) ≥ α} are intervals, i.e are convex which
implies that uj is quasi concave on (0,∞).

Since the strategy spaces of the game G(r) are not compact,
we can not apply directly the equilibrium theorem (Theorem
3.1 and its Corollary) of Nikaido and Isoda [10]. If the strategy
spaces are compact convex sets in Euclidean spaces, the player
i’s utility function is continuous on the product space and
quasi-concave with respect to the ith argument, then the game
has Nash equilibria.

However, the game restricted to the strategy spaces P ′j =
[p

j
, pj ], j = 1, 2, ..., N, admits Nash equilibria in transmission

power, for every choice of p
j
, 0 < p

j
< pj , j = 1, 2, ..., N ,

because it satisfies all assumptions of the theorem of Nikaido
and Isoda [10].

Let p0
j = 2rj

cj
, where cj = Whj

σ2 , j = 1, 2, .., N . Then for
every j and every p−j , Bj(p−j)∩(0, p0

j ) = ∅, where Bj(p−j)
is the set of all best response strategies of player j against p−j .
In other words, there are no equilibrium startegies of user j
in the interval (0, p0

j ).
To prove this assertion, pick a j and p−j ∈ P−j . Set p̃j =

2rj

cj
. Then ψ(p̃j) = rj(−1 + e−1 + 2Me−1) > 0. Hence by

(5), p̃j ∈ (0, p̂j). Then, uj(pj ,p−j) < uj(p̂j ,p−j), for every
pj ≤ p̃j . This means that Bj(p−j) ∩ (0, p̃j) = ∅. Since p0

j ≤
p̃j , the above assertion is proved.

Finally, set p
j

= min{p0
j , pj}, j = 1, 2, .., N and consider

the restricted game with strategy spaces [p
j
, pj ]. As it is

shown in the above, this game admits Nash equilibria. By
the last assertion, every equilibrium of the restricted game is
an equilibrium of the original game. ¤

B. The Nash Equilibrium for the Joint Rate and Power Game

We note that the utility is a function of two variables, rate
rj and power pj . The existence of equilibrium in transmission
rates or powers does not guarantee that there is an equilibrium
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in the joint rate and power control game. Next we prove that
there exists a Nash equilibrium in the joint rate and power
control game.

Theorem 2: There exists a Nash equilibrium for the game
G = [N , {Rj × Pj}, {uj}].

Proof: For each p define the functions vj , j = 1, 2, .., N ,
on (0,∞) by

vj(xj) =
L

M
xj(1− e

− cj
2xj )M (12)

We will write vj(xj ,p−j) when we need to stress the
dependence on p−j and note that for (r,p) ∈ R × P ,
vj(

rj

pj
,p−j) = u(r,p).

The derivative of vj with respect to xj , we have

∂vj

∂xj
=

L

M
(1− e

− cj
2xj )M−1ς(xj) (13)

where
ς(xj) = 1− e

− cj
2xj − Mcj

2xj
e
− cj

2xj (14)

As above, we can show that limxj→0 ς(xj) = 1,
limxj→∞ ς(xj) = 0 and dς(xj)

dxj
has a unique zero at Mcj

2(M−1)

and changes the sign from plus to minus.
It follows that, that for each p−j ∈ P−j , vj has a unique

maximizing point x̂j on (0,∞) and
(A) x̂j ∈ (0,

Mcj

2(M−1) )
(B) uj strictly increases on (0, x̂j)
(C) uj strictly decreases on (x̂j ,∞)

Now, set xj =
cj

2M and xj = cj

2 , where cj = Whj∑
k 6=j hkpk+σ2

and cj = Whj

σ2 .
Then for every p,

∂vj

∂xj
(xj ,p−j) > 0, ∀xj ∈ (0, xj) (15)

Therefore vj strictly increases on (0, xj), and

∂vj

∂xj
(xj ,p−j) < 0, ∀xj ∈ (xj ,∞) (16)

Therefore vj strictly decreases on (xj ,∞).
Indeed, we have

ς
( cj

2M

)
= 1− e−M −M2e−M > 0 (17)

and
ς
(cj

2

)
= 1− (M + 1)e−1 < 0 (18)

Then, (B) and (C) imply

∂vj

∂xj
(xj ,p−j) > 0, ∀xj ∈ (0,

cj

2M
) (19)

∂vj

∂xj
(xj ,p−j) < 0, ∀xj ∈ (

cj

2
,∞) (20)

respectively. Since xj ≤ cj

2M and xj ≥ cj

2 for every p, it
follows that (15) and (16) hold.

