
J. Parallel Distrib. Comput. 107 (2017) 76–86
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Non-cooperative power and latency aware load balancing in
distributed data centers
Rakesh Tripathi a, S. Vignesh a, Venkatesh Tamarapalli a,∗, Anthony T. Chronopoulos b,
Hajar Siar c
a Department of CSE, IIT Guwahati, Assam, India
b Department of Computer Science, University of Texas at San Antonio, USA
c Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran

h i g h l i g h t s

• Proposed game theory-based novel load balancing scheme for distributed datacenters.
• Scheme provides latency fairness across the users.
• Algorithm minimizes the operating cost for data center operators.
• Algorithm achieves optimal result with very low complexity.

a r t i c l e i n f o

Article history:
Received 25 September 2016
Received in revised form
8 March 2017
Accepted 17 April 2017
Available online 27 April 2017

Keywords:
Distributed data centers
Game theory
Front-end proxy servers
Optimization of combined energy and
latency cost

a b s t r a c t

In this paperwe propose an algorithm for load balancing in distributed data centers based on game theory.
Wemodel the load balancing problem as a non-cooperative game among the front-end proxy servers.We
model the operating cost associatedwith a data center as aweighted linear combination of the energy cost
and the latency cost.We propose a non-cooperative load balancing gamewith the objective ofminimizing
the operating cost and obtain the structure of Nash equilibrium. Based on this structure, a distributed
load balancing algorithm is designed. We compare the performance of the proposed algorithm with the
existing approaches. Numerical results demonstrate that the solution achieved by the proposed algorithm
approximates the global optimal solution in terms of the cost and it also ensures fairness among the users.

© 2017 Elsevier Inc. All rights reserved.
1. Introduction

In the recent past, there has been a tremendous growth in the
demand for Internet-scale services like Web search, video stream-
ing, and online gaming. Almost all of them are implemented on
geographically distributed data centers. A geo-distributed data
center is a collection of small geographically distributed data cen-
ters which provides high reliability and performance. In an opera-
tional data center there are several front-end proxy servers that
map the client requests to the appropriate data centers. These

∗ Corresponding author.
E-mail addresses: t.rakesh@iitg.ernet.in (R. Tripathi), s.vignesh@iitg.ernet.in

(S. Vignesh), t.venkat@iitg.ernet.in (V. Tamarapalli),
Anthony.Chronopoulos@utsa.edu (A.T. Chronopoulos), h_siar@semnan.ac.ir
(H. Siar).

http://dx.doi.org/10.1016/j.jpdc.2017.04.006
0743-7315/© 2017 Elsevier Inc. All rights reserved.
proxy servers use different objectives like maximizing the uti-
lization, minimizing the latency or the operating cost to map the
requests. Since the client requests are handled in a distributed
manner by the front-end nodes, there is a need for an efficient, dis-
tributed algorithm to determine themapping strategy, also termed
load balancing strategy.

In general, a load balancing strategy can be classified as
static, semi-static or dynamic. In the static approach [12], all
the information necessary for the decision making is available
before the execution of the algorithm and it remains constant
during the execution. In the semi-static approach [10], the required
information is available at the beginning of each time step or awell
defined point. For example, the load on the system and the cost of
serving the same are availablewith reasonable accuracy just before
the time slot. In the dynamic approach [16] the information is not
known till the point of execution and it might change during the
course of execution.

http://dx.doi.org/10.1016/j.jpdc.2017.04.006
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2017.04.006&domain=pdf
mailto:t.rakesh@iitg.ernet.in
mailto:s.vignesh@iitg.ernet.in
mailto:t.venkat@iitg.ernet.in
mailto:Anthony.Chronopoulos@utsa.edu
mailto:h_siar@semnan.ac.ir
http://dx.doi.org/10.1016/j.jpdc.2017.04.006

R. Tripathi et al. / J. Parallel Distrib. Comput. 107 (2017) 76–86 77
Load balancing algorithms can also be classified as centralized
or decentralized. In a centralized approach, one node in the system
collects the information necessary to decide the strategy for load
balancing. In the decentralized approach, multiple nodes partici-
pate to decide the load balancing strategy, either cooperatively or
independently. Decentralized approach (cooperative or otherwise)
is resilient and scalable compared to the centralized one, partic-
ularly for large-scale distributed data centers. In the cooperative
approach, all the nodes form a coalition to decide the optimal solu-
tion, which improves the performance [27]. In the non-cooperative
approach, each node maximizes/minimizes the utility indepen-
dently, but eventually reach an equilibrium [21]. Non-cooperative
game solutions to the load balancing problem are computationally
efficient and can be implemented in a distributedmanner across all
the participating players (in our case, the front-end proxies) [35,7].

The operational cost of a data center is influenced by factors
such as electricity prices, server/data center failure, green energy
availability, and client demand. Therefore, load balancing is
challenging as the designed strategy must consider the spatio-
temporal variation in these factors to minimize the operating
cost. Most of the literature on load balancing in distributed data
centers [25,26] consideredminimizing the operating cost, which is
profitable for the operators, but has ignored the users’ perspective.
Users consuming the same resources may pay the same price,
but experience variable delays. For business continuity, ensuring
fairness in service latency across the requests fromdifferent clients
is also important. The load balancing algorithms in the literature
designed to provide fairness, did not consider the energy cost.
Therefore, we consider the linear combination of operating cost
(or energy cost) and revenue loss due to latency (including the
network and queueing delays) as the objective function.

