Paraliel Compuuag 17 {19911 763778 763
“arth-Holland

Practical aspects and experiences

A class of Lanczos-like algorithms
implemented on parallel computers

5.K. Kim and A.T. Chronoponios

Deparones: of Compuier Scremce, Lniversity of Minwesom, Minweapohs, Minmerora 52855, U'SA

Rocerved Frbrusry 1994
Revised November 1930

Abarrocr

Kim. 5.K. and A.T. Chronopouios. A clust of Lancroediks algorithms impiemented on parzilel Compuiers.
Parzilel Compuring 17 {1931} 783778,

mclam-l!mmlsnmnmmﬂyundinmhutﬂ;nmﬂnumb«ulntmmmuum
RIFEAVECION: for symmeinc large sparge matnces. Main metnory sccesses for shared memory systems or global
mmtmm}:nmmmmmmemmlemm
the standard Lenczos aigomihe 13 restructured so thar oaly one synchionoation paint is requured:; that u, cae
ﬂohlmmﬁmin:mpm;diuﬁhmd—mmuh:mnrou:g!nb:]murylmpma
shuted-memory mazhine per each iteration is requred,

W:auummduwmeﬁumemﬂhodfmﬁudiul&wdwﬂnnof:ynmmhrwmmmm
iR & surmlar way to tho saep Conugate Gradienr method (2], and we prove that the s-siep inethod generates
reduction matrices which are simulny (o reduction mamnees generated by 1hic standard method, One teratica of
the rslep meummmrponﬂm:tmmolthuuududme:hm.mmupmhod
huimpmddmhuummm:hbﬂwmmmumdhumpmp:mmpmmmm
standard method. These algonthme tre implementod on & Af-node NCUBE /seven hypercube and & CRAY-2,
and, performance reslis aro presented.

Keywords. Ladczos sigorithm; eigenvaive probiem: sytrrietric sparse matrices: muluprocessor systems: CRAY 2.
NCUBE

1. introdoction

It is now [easibie to achieve high performance in numerical computations with parallel
processing technology. In order 1o use pamaliel computers in a specific applicasion. algorithms
need 1o be developed and mapped onto a paraliel computer architecture [1.2.3] Parallel
cortputers consist of many procesgors cotmmunicating through an intereonnection network.
Depending on the structure of the memaory system. two exiremes of parailel computers are
shared-memaory multiprocessors, in which all memory modules are equafly accessible to all
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Table 1

Senal and peralicl compiexity of Lancros part

Operaton Sequeniral Farallel
Vector update o .01 1y
[nner products oM Olog )
Matrix—vectar prodocts Hn N NIog )

processors, and distributed-memory paralle]l processors, in which each memory module is
physically associated with each processor. The significant difference between the two 1ypes is
that a distributed-memory parallel computer has no shared memory. Consequently, 10 use data
in a remote memory it is necessary to explicitly get the data from that remote memory. This
and a]] other interprocessor communication is done by pasiing messages among the processors.

Memory contention on shared memory machines constitutes a severe bottleneck for achiew
tng their maximum performance. The same is true for communication costs on a messape
passng system. I1 would be desirable 10 have methods for specific problems which have low
commumnication costs compared 1o the computation costs. This is intetpreted as a smzil number
of global memory accesses for the shared memory systems and & small number of global
communications for the message passing systems. Also. we consider the design issues invoived
it partitioning and mapping data parailel algorithms [12]. Dats parallel sigorithms are suitable
[or problems with 2 large volume of data. Paralielism is achieved by partitioning the data set
rather than partitioning the control of the program. The slgorithm must be designed sc that
both computarion and daia can be distributed to the processors in such a way that computa-
tions can be mn in parallel, balancing the loads of the processors.

Many important scientific and engineering problems require the compuiation of a smail
number of eigenvaiues of symmetric Jarge sparse matrices. The most commonly used algorithm
for solving such an eigenvalue problem is the Lanczos algorithm. The Lanczos algorithm has
three basic types of operations: matrixvector products, inner products and the vector updares.
Let A be a sparse matrix of dimension N. The sequential and parallel complexity [3] of these
compuiations 18 shown in Table / (= the number of nonzero dizgonals for a sparse banded
mainx A). In Tabie ! the paralle] syster is assumed 10 have O(N') processors. From Table !
we can draw the conciusion thar for massively parailel sysiems the inner products may be the
slowest of the thres operation types in the Lanczos method. The same might be true for
hypercube systems if the communication delay is nmuch longer than the floating point operauon
execurion Lime. Thus, grouping logether for execution the funer products of each iterstion n
the Lanczos method may lead 10 & speed up on this type of computer.