Once again, we use the Nikaido-Isoda theorem for the
restricted game [N , {[rj , rj ] × [p

j
, pj ]}, {uj(·, ·)}], where 0

< rj ≤ rj and 0 < p
j
≤ pj .

Obviously, the strategy spaces are nonempty, compact and
convex and the utility functions are jointly continuous in
(rj , pj).

The shape of vj (as a function of xj), as it results form
(B) and (C) shows that this function is quasi-concave on
(0,∞), more precisely, the upper contour sets of the form
{xj ∈ (0,∞)|vj(xj) ≥ α} are intervals. Now observe that,
for any real number α, and for any p−j ∈ P−j ,

{(rj , pj) ∈ [rj , rj ]× [p
j
, pj ]|uj(rj , pj , p−j) ≥ α}

= {(rj , pj) ∈ [rj , rj ]× [p
j
, pj ]|vj(

rj

pj
, p−j) ≥ α}

Suppose that {xj ∈ (0,∞)|vj(xj) ≥ α} = [a, b]. (The
cases when this set is (0, a) or (b,∞) could also be consid-
ered). Then

{(rj , pj) ∈ [rj , rj ]× [p
j
, pj ]|vj(

rj

pj
, p−j) ≥ α}

= {(rj , pj) ∈ [rj , rj ]× [p
j
, pj ]|apj ≤ rj ≤ bpj}

which is a convex set in R2. Hence, uj is quasi-concave in
(rj , pj).

We can conclude that the restricted game has a Nash
equilibrium.

Finally, we will argue that the game [N , {Rj ×
Pj}, {uj(·, ·)}] admits a Nash equilibrium.

For each j, choose rj , p
j

such that 0 < rj ≤
min{ cj

2M pj , rj}, 0 < p
j
≤ min{2rj

cj
, pj}. By the above, it re-

sults that the restricted game [N , {[rj , rj ]×[p
j
, pj ]}, {uj(·, ·)}]

has equilibria. Let (r∗, p∗) be a Nash equilibrium of this game.
Then, for every j,

uj(rj , pj ,p∗−j) ≤ uj(r∗,p∗), ∀(rj , pj) ∈ [rj , rj ]× [p
j
, pj ]
(21)

Next, we will prove that (r∗,p∗) is an equilibrium of the
game [N , {Rj × Pj}, {uj(·, ·)}].

Pick a j and (rj , pj) ∈ Rj ×Pj and denote xj = rj

pj
. Three

possible situations will be considered:
(I) xj ∈ [

rj

pj
,

rj

p
j

]

(II) xj <
rj

pj

(III) xj >
rj

p
j

In case (I) we show that there exists (r′j , p
′
j) ∈ [rj , rj ] ×

[p
j
, pj ] such that xj = r′j

p′j
.

Obviously, since xj ∈ [
rj

pj
,

rj

p
j

], then either xj ∈ [
rj

pj
,

rj

pj
], or

xj ∈ [ rj

pj
,

rj

p
j

].

In the first case take r′j = xjpj and p′j = pj . (r′j ≥
rj

pj
pj =

rj , r
′
j ≤ rj

pj
pj = rj)

In the second case take r′j = rj and p′j = rj

xj
. (p′j ≥ rj

rj

rj
=

p
j
, p′j ≤ rj

pj

rj
= pj)

Then, by (21)

uj(rj , pj ,p∗−j) = vj(xj ,p∗−j) = vj(
r′j
p′j

,p∗−j)

= uj(r′j , p
′
j ,p

∗
−j) ≤ uj(r∗j , p∗j ) (22)
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In case (II), x <
cj

2M = xj and by (15) and (21) we have

uj(rj , pj ,p∗−j) = vj(xj ,p∗−j) < vj(
rj

pj

,p∗−j)

= uj(rj , pj ,p
∗
−j) ≤ uj(r∗j , p∗j ) (23)

Similarly, in case (III), since xj >
cj

2 = xj , it follows from
(16) and (21) that

uj(rj , pj ,p∗−j) = vj(xj ,p∗−j) < vj(
rj

p
j

,p∗−j)