In a distributed data center, the user requests are served by
the front-end proxy servers independent of each other. Each proxy
server prefers to get its requests served by the data center first to
minimize the service delay. In order to model this selfish nature
in distributed load balancing, we use the non-cooperative game
theory approach. We propose a game-theoretic distributed load
balancing algorithm, that is executed across a finite number of
front-end proxy servers. The objective of the game is to minimize
the sum of the energy cost and the revenue loss due to delayed
service. The proposed approach reduces the cost compared to an
approach that only minimizes the operating cost as in [40].

In summary, themain contributions of this work are as follows.

• For the first time, we model the load balancing in distributed
data centers as a non-cooperative game among the front-
end proxies. We consider the spatio-temporal variation in the
electricity price, the offered load, and the availability in the
model. We prove that the Nash equilibrium is the solution of
this game, which is guaranteed to exist since the proposed
objective function is continuous, convex and increasing [21,31].
We characterize theNash equilibriumandpropose a distributed
algorithm for computing the same.
• We evaluate the performance of the non-cooperative game

theoretic algorithm (abbreviated as NCG) along with the
existing ones, such as the proportional scheme and the global
optimal scheme, using real-world data. The proposed NCG
algorithm shows better fairness (in service latency) at a
comparable cost.

The rest of this paper is organized as follows. Section 2 presents
the literature on game theoretic approaches related to our work.
In Section 3 we present the architecture and the cost model
used in the formulation. We present the non-cooperative game
model and derive the structure of Nash equilibrium in Section 4.
A distributed algorithm to solve the game and its analysis is
given in Section 5. In Section 6, we present numerical results that
demonstrate the performance of our algorithm against the optimal
approach. Section 7 concludes the paper and proofs of various
theorems are presented in the Appendix.

2. Related work

In this section we review the literature on cost-aware load
balancing and other game theory-based approaches in distributed
systems, which are relevant to our work.
(a) Electricity price-aware load balancing:

The problem of load balancing requests across different data
centers leveraging electricity price variability has been addressed
in [26,25], where the requests are routed to data centers operat-
ing with cheaper electricity. The authors of [40], considered avail-
ability of green energy sources, along with the electricity prices
while choosing the data center. All these works used an optimiza-
tion framework that is solved centrally. The work in [38] pro-
posed a decentralized algorithm for load balancing considering
the server availability, but did not optimize the latency or the op-
erating cost at the data center. The work in [15] proposed three
distributed algorithms for load balancing based on Gauss–Seidel,
gradient projection and gradient descent methods. These methods
are all known to be computationally expensive and may not be ef-
fective for dynamic load balancing.
(b) Cooperative game theoretic approaches:

Numerous efforts have been made for load balancing and re-
source management using cooperative game theory for example
in communication network [28], distributed systems (DS) [8,23],
and grid computing [34]. In [28], the authors presented an excel-
lent summary on coalition games and their use in wireless com-
munication networks. They listed the applications of game theory
for distributed resource allocation, congestion control, power con-
trol, and spectrum sharing in cognitive radio networks. The work
in [8] modeled the static load balancing in a single class DS with
heterogeneous computers, as a cooperative game among the nodes
(being assigned user jobs). It is shown that the Nash bargaining so-
lution (NBS) gives an optimal solution and it is also fair. A sim-
ilar approach was used in [23], where the communication cost
for job transfer between the nodes was also considered. The au-
thors of [34] addressed the problem of job allocation in a grid en-
vironment. They presented a distributed algorithm based on the
structure of the NBS to minimize the average job completion time.
In [39], the authors proposed a data center selection framework
to ensure latency fairness across clients using the NBS, and pre-
sented algorithms based on dual decomposition and sub gradient
methods. All these works have studied the structure of NBS for
load balancing in architectures not similar to the ones used in geo-
distributed data centers and they also used different objectives. In
this paper, we use non-cooperative game theory to account for the
selfish nature in decentralized load balancing and due to its com-
putational efficiency.
(c) Non-cooperative game theoretic approaches:

The authors of [14] proposed a price bidding strategy for mul-
tiple users competing for servers in a cloud environment, where
non-cooperative game is usedwith the objective ofmaximizing the
net profit while being time efficient. The authors of [17] proposed
an auction-based online mechanism for VM provisioning in cloud
environment. The main drawback of using these approaches is the
slow response time, as the bidder has to wait for auction clearing.
In this paper, we address the problem of online load balancing in
Internet data centers, where the requests are small in size to be
served with minimum latency.

The authors of [7] addressed the problem of load balancing
in a DS consisting of n computers (or nodes) shared by m
client regions (classes). They proposed a distributed algorithm
for load balancing in distributed system using non-cooperative

78 R. Tripathi et al. / J. Parallel Distrib. Comput. 107 (2017) 76–86
Fig. 1. Architecture of a distributed data center.

game theory. The work in [24], also considered the fact that the
jobs submitted to a heavily-loaded computer are transferred to
other lightly-loaded computers. Their objective function included
communication delay along with the computational delay. In their
model, a player has a selfish interest of optimizing his/her own
expected response time. The problem is formulated as a non-
cooperative game among the users, who try to minimize the
expected response time of their own jobs. Nash equilibrium is
introduced as the solution structure and a distributed algorithm is
proposed for computing the same. Similarly, the authors of [35,32]
have applied non-cooperative game theory in a grid environment
and future Internet architectures, respectively.