On shaved memory sysitems with & memaory hierarchy such ax the CRAY-2 the data locality
of the computarions is very impartant in achieving high execution speed. A good measure of
the data locality of a companison is the size of the

Ratio = { Memory References) /( Floating Point Operation ).
Mdaulocaliwofampuuﬁnni:gnodifthi:mlioilulowupouible_'mismun being
low implies that data can be kept for *a long time’ in fast registers or local memories ard many
operations can be performed on them. Thus restructuring the theee 1ypes of operations in the
Lanczos method may lead to a speed up on shared memory systems with 5 memory hiersrc fy.

Inthi:pup@rmnlminmduuthemwplxnmmmhud.ln:hemwpmhod:
onnm:iwnepsaf:hesundudmmhodmpcrformedﬁmﬂmnmhr.miImfm
exumple, that the inner products (neaded for 5 steps of the standard method) can be performed
simultancously and the vector updates are replaced by linear combinations. In the s-step
Lanczos method. the compuiationai work and stovage are increased slightly compared 10 the
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sundard one. however the paraliel propertics and datz locafity are improved and the s-siep
method is expected 10 kave oniy one global communicarion for one S-5LEp Utaration. (i.e. the 25
tner products are exccuted simultanecusly.)

In Section 2 we discuss the siandand Lanczos algorithm. In Sections 3 and 4 we describe the
NCUBE and the CRAY-2 in detail and discuss how 10 implement efficiently the Lanczos
algarithm. No reorthogonalization is used in this paper. in Section 5 we restructure the Lanczos
algorithm to gain berter performance. In Section 6 we develop the sstep method witich is the
new version of the Lanczos method. In Section 7 we give numerical exampies and present
experimental resuits on the NCUBE /7 hypercube and Cray-2.

Z The Lanceos method

The Lanczos algorithm for computing extreme eigenvalues of symmetric matrices is based on
the Lanczos recursion for tridiagomalization of & real symmetric matrix [4,7.14]. The basic
Lanczos procedure can be viewed as the Gram—Schmidt orthogonalization of the Krviov
subspace basts {g:. Aqu..... 4/ 'g,}. Furthermore. for each ;.

7, = 0740, (2.1)

1s the orthogonal projection of 4 onto the subspace spanned by the Lancros vectors O, =
{g1.---vq,} such that Q1Q, = I, where 1, is the identity matrix of order ;. The eigenvalues of
the Lanczos matrices 7, are cailed Ritz values of 4 in O ,~ For many matrices and for relatively
small ; several of the extreme eigenvalues of A, that is several of the algebraicaily-largest or
algebrajeaily-smatlest of the eigenvalues of A, are weil gpproximated by eigenvaiues of the
emmpmdinghnmmtmmemumwg,y(=:}obtajmd from an eigenvector v of 3
given T is an approximation 1o 3 corresponding cigenvector of A. The standard Lanczos
algorithms is as follows:

Algorithm Z.1. The Lanczos Algorithm,
Choose g, with |[g; ] =~ 1. gg=0.
For ; = 1 untll Convergence Do

1. Compute and store 44,

1. Compuie (Ag,. q,)

loa=(A4q,. ¢,

4 r=Aq,—B g, T4,

5. Compute (r,. 7).

8 8= {5 1]

7. qja-] _’:«/BP

or

Let T, be the widiagonal matrix at step j

ey A
By &
T= * s =
L L -

These marrices explicitly satisfy the equstion
AQ,= QT +rel, . (2.2}
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where ¢ ={0. 0.....0. 1) is a ;~dimensional vector. The simples: z posieriori bound on the
accuracy of a Ritz value A is oblained fram the residual norm of 1he associsted Ritz vector 2.
it Az —2Af It is possible to estimate the residusl norm of the Ritz vector withoul computing
the Ritz veetor [[4]. In fact,

WAz, —z A [ =B1s,1 for ¢=1.....J, (2.3)

where 5, is the last eiement of the ik eigenvector of 7). This is used as a stopping criterion.
The faIlowmg slep is added after 6 in Algorithm 2.1,

6’. compute £, 5. If B,11, | <« then stop.

The quantity 8, is calcuiated by the algonthm. and since ; is wsually very smafl compared 0 #
the caleulstion of 1, is relatively inexpensive. Also the calcuiation of s, can be performed in
paratle] with A,. Thus 6” does not add an extra synchromnization point.