= uj(rj , pj
,p∗−j) ≤ uj(r∗j , p∗j ) (24)

¤

IV. THE JOINT RATE AND POWER CONTROL ALGORITHM

In the proposed NRPG algorithm for joint rate and power
control, the users update their rates and powers asynchronously
such that for a given user the new rate and power values
are computed in the same step. Note that, as shown in the
proof of Theorem 3, for finding a Nash equilibrium of the
game [N , {Rj × Pj}, {uj(·, ·)}], it is enough to consider the
restricted game [N , {[rj , rj ] × [p

j
, pj ]}, {uj(·, ·)}], where rj

and p
j

are chosen as in Theorem 2. The joint rate and power
control algorithm based on NRPG is formally stated below:

NRPG Algorithm

(1) Initialize the rates r(t0) = [r1(t0), ..., rN (t0)] and
power vector p(t0) = [p1(t0), ..., pN (t0)] at time t0
with rj(t0) = rj and pj(t0) = p

j
, j = 1, 2, ..., N .

(2) Each user j (j ∈ N ) at time instant tk computes:

a) Compute xj(tk), for tk ≥ t0, as

xj(tk) = arg max
xj∈[

rj
pj

,
rj
p

j
]

vj(x,p−j(tk))

b) Evaluate the rates rj(tk+1) and powers
pj(tk+1) as

(rj(tk+1), pj(tk+1)) =





(xj(tk)pj , pj),
if xj(tk) ≤ rj

pj
(I)

(rj ,
rj

xj(tk) ),
if xj(tk) >

rj

pj
(II)

(3) If max{‖r(tk)− r(tk+1)‖, ‖p(tk)−p(tk+1)‖} ≤ ε,
then STOP. Else, make k = k+1 and go to step (2).

The power and rate update equations require the knowledge
of the interference plus noise experienced by user j’s signal
at the base station i.e.


N∑

k=1,j 6=k

hkpk + σ2


 . (25)

It is assumed that the base station broadcasts the “total power
plus noise” term

(∑N
k=1 hkpk + σ2

)
to all the users. In

addition, assuming reciprocal communication channels each
user j knows its channel gain to the base station hj and can
estimate their received power hjpj at the base station which

is subtracted from the “total power plus noise” term to obtain
the term in (25) needed for updating transmission rates and
powers.

Theorem 3: For each j, the sequence rj(t) decreases and
converges to a limit r∗j , and the sequence pj(t) increases and
converges to a limit p∗j . The pair (r∗,p∗) is a Nash equilibrium
of the game.

Proof: First recall that, for each p−j , the function
vj(·,p−j) has a unique maximizing point on (0,∞), denoted
by x̂j , and this is the unique root of the equation (14). As
x̂j depends on p, this dependence can be expressed as the
dependence on cj . Therefore, considering ς(xj) as a function
of (xj , cj), the equation ς(xj , cj) = 0 defines implicitly x̂j as
a function of cj , x̂j = x̂j(cj). The implicit function theorem
says that

∂x̂j

∂cj
= −

∂ς
∂cj

∂ς
∂xj

which by a simple calculation gives us ∂x̂j

∂cj
= xj

cj
> 0, i.e. x̂j

strictly increases with cj .
Now, we can prove the first part of the theorem by induction

on tk.
It is obvious that, for each j, rj(t1) ≤ rj(t0) = rj and

pj(t1) ≥ pj(t0) = p
j
.

Now, suppose that rj(tk) ≤ rj(tk−1) and pj(tk) ≥
pj(tk−1) for some k ≥ 1 and for every j. Then, for each
j, cj(tk) ≤ cj(tk−1) and since

arg max
xj∈[

rj
pj

,
rj
p

j
]

vj(x,p−j) = arg max
xj∈[0,∞]

vj(x,p−j)

it follows from the above that xj(tk) ≤ xj(tk−1).
This means that, in the NRPG algorithm at the Step (2), b)

at time tk+1, either the user switches strategy from case (II)
to case (I) (step (2) b) of NRPG algorithm) or the user retains
the strategy of case (II) but increases pj and decreases rj . In
both situations rj(tk) ≤ rj(tk−1) and pj(tk) ≥ pj(tk−1).