Fundamentally, the geo-distributed data centers differ from
other communication systems, computational grids, and cloud en-
vironments in terms of the basic objectives, their characteristics
and the way the resources are assigned to jobs (requests). There-
fore, it is not possible to directly apply earlier literature for the ar-
chitecture considered in this paper. Though using non-cooperative
game theory for load balancing in distributeddata centers is similar
to the work in [7], our work is novel in the following aspects. Our
architectural setup is different (three-tier architecture) and our al-
gorithm is driven by the need to satisfy the goals of both front-end
proxy servers (latency minimization) and the data center opera-
tors (energy cost minimization). We take into account minimiz-
ing the energy cost in meeting the demand, besides ensuring fair-
ness across the user-perceived latency. Earlier load balancing al-
gorithms that tried to provide fairness did not consider minimiz-
ing the cost of energy consumed. To the best of our knowledge,
we are the first to propose a load balancing strategy for distributed
data centers using non-cooperative game theory, whose objective
is not only to minimize the latency but also to minimize the oper-
ating cost (or energy cost).

3. Systemmodel

We assume that a distributed data center, as shown in Fig. 1,
consists of set of n data centers denoted by S and a set of m front-
end proxy servers denoted by U . For simplicity, we consider the
client regions to be co-located with the front-end proxy servers
(we use the client region and front-end proxy interchangeably).
Each data center houses ms number of servers and is modeled as
an M/M/1 queueing system. It is characterized by an expected (or
average) processing rateµs = msµ, whereµ is the processing rate
of each server, s = 1, . . . , n. The arrival rate of demand from each
client region is represented by Lu, u = 1, . . . ,m. A front-end proxy
server maps the client requests to multiple data centers, where λsu
is the portion of the demand mapped from a client region u to a
data center s.

To ensure that all the requests are served, the following
conditions must be satisfied.

s

λsu = Lu ∀u. (1)

Since the number of requests served cannot be negative,

λsu ≥ 0 ∀s, u. (2)

To ensure the stability of the system, the following constraints
need to be satisfied.

u

λsu < µs ∀s. (3)

Power consumption cost: As reported in [3], the power consump-
tion of a server varies linearly with the load. Let Pidle be the average
power drawn by the server in idle condition and Ppeak be the power
consumed at the peak utilization.

Es is the power usage effectiveness (PUE) of a data center s,
defined as the ratio of the total power entering the data center to
the power used by the computing equipment.

The utilization of a data center, denoted by η, is given by

η =

u

λsu/µs ms. (4)

The data center power consumption includes three components:
the power consumed by idle servers, denoted by ms(Pidle), the
power consumed by the servers operating at a utilization η, de-
noted byms(Ppeak−Pidle)η, and the power consumed by the cooling
and auxiliary equipment, denoted by (ms(Es − 1)Ppeak). Therefore,
the total power consumed at a data center location s ∈ S can be
written as [20],
Ps = ms(Pidle + (Es − 1)Ppeak)

+


u

λsums(Ppeak − Pidle)/µs ms. (5)

Eq. (5) can also be expressed as an affine function of the total work-
load at a data center as

Ps =
(Ppeak − Pidle)


u

λsu

µs
+ ϵ′ (6)

where ϵ′ = ms(Pidle + (Es − 1)Ppeak).
Due to the recent advances in hardware, DVFS scaling, and

processor scheduling, it is possible to keep the power consumption
proportional to the utilization [9]. Due to efficient cooling systems,
PUE has also been significantly lowered [29]. The state-of-the-art
average PUE could be as low as 1.02 [1]. When PUE is close to unity
and Pidle is very low compared to Ppeak [18], ϵ′ is very low compared
to the actual power consumed. Further, ϵ′ is independent of the
utilization and gets canceled in load calculation (see Appendix for
details). Therefore, we assume ϵ′ = 0 as also done in [6,13].

This assumption makes Eq. (6) to be linear in terms of the load.
Thus, we can easily determine the power consumed to serve the
requests λsu from a client region u at a data center s as

Psu =
(Ppeak − Pidle)λsu

µs
. (7)

Given the load λsu and a unit electricity price ρs, the cost
incurred due to the power consumed at a data center (also termed
the operating cost in this paper), is given by

Θsu = ρs
(Ppeak − Pidle)

µs
λsu (8)

Θsu = θsλsu (9)

where θs = ρ
(Ppeak−Pidle)

µs
is constant.

R. Tripathi et al. / J. Parallel Distrib. Comput. 107 (2017) 76–86 79
Delay cost: Let dsu be the propagation delay between the data
center s and a client region u. We assume an M/M/1 model for the
queue at the proxy, so that the expected average queueing delay at
a data center s for a request from a client region u is given by

Dsu =
1

µs −

u

λsu
. (10)

Therefore, the total delay incurred by a request, δsu is given by

δsu = dsu + Dsu. (11)

Since we assumed Web workload, the transmission delay is
neglected. We use a linear model for the loss in revenue due to the
delay incurred [15]. The cost incurred due to the delay experienced
by a request λsu of client region u at a data center s, denoted by∆su
is given by

∆su = βλsuδsu (12)
= βλsu(Dsu + dsu) (13)

= β

 λsu

µs −

u

λsu
+ dsuλsu

 (14)

where β is a constant.