The me VECIOTS 41y 420 §y»..- lose their mutual orthogonglity as the number of steps
increases. To obtain good numencal accuracy, the algorithm has to be augmented with an
expensive reorthogonalization siep {4.14]. For the explicit orthogonalization of g,., against ali
previous @ '». (he [ollowing step is added after 4 in Algorithm 2.7,

& pomr g lgir) d=p j— 1.2 1

We have 1o keep all previous Lanczos vectors in accessible computer storage through the entire
Lanczos computation with reorthogonaiization because we use them in a direct reorthogonali-
zation or use them (o generate particuiar Ritz vectors which are used in the reorthogonalization.
Prige showed 1hat it is possible 1o obiain accurate eigemvaives by using the method in an
iterative manner using ne reorthogooalization [13]. A Lanczos procedure is said to be iterative
if within the Lanczos procedure a sequenice of Lanczos matrices is generated, each of which
corresponds (0 a different starting vector. The Lanczos procedure with no reorthagonalization
has minimal storage requirements and can (hercfore be used on very large mamnces. The
memary requirement is (wo vectors of length M. the order of the given mawix A. if only
approximations 10 sigenvalues are required. The storage requirement increases if some eigen-
vectors are also needed, but sometimes none and often only one or 1wo are required.

3. Parallelinn on the NCUBE hypercube system
3.1, A hypercube compurer

A hypercube model is a particular example of a distributed-memory message passing parailek
computer. In a hypercube of dimension 4 there are 2* processors. Assume that these are

labeled 0, 1.....27 - 1. Two procossors ¢ and j are directly connected iff the binary representa-
tion of ¢ and ; differ in exacily one bit, Each edge of Fig. / represent & direct connection of a

o

Fig. 1. Dimension 4 hypercibe
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Tahie 2

Compulaton and communication (ime oa NCUBE /7 hypercube

Operanan e { ps) Commi. » Comp.
E byic transfer 4710

E byt reai addition .2 42 limes

E by real muitiplicauon 147 12 umes

dimension 4 hypercube (lines and douted lines are communication linksy. Thus. in a hypercube
of dimension 4 each processor is connected 10 o others and 24 processors may be intercon-
nected such that the maximum distance between any twa is 4.

Table 2 shows a summary of an experimental study on interprocessor communicalion time
and time 1o perform arithmetic operations on the NCUBE [15). We see that an 8 byte message
transfer between 1wo directly connected processors takes 42 times the time for an 8 bryte reai
addition and 37 times that of an 8 byte reai multiplication, Furthermore. lenger messages are
transferred at a higher rate (i., byles per second) than shorter onss going 1he same distance. in
a linear ime model of nearesi-neighbor communication a message of length M bytes requires
approximately 446.7 + 2.4 M ps [15], where the constant term 15 2 stariup time which consists of
the software overhead 2t each end and the time 1o set up the circuit, and the second term 15 the
actual transmission time. The startup 1ime is the dominating factor in. (he communication cost
for short messages on the NCURBE.

In 2 hypercube with & high communication iatency, the algorithm designer must strucnure
the aigorithm %o that large amounts of computation are performed between communication
steps: 2n algorithm requining frequent and random exchange of messiages will not perform weil,

The two main issues in programuming this machine are load balancing and reduction of
communication overhesd. A program is load balsnced if all the processors are busy &1l the time.
IT one processor has most of the work then the others will end up being idle most of the time
and the program will run inefficiently. To arrive at an efficiant algorithm for a kypercube one
needs 10 consider that both computations and data should be distributed o The proceszors in
such a wav that computstional tasks can be run in parailel. balancing the comptiational [oads
of the processors as much as possible.

3.2, Mapping the Lanczas algorithm on the NCUBE

The Ladczes algorithm has three basic rypes of operations: matrix—vegtor products, inner
products and the veclor updates. The matrix vector muitipiication can be performed concur-
renaly by distributing the rows of 4 and the corresponding elemerts of vectors EmMong
processors of the NCUBE ( Fig. 2). We divide the vector length N by the number of PTOCESEOrS
P. Each processor geis a subvector. When P daes nor divide s exactly, one processor gets a

masrix Vectors
A q T
il = s
PEL IC Dy By errrvaa e neins
il LDy By
PEZ -
il T CoDads....... T
PEY G105 Bs.... ;
PRy Co.fnlyl L
PB'l C.r m l

Fig. 1. Distnbunon of matnx and vectors to c2ch processor.
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Fig. 3. Inner product process on kypercube.

shorter vector. The simplest representations of an ¥ X N marrix are row o column oriented
{11]. in the contiguous-row representation, each row is stared entirely in one processor. Durimg
a distributed matrix-vector product computation, processors need the most recently updated
values of the vector elements which are mapped to neighbor processors. if the coefficient matrix
A it sparse and banded. In Fig. 2 D, is a tridiagonal matrix and B,, C, are diagonsl matrices.
Here. only nearest-neighbor cammunication (i.e. local interprocessor communication) is re-
quired. The distributed vector updates can be performed concurrently withowt inierprocessor
communication oniy afier each processor has computed the two required global scalar values in
the Lanczos method.