Since the sequences rj(tk) and pj(tk) are monotone in
bounded intervals, they are convergent.

Let r∗j and p∗j , respectively be the limits of these sequences.
Now, since xj(tk) = rj(tk+1)

pj(tk+1)
, it follows that

uj(rj(tk+1), pj(tk+1),p−j(tk)) = vj(xj(tk),p−j(tk))

≥ vj(x,p−j(tk)),∀x ∈
[

rj

pj
,

rj

p
j

]

Now, pick an arbitrary (rj , pj) ∈ [rj , rj ] × [p
j
, pj ]. Then,

rj

pj
∈

[
rj

pj
,

rj

p
j

]
, so that, the above inequality implies that

uj(rj(tk+1), pj(tk+1),p−j(tk)) ≥
vj

(
rj

pj
,p−j(tk)

)
= uj(rj , pj ,p−j(tk))

By continuity of uj , the inequality between the extreme
terms yields

uj(r∗j , p∗j ,p
∗
−j) ≥ uj(rj , pj ,p∗−j)

¤
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Theorem 3 proves that for the choice of initial rates and
power values specified in Step (1) of the NRPG algorithm
this will always reach the same Nash equilibrium point char-
acterized by the pair (r∗,p∗) where the individual elements r∗j
in r∗ and p∗j in p∗ contain the limits of the sequences rj(t)
and pj(t) which are monotonically decreasing and increasing,
respectively for all j. Thus, even though many Nash equilibria
for the NRPG game may be possible depending on the
initial strategies of the players, the NRPG algorithm with the
initialization specified in Step (1) will always converge to the
same Nash equilibrium point and from this perspective the
outcome of the NRPG algorithm is unique. We note that, from
a practical perspective, all users are interested in transmitting
at highest rate possible with lowest required power, and in
the context of Theorem 3 initializing user powers with the
minimum value in the power strategy space and user rates
with the maximum value in the rate strategy space is a rational
choice.

V. SIMULATION SETUP AND NUMERICAL RESULTS

We performed simulations to study the NRPG algorithm in
a single cell CDMA system and compared it with the rate
and power control algorithm described in [15] which we refer
to as the ‘ZL algorithm’ (or simply ‘ZL’). The ZL algorithm
initializes all user rates and powers with zero, and in one step
of the algorithm each user updates rate and power with the
corresponding solutions of a nonlinear programming problem
with two variables that maximize the user payoff function. A
formal statement of the ZL algorithm is given in [15] and we
refer readers to [15] for specific details about it.

The parameters of the simulation setup were chosen similar
to [15] and these are:
• All users are assumed to be stationary, and the propaga-

tion model has channel gains hj = c/d4
j , where dj is the

distance (in meters) between user j and the base station
and c = 0.097.

• The power spectral density of the AWGN at the receiver
is σ2 = 5× 10−15 W/Hz.

• The minimum and maximum powers of each user are
p = p̂ = 10−6 W, respectively p = 0.2 W.

• The minimum and maximum transmission rates of each
user are r = 0.1 and r = 96, 000 [bits/sec] respectively.

The NRPG algorithm is compared to the ZL algorithm for
different available bandwidths by considering the location of
the users around the base station as shown in Figure 3. The
results are shown in Figure 4. When available bandwidth is
W = 3.84 × 106 Hz as in the numerical examples in [15]
the NRPG and the ZL algorithms result in similar powers
and rates, with users closer to the base station transmitting
at higher rates and lower powers than users farther away
from the base station. For both algorithms, as the available
bandwidth W is increased the number of users that transmit
at the maximum allowed power p and/or minimum allowed
rate r decreases, and the NRPG algorithm results in more
efficient power and rate allocations than the ZL algorithm.
As seen in Figure 4(a), when the available bandwidth is
increased by about 40% to W = 5.4 × 106 Hz the power

−500 −400 −300 −200 −100 0 100 200 300 400 500
−500

−400

−300

−200

−100

0

100

200

300

400

500
Location of the users around the Base Station

 

 