4. Load Balancing as a non-cooperative game

In this section, we model the load balancing problem as a non-
cooperative game. The proposed approach combines the inherent
efficiency of the centralized approach and the fault-tolerant
nature of the decentralized approach. In a non-cooperative game
there could be finite (or infinite) number of players who try to
minimize/maximize their objective independently, but eventually
reach an equilibrium. For finite number of players, this equilibrium
is called Nash equilibrium whereas for infinite number of players
this equilibrium is called a Wardrop equilibrium [21].

In distributed load balancing, the problem at hand for each
front-end proxy server is to determine λsu, which we model as a
non-cooperative game among the front-end proxies.We define the
vector λu = (λ1u, λ2u, . . . , λnu) as the load balancing strategy of a
user u, u = 1, 2, . . . ,m and the vector λ = (λ1, λ2, . . . , λm) as the
load balancing strategy profile of the entire system.
Objective function: The objective function we use has two
components, the power consumption cost defined in Eq. (9) and
the delay cost defined in Eq. (14). Let Ψu denote the expected Cost
Incurred for a Client region (CIC). We define the objective function
for a front-end proxy serving a client region u as

Ψu(λ) =

n
s=1

(Θsu +∆su) (15)

Ψu(λ) =

n
s=1

θsλsu + βλsu

 1
µs −


i

λsi
+ dsu

 . (16)

Therefore, the goal of a front-end proxy at u is to find a feasible load
balancing strategy λu such that Ψu(λ) is minimized. The strategy
of u depends on the strategies of other front-end proxies as Ψu is a
function of λ.

Definition 4.1. Feasible strategy profile is a strategy λ that satisfies
the following

1. Positivity: λsu ≥ 0, ∀s, u;
2. Conservation:


s λsu = Lu ∀u;

3. Stability:


u λsu < µs ∀s;
Definition 4.2. The non-cooperative load balancing game is a game
played among a set of players. Each player has a set of strategies
and an associated costwith each strategy. The game in our scenario
is a normal form game with continuous objective function and can
be described as:
• Players: A finite set of players m denoted as U , U =

{1, 2, . . . ,m}
• Strategy sets: Strategy sets: λu = λ1u, . . . , λsu, . . . , λnu where,

λsu ∈ [0, Lu] ∀u ∈ {1, 2, . . . ,m}, ∀s ∈ {1, 2, . . . , n},

s.t.

s

λsu = Lu ∀u.

• Cost: The cost of a player u is represented by Ψu. Each player
wants to minimize the cost.

Claim. We can get an upper bound (denoted by UBnd(Ψu)) on the
objective function in Eq. (16).
Proof. In the Appendix.

Remark. It can be shown that our proposed game is equivalent to
a game where the objective function is maximized.
Proof. We note that minimizing Ψu is equivalent to maximizing
UBnd(Ψu) − Ψu. Thus, our game definition with this objective is in
normal form aswhen the playersmaximize the objective function:
Φ = UBnd(Ψu)− Ψu [36].

In order to obtain the load balancing strategy for the distributed
data center, the above game has to be solved. The Nash equilibrium
is the most commonly used solution for such games.

Definition 4.3. Nash equilibrium of the above mentioned load
balancing game is a load balancing strategy λ such that for every
front-end proxy u

λu ∈ argmin
λu

Ψu(λ1, . . . ,λu, . . . ,λm). (17)

A strategy λ is a Nash equilibrium if no player can gain by
changing its current strategy to another feasible one. In our load
balancing game, the Nash equilibrium has the property that no
player can decrease the total cost incurred by choosing a different
load balancing strategy λu given the other players’ load balancing
strategies. The Nash equilibrium exists for our game because Ψu
is continuous, convex and increasing. At the Nash equilibrium, the
strategy profile is such that every player’s load balancing strategy
is a best reply given the other players’ strategies. This best reply
for a player provides a minimum cost for that player’s demand
given the other players’ strategies. Thus, we first determine the
best reply strategy λu for every player u and then we determine
λ = (λ1, λ2, . . . ,λm). Letµu

s = µs−
m

k=1,k≠u λsk be the available
processing rate at a data center s as perceived by front-end proxy u.
Hence, the problem of determining the best reply strategy reduces
to finding the optimal job distribution for a system with one
front-end proxy u (∀u ∈ U), n distributed data centers with
rates µu

s , (∀s ∈ S). We can now express the above problem
in the following optimization framework, Best-replyu, to seek the
solution Best-reply.
min
λu

Ψu(λ) (18)

subject to the following constraints.

λsu ≥ 0, ∀s ∈ S (19)
n

s=1

λsu = Lu (20)

m
u=1

λsu < µs, ∀s ∈ S. (21)

80 R. Tripathi et al. / J. Parallel Distrib. Comput. 107 (2017) 76–86
The decision variable involved in this optimization is λu =

(λ1u, λ2u, . . . , λnu), as the strategies of other players are assumed
to be constants. As our optimization framework has the objective
of minimizing the CIC, we sort the data centers in ascending order
of the cost factors, specifically in the ascending order of Cs, where
Cs is defined as

Cs = θs + βdsu. (22)

The following theorem gives the best reply strategy of player u
i.e. the solution to the Best-replyu.