For umprocessors or muitiprocessors with £ smail number of processors (e.g. four or eight
processors} the mairix--vector products dontinste the compuestion, whereas on parallel com-
puter systems having the hypercube intercomnection network the inner products dominate
because they require global communication (synchronization of all processors) of the system.
An inner product is computed by assigning an equal part of the vector (if possible) o each
node. This allows each processor 1o work on local segments independent of other processors for
most operations. Each node computes in paralie] the sum of squares of its part of the vector.
Then we use the Exchange—Add algorithm {1.9]. Prcetsors B, . oo (i=G....d
— I) concurrently exchange their most recent partia “sum  with their neighbor
B il . .: And then concurrently from their new partial sum. At the end of 24
concurrent n::mbnmghbar commuitication sieps. each processor has its own copy of the inner
product. The Exchange—Add algorithm is illustrated in Fig 3 (= 3).

4. Parallelism on the CRAY-2

The CRAY-2 is an example of a shared-memory four processor computer with memory
hierarchy. All processors have equal access 10 & very large central memory of 256 Megawords
and each processor has it8 own local memory. Fach CRAY-2 processor has 8 vector registers
(each 64 words long) and has data access through 1 single path between its vector registers and
main memory. Each processar hag [6 Kwords of local memaory with no direct path to central
memory but with a separaie daia path between iocal memory and its vector registers and the six
parallel vector pipelines: the common memory to vectar register. the vector register to local
memory. the floatng additive/subtractive, the floating multiplicative / divisible, the integer
additive /subiractive and the logical pipeline. It is possibie 1o design assembly langasge kermels
which exhibit a performance commensurate with the 4,2 ns cycle time of the CRAY-2 if the
computations allow iz. This mesns that a rate of 459 Megallops is possible on one processar if
all anthmetic pipes can be kept busy [5]. The combination of fast cycie time, a local memory
and & large central memory makes the CRAY-2 an exciting choice of computer for use in
large-scale scientific computartion.

The maximum performance of the CRAY-2 for specific applications comes from daia
movement minimization, good vectorizalion and division into multiprocessing tasks. Because of
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the single paths between vector register and central or local memory on the CRAY-2 system,
memery transfers constitute & severs botileneck in achieving maximum performance. Therefore.
runimizavion of data movement resuits in fasier exscution times. Algorithms must provide
good data [ocality.

Macrotasking (often calied multitasking on & data parallel slgorithm is most often applied to
parailel work found in the independent iterations of DO loops. If the loop hax ¥ iterstions we
map the V iterations into P processors of tzsks 50 that each task hax the same amount of work
o do. To achieve [oad balancing, we must consider static and dynamic partitioning. We use
static partitioning when the times for exch of the loop iterations are approximately equal.

Example of contiguous static partitioning with £ = 4:

processor assigned iterations

PO I=1. N/4

P1 I=(N/@)+ 1, IN/4
P2 =N/ +1,3N/4
P3 I=3{N/+1. N

The distribution of marrix and vectors is similar as in Fig. 2 with 4 processors. The extremeiy
targe memory of the CRAY-2 means that many jobs can ususily be resident in the main storage
at the same time, leading 10 very efficient muitiprogramming. We must minimize calls to the
multitasking library because multitasking introduces an overhend that increases CPU time.

5. The modilied Lancyox method

In the standard Lanczos algorithm iteration (zlgorithm 2.1}, the inner products cannot be
performed in parailel. Algorithms bused on restructuring the standard Lanczos algorithm to
decrease the global communication cost and to get better performance in distributed-memory
message passing systems are introduced here,

For shared-memtory systems with few processors processor synchronization is fast bux
accessing data from the main memory may be siow. Thus the data jocalities of the three basic
operauon parts of the Lanczos algonthm determine the actuzl time compiexity of the al-
gonthm. The data locality of the modified Lanczos algorithm is better than that of the standard
algorithms. The conjugale gradient aigorithm for solving symmetric and positive definite finear
systems has the same shoricomings for parailsl processing a5 the Lanczos slgorithm. Exampijes
of parailel conjugate gradient algorithms are discussed in {1.2).

In Algorithm 2.1. step 3 and step 6 are two synchronization points because «, {or A,) must
be computed before the vector r, {or ¢, + 1) computation. This forces doubie aocess of vectors
q. r and Ag from the main memory at each standard lanczos iterstion.

Algorfthm 5.1, The modified Lanceos algorithm.
Choose ry with sy # 0, gy =0,
For ;=0 unti Convergence Do

1, Compute and store Ar,.

2. Compute (Ar,. r,), (7, AN

3. 8= (. ).