Base Station
users

Fig. 3. Example of random locations of users around the Base station

values for users that are transmitting below the maximum
power level are about 40% less for the NRPG algorithm
than for the ZL algorithm, and when the available bandwidth
is doubled, to W = 7.68 × 106 Hz, these powers for the
NRPG are about half of the corresponding ZL powers. In
terms of rates, shown in Figure 4(b), when the bandwidth is
increased to W = 5.4 × 106 Hz the rate values for users
that are transmitting at rates between the minimum rate r and
maximum rate r are approximately 10–20% higher for the
NRPG algorithm than for the ZL algorithm, and when the
bandwidth is W = 7.68× 106 Hz the rates for the NRPG are
about 25% to 50% higher than the corresponding ZL rates. In
addition, as seen in Figure 4(c) the NRPG algorithm results
always in the equal SIR values for all users as opposed to the
ZL algorithms where users that are closer to the base station
get slightly higher SIR values.

In order to corroborate these results and evaluate the average
improvements implied by the NRPG algorithm over the ZL
algorithm we also performed Monte Carlo simulations and ran
100 trials of both algorithms, each trial with a different random
placement of the users around the base station. Results of these
simulations are shown in Figures 5 – 7 and confirm that the
NRPG algorithm yields more efficient power and rate alloca-
tions than the ZL algorithm: when the available bandwidth is
increased average power values (over the 100 simulations) for
users that are transmitting below the maximum power level are
lower for the NRPG algorithm than for ZL algorithm (Figure
5) and average rate values (over the 100 simulations) for
users that are transmitting at rates between the minimum and
maximum values are higher for the NRPG algorithm than for
the ZL algorithm (Figure 6). From Figure 7, we note that the
average SIR values (over the 100 simulations) are similar for
the NRPG algorithm while for the ZL algorithm the average
SIR values for users that are closer to the base station are
slightly higher than those of the rest of the users.

Monte Carlo simulations were also used to investigate
convergence speed of the NRPG and ZL algorithms, and
histograms with the number of steps for convergence to Nash
equilibrium in the 100 trials simulated are shown in Figure
8. We note that the NRPG algorithm takes around 20 – 60
iterations to converge to the equilibrium (Figure 8(a)) while
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(a) W= 3.84× 106
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(b) W= 5.4× 106
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(c) W= 7.68× 106

Fig. 5. The average powers yielded by the ZL algorithm and NRPG for a Monte Carlo simulation of 100 runs. User 1 is the closest to the base station and
user 11 is the farthest.
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(a) W= 3.84× 106
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(b) W= 5.4× 106
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(c) W= 7.68× 106

Fig. 6. The average rates yielded by the ZL algorithm and NRPG for a Monte Carlo simulation of 100 runs. User 1 is the closest to the base station and
user 11 is the farthest.
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(c) W= 7.68× 106

Fig. 7. The average SIRs yielded by ZL algorithm and NRPG for a Monte Carlo simulation of 100 runs. User 1 is the closest to the base station and user
11 is the farthest.
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Fig. 4. Comparison of user powers, rates and SIRs yielded by the ZL
algorithm ( [15]) with those yielded by the NRPG for different bandwidths
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Fig. 8. Monte Carlo simulations to investigate convergence of the NRPG
and ZL algorithm

the ZL algorithm takes 40 – 80 iterations (Figure 8(b)). Thus,
in addition to the more efficient power and rate allocations
noted above the NRPG algorithm is also faster than the ZL
algorithm.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we applied game theory to model the problem
of joint transmission rate and power control for the uplink
of a single cell CDMA system as a non-cooperative game.
Similar to other approaches to joint rate and power control
a static scenario with no users leaving or new users joining
the system was considered. The utility function used in our
approach is defined by the ratio of throughput to the transmit
power and its maximization implies optimal transmission rate
and power. We showed the existence of Nash equilibria for
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the joint rate and power control game and formally stated the
NRPG algorithm for joint rate and power control.

Numerical simulations were performed to illustrate the
proposed NRPG algorithm and to compare it with the ZL algo-
rithm for joint rate and power control developed using a related
game-theoretic approach in [15]. While both algorithms work
similarly and update user rates and powers simultaneously
in one step, simulation results have shown that the NRPG
algorithm converges faster than the ZL algorithm and results in
more efficient power and rate allocations. A comparison of the
Nash equilibrium point implied by the NRPG algorithm with
the optimal power and rate allocations implied by centralized
schemes (such as those in [6], [11] for example) will be the
object of future work.
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