Theorem 1. Assuming that data centers are sorted based on Cs, the
solution λu for Best-replyu is given by

λsu =

µu
s −


βµu

s

α − Cs
if 1 ≤ s < qu

0 if qu ≤ s ≤ n

(23)

where qu is the smallest integer satisfying

qu
i=1


βµu

s

α − Ci
≤

qu
i=1

µu
i − Lu. (24)

The above constraint ensures that the demand is served froma cheaper
data center first and the expensive one is used only when all the
cheaper data centers are full. α is a Lagrangianmultiplier whose value
is given by

α = θqu + β


1

µu
qu

+ dsu


. (25)

Proof. In the Appendix.

Based on the above theorem, we formulate the following
algorithm for determining the best reply for a proxy u.

Algorithm 1: Best-reply
Input: Total job arrival rate: Lu
Available processing rate at data centers: µu

1, µ
u
2, . . . , µ

u
n

Cost factors of data center: C1, C2, ..Cn
Output: Load balancing strategy:λu = (λ1u, λ2u, . . . , λnu)

1 Sort the data centers in the ascending order of cost factors i.e.
(C1 ≤ C2 ≤ .. ≤ Cn)

2 p←
n

i=1 µu
i − Lu

3 t ←
n

i=1


βµu

i
α−Ci

4 while p > t do
λnu ← 0
p← p− µu

n
n← n− 1

t ←
n

i=1


βµu

i
α−Ci

5 for i = 1, 2, . . . , n do

λiu ← µu
s −


βµu

s
α−Cs

Algorithm 1 provides the steps to find Best-replyu. In step 1,
we sort the data centers based on the cost factor Eq. (22). Our
aim is to assign greater loads to cheaper data centers. In steps
2 and 3, we initialize the value of p and t according to Eq. (24).
The sum has been taken over all the data centers. In order to
determine the smallest index data center that satisfies Eq. (24),
while loop in step 4 is used. In particular, we assign load to nth data
center as 0, if the (n − 1)th data center processing rate is capable
of satisfying Eq. (24). This loop continues till control condition
(p > t) is met and the corresponding λnu is set to 0, and n and
p are updated accordingly. Finally in step 5, we assign load to data
centers according to Eq. (23).

Theorem 2. The load balancing strategy λ = (λ1, λ2, . . . ,λm),
given by the Best-reply algorithm is the best strategy for front-end
proxy u and it solves the Best-replyu problem.

Proof. In the Appendix.

Remark. (i) The execution time of this algorithm isO(nlgn). This is
due to the sorting procedure in step 1. (ii) In order to execute this
algorithm each front-end proxy needs to know all the necessary
information such as electricity price, expected delay and available
processing capacity at each data center location and estimated
demand [5]. In many practical cases, all the proxies and data
centers are owned by the same operator. It is possible that all data
centers and proxy servers exchange the estimated load, capacity
and electricity price in real-time; i.e. whenever electricity price
changes or demand changes (due to diurnal pattern).

5. A Distributed load balancing algorithm

Based on the Best-reply algorithm discussed in the previous
section, we design a greedy algorithm for computing the Nash
equilibrium of the non-cooperative game. In order to compute the
Nash equilibrium,wepropose an algorithmgiven inAlgorithm2. In
addition to the notation mentioned in Sections 3 and 4, we define
the following

l—the iteration index
u—front-end proxy index
λl
u—the strategy of front-end proxy u at iteration l

Ψ l
u—CIC of client region u at iteration l

ε—properly chosen acceptance tolerance
norm—

m
u=1 |Ψ

(l−1)
u − Ψ l

u|

Send(u, (p, q, r))—send message (p, q, r) to front-end proxy u,
where p is the current sum of |Ψ (l−1)

u − Ψ l
u|, q is the iteration

number and r is CONTINUE/STOP tag
Recv(u, (p, q, r))—receive message (p, q, r) from front-end
proxy u and p, q, r are same as in Send function

In this algorithm, each front-end proxy computes its Best-
reply strategy for every time slot using the current load balancing
strategies of other front-end proxies and updates its strategy. In
an iteration l of while loop, each front-end proxy server computes
its Best-reply strategy. It then adds to the sum, the difference in
its achieved operating cost compared to previous (l− 1) iteration.
Then, it sends the sum to its neighbor in a round robin fashion.
This continues for several iterations and finally stops when the
difference in the total operating cost across all the front-end proxy
servers, in successive iterations, is less than the norm stopping
criterion. We assume that the front-end proxies synchronously
update their Best-reply strategies in a round robin manner.

The execution of this algorithm is restarted periodically when
the data center system parameters (e.g. electricity price, demand)
change or a failure occurs. Once the equilibrium is reached, the
front-endproxies continue to use the same strategy and the system
remains in equilibrium until a new execution is initiated.