4w =(dr, n}/(r. 1}

3. q;i-‘{:r‘n/.aj-

6. vy =Ar/B ~ By — &0,

or
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Algorithrn 5.1 is a varizn: of Algonthm 2.1 and the orthonormal vectors g, are generated in
the same way 25 the standard Lanczoe method. Paige considered the numerical properties of a
few varianis of the Lanczos algorithm [13]. Algorithm 2.1 is stable numericaily because 8, is
calculated by computing the norm of residual vector r, not by compurting g)dg,., {13].
Cmnpumumnllylhn difference between Algorizhms 2.1 and 5.1 is the computation of &, and

1. The compurarion of B, is the same in Algorithmx 1.1 and 5.1. Som:lmsufonhnmality
fram 2 very small residusl vector is unavoidable in any of the algorithms [13]. We need one
more veclar operztion to compule 7, in Algorithm 5.1. However, Algorithm 5.1 seems more
promising for parailel processing because the 1wo inner products required to advance each
iteration can be executed simultaneously. Also, one memory sweep through the data is required
10 complete each ireration allowing berwer management of slower memories in a memory
hierarchy compuer.

If recrthogonalization is wsed in Algorithms 2.1 and 5.1 an additional synchronization point
is required in each algorithm, But this does not affect the fact that the two inner products to
compute o, and 8, can be executed simultanecusty in Algorithm 5.1, and the reorthogonaiiza~
tian seep :sa.ddedanermpﬁ of Algorithm 5.1 in a simijar way 1o Algorithm 2.1. The stopping
cnenon requires 1he computation of 8, and sigenvectors of the reduced macrix 7, Each
processor of a paraliei compuser has 7, and computes the sioppmg criterion after compuiaton
of 8, in Algorithm 2.1 or computation of 8, and &, in Algarithm 5.1, Therefore an additional
synchronization point is not required in Algorithws 2.7 and 5.1,

In the next Section we propose an s~step Lanczos algorithm. which executes simultaneously
in a certain sense y consecutive steps of Algarithm 2.1,

6. s-step Lancros slgorithm

One way to cbiain an s-step Lanczos aigorithm is to use the ¢ linearly independent vectors
(¥hs .-i:rJL ..... A*"13 ) in buiiding the mevecmruqum Let us denoie by ¥, the vector
set {pl, v ..... #; ). The subspace ¥, is spanned by {(#i. Avi.... A7 10]}, 50 that ¥, is made
orthogonal to ali preceding subspaces [ Ivl_-. M

Each subspace V, can be decomposed into @, « R*.wiu:reQ* is an orthonormal basis of 7,
and R, isan rxy upper triangular matrix.

Remark 6.1 Let V., be orthogonal to ¥, for i, » iy Then ¥, = (¥, %..... %) can be
decompased into Q) = K, where §, = {Qh Os..... 8, } and R, = diag(R,. R,..... Re)h

Propasition 6.1. Ler T, be a symmetric tridiagonal marix and T, = R, 'T,R, for j=sk. Then T,
is similar ro the mmx T and T, is a block tridiagonal matrix of the form:

G, £
- R G K
Tp= e & @ '
s o @
'Fl'—] Gl‘

where G, ond E, are 1 X x matrices. The matrix F, is an 1 X 1 matrix whaxe only nonzero clement is
at locanton (1, 1).

Proof. R, is nonsinguiar if and only if »/.....’ are linearty independent. By Remark 6.1, R, is
nonsingwiar if all R, for r1=1,.. karenonmga.lln.r So T, if similar to the matrix 7,. Since
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R, =diag(R), Ry.....R,) and R, for 7 =1..... k isan 5 X v upper trianguiar matrix. R;' has
the same structure as &, Thus the product .R.TR,, for j= sk is a block tridiagonai matrix
with lower diagonal blocks in a speciai form. Wemﬂdm:ramlhmforﬂmsgeuﬂcau
¢ =3, k= 3. The general case is shown similarly but the description is more complicated.

= = & e = a = = -

- = " a ® =
- - L] L] L
- oz o= = = B - = om
RE Ry L - & M n o=
- = ] L] -
E = = 4 & = = = &
a a = = =m -
L =L LI -
'm = x U= & '|
= = = =
L] " P A = om
a = = - = & =
- P LI B
L] - L] - - -
- = = = & o= L}
= & = = =
L *dhk "
M a "= mtowm » = "
- ml s = L}
» E.ow = =i
_____ e L
Ay &« ® mypw u
- [ r L] - -
I = MrTw ® o=
""""" ""-___::_-__l'_'T
: L
. 1 v -

4
n

We will use the following s-dimensional column notstions for the mamces G, and E,.
G, ={af]. E=[v]. forj=1...1
where a/ = [a}/,.... /" and v/ =[v" . pHTT

Theorem 6.1, Lat A be @ N x N symmetric matrix and V, = {V,, Va,.... V) for N =sm. Let
Vv, =T,, {6.1)
then 7, = R,;'TyR,, where T, is the Lanczos tridiagonal matrix.

Proof, By multiplying both sides of the Eq. (6.1} by ¥, we obtain:

AV, = V. T.. (6.2)
From Remark 6.1 we have:
A{ DR} = { G R ) o

By multipkying both sides of the equation by R,! we obtain:
A~ QLR.T.RT
By multiplying both sides of the equation by {7, we obtain:
BT 4D =R, TR

ﬁ‘nchmu’kﬁ.lQ umorﬂmpnalmnnxnndﬁnml’mpmnm&.l.RTR' is a
symmetric tridiagonal matrix. Therefore, by the jmplicit Q theorem [7]. R, T, R’ is the same
as the Lagczos tridiagonal matrix Ty. Also ¢J,, is the same sequence of vectors as the standard
Lancros veegars O, if the initial vector », i= the same. O
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Coroliary 6.1. The block tridiagonal matrix T, for k=1.....m ~ 1 har the scme eigenvatves a3
The Lanczos reduction mairix T, for j = xk.

Proot. By Proposition 6.1. the matrices T, and T, for j = sk ape similar, 0
If k <m then by equating calumn biocks in Eg. (6.2) we obtained the following equation:

AVk=V,T,+uel, for km=1l.....m—1, (6.3)
where 1, 15 1he residual veciar. From Eq, (6.3) we derive the following block equations:
AVy =V, _\E(_y + VG, + upel, (6.4)

where ¥, =0 and E, =0,

Equations (6.2), (6.3) and (6.4) motivate the derivation of an sstep Lanczos algorithm,
Initialiy we can form ¥, =[#], As,.... 4*"'5}], then we select the new Kryiov vector from
equation (§.4)

uy = Arf -~ o¥o — Voo,

If we choose » = u, (i.¢. normalization is not applied) then the nonzero emtry of F, is 1. We
from the vecior {v;..... 24} in ¥ from the vectors ( Av..... 4°"'sl} by arthgonalizing them
against V). Thus »4. for 2 €/ % s. are determined by the linear combinations:

=AW~ Y i for F=™2.....5.
g
where {137}, for ] €/ & x and 2 £ j & 5. are parameters to be determined. Let #f = [}/, ... 7|7
denote the paramsiers defining »{. We now give the defining equations of the rstep Lancros in
the form of an algorithm.

Algorithm 6.1. s-step Lanczos Algarithm.
V=0 iw)=015igs
Vy = (vl A¥l,.... A1)
For & = | until Convergence Do _ _
Select (e ], {vi_,]. 1 € 2% 1. 1o orthogonaiize ¥,-1 against V, in Eq. (6.4). This gives zlso:

Ver =An = Vi, - Vidi. {6.5)
Select [£{]. 2 €7 % 5. W orthogonalize { Aul,.... 4~ '5}} against ¥, which gives
vl =A Nl ~ Pl for j=3...s (6.8)

EndFor

Next. we demonstrate how 1o determine the parameters o, Yi_1» #{ in Algorithm 6.1.
Equation (6.4) muitiplied by 7,7 from the left yields

A IARA A {6.7)
Also, Eq. (6.4) multiplied by 7, from the left yields

I_”I-T—IAF"::"‘ ﬁtiﬁ—lst—l' (6.8)
Equation (6.6) multiplied by PT from the lef yields

0m VAN ~ VTPt for j=2,....4. (6.9}

Equations (5.7), (6.8) and (6.9) determine [o}, [v{_,]} 1<% and [t{] Z2</j<s. a8
solutions of 35— 1 linear systems of size 5. We will introduce some notation in order 1o
describe these linear systems. )
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Remark 6.2, Let W, = VTV, = ((0}, #{)}, 14, j<r then W, is symmetric and it is
nonsingular if and only if »;,....»} are linearly independent.

Remark 6.3, From Egs, (6.7). (6.8) and {6.9) and Remark 6.2 follows that the following linesr
Systems must be soived 10 determine (o), [15..,], [ € <5 and [£], 26

. T
We-ta-1 =ck_y, where ci—l“{(’i—iv A"l‘:]-'---{";nlr ‘"i)] ' (6.10)
Wiet, = d,, where di=[(s}, a¥}),...,{s}, Ar;][T, (6.11}
Wit =b{, where bi=[(x, 47"}, ), ... (s, 47,0 (6.12)

The following corollary simplified the compuration of the vectors 5% and cf_ .

Corollary 6.2. The righthand side vectors ¢L_|,....ci_; for the linear systems (&10) and
E..... I}, for the linear sysiems (6.12) hecome:

a0 0 (s )] = [0, 0. () A=) Tsiss,
bi={0.....0, (s~ A7) (o A"lriﬂ)]r, 2%

Proof. We use the symmerry of 4. Eqs. (6.5), (6.6) and the fact that the subspace 7,, (Pray)is

arthogonal to ¥, .\, (F,). O
Using this resuit and the fact that A is symmetric, the fallowing Caorollary reduces the mamix
W, and the vectors b{ to the previously computed scalsrs and the 25 inner products

(Pks 2k )2 ( A9k, #h)oenn (437050, 51, (6.13)
These inner products are the first 25 moments of the vector ¥} with respect to the matrix A.