Discussion:We examine the message complexity of Algorithm
2. We assume that all the front-end proxy servers (collocated
client regions) are logically connected in a ring topology. In
every iteration, each front-end proxy server gathers the available
capacity at each data center, which requires O(n) messages. Each
front-end proxy server also needs to share its updated sum with
the adjacent node, which requires O(1) messages. Thus, in each
iteration all the front-end proxy servers require O(mn + m)
messages, where n and m are the number of data centers and

R. Tripathi et al. / J. Parallel Distrib. Comput. 107 (2017) 76–86 81
Algorithm 2: NASH distributed load balancing algorithm
Input: Total Arrival rate: Lu
Available processing rate at data centers: µu

1, µ
u
2, . . . , µ

u
n

Cost factors of data center: C1, C2, ..Cn
Output: Load balancing strategy at equilibrium:λ = (λu,∀u)
Front-end proxy u, u = 1, 2, . . . ,m executes:

1 Initialization:
λl
u ← 0

Ψ 0
u ← 0

l← 0
norm← 1
sum← 0
tag ← CONTINUE
left = [(u− 2)modm] + 1
right = [umodm] + 1

2 while (1) do
if (u = 1) then

if l ≠ 0 then
Recv(left, (norm, l, tag))
if norm < ε then

Send(right, (norm, l, STOP))
exit

sum← 0
l← l+ 1

else
Recv(left, (sum, l, tag))
if tag = STOP then

if u ≠ m then
Send(right, (sum, l, STOP))

exit
for s = 1, 2, . . . , n do

µu
s ← µs −

m
k=1,k≠u λsk

λu ← Best-reply (µu
1, . . . , µ

u
n, C1, . . . , Cn, Lu)

Compute Ψu

sum← sum+ |Ψ (l−1)
u − Ψ l

u|

Send(right, (sum, l, CONTINUE))
end

end

front-end proxy servers, respectively. Since the number of
iterations is constant as depicted in Fig. 8, we conclude that the
asymptotic message complexity is O(mn).

6. Numerical results

In this section, we compare and analyze the performance of
the proposed algorithmwith different existing strategies. The pro-
posed algorithm is labeled as NCG. In addition, we also imple-
ment for comparison two other models in literature: Proportional
scheme (PS) and Global optimal scheme (GOS).
• Proportional scheme (PS): It is distributed and decentralized

approach, where each front-end proxy allocates loads in
proportion to available processing rates at each data center.
It can be noted that proportional scheme does not take into
account either the operating cost or the communication delay
between front-end proxy and data center.
• Global optimal Scheme (GOS): This scheme minimizes Cost

Incurred (CIC) across all Client regions presented in Section 4.
The load fractions (λ) are obtained by solving the following non-
linear optimization problem:

min
λ


u

Ψu(λ) (26)
subject to the following constraints.

λsu ≥ 0, ∀s ∈ S,∀u ∈ U (27)
n

s=1

λsu = Lu ∀u ∈ U (28)

m
u=1

λsu < µs, ∀s ∈ S. (29)

GOS is evaluated (at a centralized location) using the
optimization tool fmincon of Matlab. The parameters used with
fmincon are presented in Table 3. For other parameters such
as choice of optimization algorithm, optimality tolerance, step
tolerance, checkgradient, etc. we consider the default value as
in [4]. GOS provides the system optimal solution. However, it
does not provide fairness to users.

The main performance metrics used in our numerical results are
normalized cost, expected response time and the fairness index.
The fairness index F(x) is calculated as

F(x) =


m

u=1
xu

2
m

m
u=1

x2u

(30)

where xu is the expected latency at client region u. The sum of
expected cost across all client regions C is calculated as

C(λ) =

m
u=1

Ψu(λ) (31)

where λ is the strategy at the equilibrium. Moreover, the
Normalized cost is obtained by normalization with respect to the
maximum cost across all approaches.

6.1. Experimental setup

Data center locations: We considered data center locations in
the USA based on power availability as mentioned in [37]. The
locations are: Arizona, Illinois, Iowa, Mississippi, New Hampshire,
Oklahoma, Oregon, Pennsylvania, South Carolina, Utah. The service
rate of server is 60 requests per second. Relative processing rate
available across all data centers is presented in Table 1, where
relative processing rate of a data center is calculated with respect
to the fastest data center processing rate. The average electricity
price across all the data center locations is shown in Table 1 [2].
Client locations: We considered 12 states of the USA, where a large
number of Internet users are located [11], i.e. California, Florida,
Georgia, Illinois, Michigan, New Jersey, New York, North Carolina,
Ohio, Pennsylvania, Texas and Virginia.

Demand from different client locations is proportional to the
number of Internet users from that region [11].
Demand: We used trace of traffic from Wiki dump [22] to build
the workload profile. Considering hourly wikipedia workload as
an aggregate demand for every hour, we distribute demand across
different client locations proportional to the number of Internet
users at each location. The peak demand from the trace is of the
order of thousand requests per second, whereas literature suggests
that data centers serve requests to the tune of million requests per
second [25]. Therefore we have upscaled the demand by a factor of
3000. The relative job arrival rate for each client location is shown
in Table 2. The propagation delay between data center and client
location is considered to be linearly proportional to the distance
between them, and it increases by 10 ms for every 1000 km [19].
The energy consumption of an idle server at any given time could
be 30% of the peak power [30,18], Pidle and Ppeak are taken to be
300 W and 100 W, respectively [33].

82 R. Tripathi et al. / J. Parallel Distrib. Comput. 107 (2017) 76–86
Table 1
Average electricity price across data center location.