Corallary 6.3. The comparatian of marrix W, = (v}, vi)} 1 &i. j < 5, and the vectors ¥..... ¥,
van be rediced 1o the first 23 moments of vl and previousty computed scalars.

Proof. We use the symmetry of 4. the block orthogonality of ( 7, } and Eqs. (6.5) and (6.6). The
matrix of imner products W, can be formed from the first 2r moments of »} and the
s-dimensional vectars bf_, a& follows:

(vt w4} = (v, 47715

H
= (e 470 5) = B 220y, 47,
fmp

Similarly the inner products in the vectors 5] are computed as [ollows:

(7 A29he ) = (o), A7 1,)

{5, Atr+n—u+11,i+])+ iﬂﬂ"i A“*“"‘""riﬂ),

Jmip

where r s 2(r+ N —(p+q) T

Also, the vectors. d},....d} can be reduced o computing the first 25 moments of ». and
pmiomscﬂarwkusingnpmoflinﬁhrmmnafc_mnuulﬁ.lnmmmmonlybimer
Froducts (on vectors of size &) required in forming 7, and Vi in Algorithm 6.1.
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We now reformulste the rstep Lanczos algerithm 12king inwo accoun: the theory developed
abgve.

Algorithm 6.2. s-step Lanczos algorithm,
Selzct »,
Compute ¥, = [v], A»l,.... 45 "),
Compute 25 inner products.
For k = | until Convergence Do
L CxIIScaIuI
2. Compute »; ., "‘A"t“ Vi 1%i- 1 Vit
3, Compuite 4¥% .1, AW irees AV
4. Cornpute the 25 inner products in {6.13).
5. Call Scalar2. _
6. Compute pf,, =A"wl,, — V,[ti] for j=2.....5.

Scalar [: Decompose W, and solve W, _ vy, =c,_,, Wi =d}, fori=1.....s
Scalar 2: Solve Wyrf = b for j=1.....1.

From Eq. (6.3) follows that in the pstep Lanczos method the Ritz values of 4 in ¥, are the
eigenvaiues A, and 7, and the Ritz vectors are vectors ¥ x, (= 2, ), where the eigenveciors x,
of 7, are associated with the X,. The residusl norms of the Ritz vaiue A and Ritz vector x can

be computed by using the formmula ({4 - A1)z, || = 1| ][ [T |, for i=1,..., sk, where ,, is
:heh:lelmm:ufﬂmith:igmmmrofI;.Tiﬁlcanbeuudunlwppingm'imml.

In Tabie 3 we compare the computationsl work of the sstep Lancros method ta the
standard Lanczos method. We only present the vector operations on vectors of dimension N
and negiect the operation: on vectors of dimension r.

7. Numevicsl experiments

Large, sparse problems arise frequenily in the numerical integrasion of partial differential
equations (PDEs). Thus we borrow our model problem from this ares. The test problem was
derived from the five point discretivation of the lollowing partial differential equation.
Problem:
_(bﬂx):_{Wy],';'{ﬁ}:+(m)r+ﬁ‘-g

an the unit square, where
bix, y)=e ™, e(x. y)=¢”, d(x, y}=B(x+y),
e(x, y)=y(x+y) and f(x, p)=1/{1+x+y)

Table 3

¥ector Opt for 1 werations of the standard Lanczos and one iteration of ratep Lanczot mcthod
operalion slandzard Lancros sigorithm satep Lanczos algorithn
Inner products F 2

Vioctor updxtes 3x rtr +13

Munx" Vecior ! I+l
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Tahle 4

Latgest cigenvaines unng the Lancens methods on the CRAY-2

T, Code™ standard maoditicd Lestep

1ax 19 O ILOBGETE + (2 Q.BI704428F + 02 010708428 E + 01 O 10704428 + 02
20x20 Q.1TDBE&STE + 02 O.21DEI9SSE + 02 0.11083935E+02 0.110835956F + (2
¥x30 Q. LIQBERS TE +~ 02 O.II0ES457E + 02 0.1 1086487E + 02 0. 11088467E + 02
4% 80 01108646 TE + 02 0.1 1086447E + 02 011056487 E + 02 0. 11088467E +02
L J-ftep dglep S-s1ep Srstep