DC locations Arizona Illinois Iowa Mississippi New Hampshire Oklahoma Oregon Pennsylvania South Carolina Utah

Electricity price (in cents/kWh) 5.54 6.34 5.20 6.03 12.33 4.62 6.38 6.78 5.55 5.58
Relative processing rate 0.4 1 0.2 0.6 0.2 0.6 0.4 1 0.4 1
Table 2
Relative job arrival rate of each client location.

Client locations California Florida Georgia Illinois Michigan New Jersey New York North Carolina Ohio Pennsylvania Texas Virginia

Relative job arrival rate 0.17 0.11 0.03 0.11 0.04 0.04 0.12 0.03 0.06 0.1 0.13 0.02
Table 3
Fmincon parameters.

Parameter Value

MaxFunctionEvaluations 10000
MaxIterations 5000
FunctionTolerance 10−6

ConstraintTolerance 10−6

OptimalityTolerance 10−6

StepTolerance 10−10
Other parameters Default values

Fig. 2. Impact of the number of data centers on the cost.

Fig. 3. Impact of the number of data centers on the latency fairness.

6.2. Results

We present and discuss the result obtained from NCG, PS and
GOS approaches by varying the number of data centers, system
workload and factor term β (in Eq. (12)). In each graph, we plotted
the normalized value of cost wherein, the normalization is done
with respect to maximum cost across all approaches. We run NCG,
PS and GOS for a period of one day with the system state changing
at every hour. The results presented are average values obtained
over this time horizon.
Fig. 4. Impact of demand on the cost.

6.2.1. Effect of system size
In this part of numerical evaluation, we vary the number of

data centers in the system from 6 to 10 and investigate its effect
on cost and fairness. The total demand is set as mentioned in
Section 6.1. We set β to 0.1. Fig. 2 shows the normalized cost
with respect to the NCG models. It can be observed that NCG
model closely approximates the value obtained by GOS. The cost
obtained using NCG and GOS is almost the same because these
models are aware of electricity price, propagation delay and data
center processing rates and therefore perform load balancing in
a cost effective manner whereas PS does not obtain optimum
cost as it uniformly distributes the load without taking into
consideration the electricity prices, propagation delays and data
center processing rates. It can be also observed from Fig. 3 that
NCG model achieves better fairness in average latency across all
client regions when compared to GOS whereas the fairness of PS is
approximately 1 across different number of data centers. The NCG
approach has an additional advantage of being a decentralized load
balancing scheme.

6.3. Impact of demand

In order to understand the impact of demand on cost, we run
the proposed algorithm and existing strategies on 10 data centers,
12 client regions. We vary the client demand from 0.2 to 2 times
the original client demand obtained from [22]. It may be noted
that demand is chosen such that it covers a broad range of data
center utilization, where utilization is defined as the ratio of total
arrival rate to aggregate processing rate of the system. Demand of
1 corresponds to a utilization of 44%. We set β to 0.1. We depict
the results obtained in Fig. 4. It can be seen that with increase in
demand NCG yields almost the same cost as the GOS approach,
which means that NCG approach is as effective as GOS. From Fig. 5
it can be seen that NCG and PS maintain a fairness close to 1.
Therefore the NCG scheme, apart from being decentralized, has the
additional advantage of user optimality with respect to fairness in
latency.

R. Tripathi et al. / J. Parallel Distrib. Comput. 107 (2017) 76–86 83
Fig. 5. Impact of demand on the latency fairness.

Fig. 6. Impact of cost incurred due to delay on the overall cost.

Fig. 7. Average latency perceived across various regions.

6.4. Impact of β

The optimization objective that we have chosen to model is
the cost of distributed data center in terms of energy cost and
weighted latency. In order to understand the impact of β (de-
lay cost factor) on cost and fairness index, we evaluate the pro-
posed and existing schemes with 10 data centers and 12 client
regions and client demand as in Section 6.1 and varying β ∈
{0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 1, 2, 5}. It can be observed from Fig. 6
that across all β values our model approximates the cost of GOS.
With increase in β the cost also increases for all models which is
quite intuitive as increase in weight of latency yields a higher cost.

6.5. Client latency comparison

In Fig. 7, we present the expected latency experienced by each
client region. The PS scheme even though it guarantees fairness
in latency across all client regions but has the disadvantage of
Fig. 8. Impact of norm on convergence.

needing higher expected latency. It can also be observed in case of
GOS scheme there is a huge variation in expected latency across
all client regions whereas NCG provides the minimum possible
expected latency for each client region (according to the property
of Nash equilibrium). It is not the case that NCG is always better
than GOS (as it can be seen from the graph and a similar trend is
also in [7]). In many cases, it can be observed that GOS is better.
We know that GOS gives an overall system optimal solution that
minimizes the linear combination of operating and delay.

6.6. Convergence of NCG algorithm

In order to determine the number of iterations required for NCG
to converge, we consider two scenarios. First we determine the
number of iterations required with varying norm (norm ∈ {1e −
5, 1e−4, 1e−3, 1e−2, 1e−1}), with 10 data centers and 12 clients
regions. We set the demand as mentioned in Section 6.1 and β as
0.1. Fig. 8 shows the number of iterations required to converge.