10x 14 - - Q1002 TE -+ 02 ~

0x24 - 0.110B39SSE + 02 011083935 E +02 ~

30x30 0. L1OBS46TE + 02 - 0.1 L0BE4E0E +02 C.I10BEIRTE + 02
4] % 80 - Q1108848 TE + 02 O-1IOES4B0E + 02 -

subject 1o the Dirichlet boundary conditions x(x. y) equals the solution. o the boundary. The
nght-hand side g was ci:osen so that the solution was known to be €7 sin{wx) sin(ny). The
parameters £ and y are useful for changing the degres of symmetry of the resulting coefficient
matrix of the linear systems, Noge that the mamrix A resulting from the discretization remains
pofitive real. independent of these parameters. We denote by » 1he number of interior nodes on
cach side of the square and by & = 1/(n + 1) the mesh size. In this paper we set v =0 and
8 =0 for & symmetric matrix A of dimension N = x2,

The experiments were conducted on the NCUBE /7 with 64 processors and on the CRAY-2
muitiprocessor system al the University of Minnesota. In the accuracy test, Table # shows that
matrices generated by the standard, modified and s-step Lanczos method have the same Jargest
eigenvalues. but for £ > 5 in the s-step method loss of sceuracy for eigenvalnes can be observed,
We tesied the methods on the problem of size N =4096, We also compared the largest
eigenvalues computed by the standard, the modified and the sstep method with those by
Saad's program (code*) [16]. Saad's code uses reorthogonalization and deflated iteration 1o
conmpute eigenvaiues. The stopping criterion is € = 10~% in Saad’s program. In the standard,
modified and sstep Lanczos methed. we find the largest eigenvalues after a reduced marrix of
a cerizin size is generated, so these methods require minimal storage and time. Reorthogonali-
zation or deflated iteration are required o get a good approximation for the exireme
cigenvaiues. However we have not ye: incorporated these techniques in the implementstion of
our Lanczos algorichms.

We reduced the different size matrices A of the modef problem to 20 X 20 tridiagonal or
block tridiagonal matrices using the standard, modified and 5-step Lanczos algorithms, Figure
4 shows the time these methods ook to make 20 X 20 reduced matrices for different size test
problems on the CRAY-2 with 4 processors, Figure 5 shows the speedup (P1,/P4) when 1
proceszar and 4 processors are used in the CRAY-2 for the standsrd and 5-step method. In the
modified and rstep method memary reference time and calls to the macrotasking Lbrary are
decreased by the posibility of making the grain size large and by decreasing the number of
synchronization paints. This accounts for the superior performance of these methods over the
standard Lancros method on the CRAY-2

Figure 6 shows the time for the inner products part of the Lanczos algorithm which require
global communications on the NCUBE/7 (problem size N =4096). The speedup factor
(standard / modified) for the inner product part is 1.5 in Fig 6. The speedup of the modified
Lanczos method over the standard Lanczos method results only from the decreased time for the
inner products part ou the NCUBE. So the modified method is expected to give better
performance gver the standard one as mare processors are used. The total time to make 20 X 20
iridizgonal matrices for the standard and modifisd Lancros method on different numbers of
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method.

pmcumofﬂmNCUBEﬂ with N = 4056 are given in Fig. 7. Table 5 shows the total time of
the standard and madified and 1-step method for different sizes of test problems with 64 nodes
on the NCUBE/7. On the NCUBE/7, the I-step Lanczos method gives the fustest perfor-

Tabie 5

NCUBE/T performance (sec) using 64 nodes for 1the Lanceot meshods

VN pandard modificd 1-sep
&4 Q545 0.534 0ATL

128 1.457 1.208 1.114

192 1192 307 1171

156 4 691 1E5R 15482
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marnce because it requires one vecior updates less than the standerd Lanczos methaod and oniy
one globa] commumication per one iteration. The sstep Lanczos method with 5> 1 has vecior
operations overhead (over the standard one) both in the lineay combinstions and matrix—vector
products. As a result the gain due 1o reduced global communications cannot offset the time
required for the overhead, and the »step for 5 > 1 Lanczos method is slower than the standard
Lanczes method on the NCUBE /7.

3. Conclusion

The Lanczos algorithm was restructured in this paper. The modified algorithm decresses the
global communication bottleneck of the basic Lanczos algorithm by restructuring computations
in such 2 way as [o increzse the number of inmer products that are accunmlated during one
iteration. The modified algorithm has beter data locality and decreases the memory contention
bottleneck.

We have aiso introduced the s-step Lanczos method and proved that it generates reduction
matrices which are simlar 1o those generated by the standard Lanczos method. The resulting
algorithm has better data locality and paraile] properties than the standard one. In the ssiep
method the inner products needed for s steps of the standard method can be performed
simultsneously and the vector updates are replaced by linear combinations. A disadvantage of
the s-siep Lanczos method is that additional operations (compared Lo that of the standard
Lanczos method) are required. The design of a stabie s-s1ep Lancros method with no additional
vector operations compared 1o the standard method remains an open question. For large s> §
loss of accuracy for cigenvalues has been observed.
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