7. Conclusion

In this paper, we have formulated the load balancing problem
in distributed data center as a non-cooperative game among
front-end proxy servers (which is collocated with client regions).
For the proposed game we characterize the structure of Nash
equilibrium. Based on obtained Nash equilibrium structure we
derive a distributed load balancing algorithm for computing the
Nash equilibrium. We compared the performance of our non-
cooperative game (NCG)with the existing proportional sharing and
global optimal approach. The main advantage of NCG algorithm is,
it is decentralized, low complexity (close to the optimal GOS) and
it offers fairness and good average latency across all client regions.

Appendix

In this section, we prove the claim and theorems used in the
paper.

A.1. Proof of claim

Claim. We can get an upper bound (denoted by UBnd(Ψu)) on the
objective function defined in Eq. (16).

Proof. From Eq. (16) we have

Ψu(λ) =

n
s=1

θsλsu + βλsu

 1
µs −


i

λsi
+ dsu

 . (32)

84 R. Tripathi et al. / J. Parallel Distrib. Comput. 107 (2017) 76–86
Which we can expand to

Ψu(λ) =

n
s=1

θsλsu + β

n
s=1

λsu

 1
µs −


i

λsi


+β

n
s=1

λsudsu. (33)

For the bound of these terms we have:
According to Eq. (1) we have


s λsu = Lu.

Therefore, in all three terms of Eq. (33), we have

n
s=1

θsλsu = Lu
n

s=1

θs (34)

β

n
s=1

λsu

 1
µs −


i

λsi

 = βLu
n

s=1

 1
µs −


i

λsi

 (35)

β

n
s=1

λsudsu = βLu
n

s=1

dsu. (36)

A lower boundof the objective function is zero because all terms
are non-negative in Eq. (16). We can get an upper bound of the
objective function by noting the sum of the three terms above is
less than Lu[

n
s=1 θs + β + β

n
s=1 dsu]. The terms Lu, θs, dsu have

an upper bound. Thus we can use them and get an upper bound
UBnd(Ψu) for the objective function.

Then we have, minimizing Ψu is equivalent to maximizing
UBnd(Ψu)−Ψu. Thus, our game definition with this objective func-
tion is in normal form with the goal of maximizing the objective
function: Φ = UBnd(Ψu)− Ψu.

A.2. Proof of Theorem 1

Feasibility: Of the three constraints of the optimization
framework, we observe that stability (Eq. (29)) is always satisfied
by the Nash equilibrium solution because of Eq. (17) and the fact
that total compute capacity of data center is greater than the
cumulative client demand. Hence, we need to consider, Eqs. (27)
and (28) as the constraints for our optimization framework.

We first prove thatΨu(λ) is a convex function in λu and that the
feasible solution set formed by Eqs. (28) and (27) is convex.

It can be easily shown from Eq. (16) that ∂Ψu(λ)

∂λsu
> 0 and

∂2Ψu(λ)

∂(λsu)2
> 0 for s = 1, 2, . . . , n. Hence the Hessian of Ψu(λ) is

positive implying that Ψ
ft
u (λ) is a convex function of λu. All the

constraints are linear and hence they define a convex polyhedron.
Hence Best-replyu is an optimization problem with a goal of

minimizing a convex function over a convex feasible region. The
first order KKT conditions are necessary and sufficient conditions
for optimality.

Let α > 0, κs > 0, s = 1, 2, . . . , n denote the Lagrangian
multipliers. The Lagrangian is given by

L(λ1u, λ2u, . . . , λnu, α, κ1, κ2, . . . , κn)

=

n
s=1


θsλsu + βλsu


1

µu
s − λsu

+ dsu



−α
 n

s=1

λsu − Lu

−

n
s=1

κsλsu. (37)
The KKT conditions imply that λsu, s = 1, 2, . . . , n is the optimal
solution to Best-replyu if and only if there exists α > 0, κs > 0, s =
1, 2, . . . , n such that

∂L
∂λsu
= 0, (38)

∂L
∂α
= 0, (39)

κsλsu = 0, κs > 0, λsu > 0, s = 1, 2, . . . , n. (40)

Solving Eqs. (38)–(40), we get

θs + β
 µu

s

(µu
s − λsu)2

+ dsu

− α − κs = 0 (41)

n
s=1

λsu = Lu (42)

κsλsu = 0, κs > 0, λsu > 0, s = 1, 2, . . . , n. (43)

These are equivalent to

α = θs + β
 µu

s

(µu
s − λsu)2

+ dsu

, if λsu > 0, 1 6 s 6 n (44)

α 6 θs + β
 µu

s

(µu
s − λsu)2

+ dsu

, if λsu = 0, 1 6 s 6 n (45)

n
s=1

λsu = Lu, λsu > 0, 1 6 s 6 n. (46)

From Eq. (44), we get the value of λsu as

λsu = µu
s −


βµu

s

α − θs − βdsu
if λsu > 0, 1 6 s 6 n. (47)

Claim. Since our objective is to minimize the CIC, we sort the data
centers based on the cost factor (Cs = θs+βdsu), i.e. C1 6 C2 6 · · · 6
Cn. Under the given assumption on ordering of data center,we have the
following order on load fraction:λ1u 6 λ2u 6, . . . , 6 λnu. This implies
that theremay be a case inwhich no load has been assigned to costliest
data center. This means that there exists an index qu, 1 6 qu 6 n such
that

λsu > 0, s = 1, . . . , qu − 1 (48)

λsu = 0, s = qu, . . . , n. (49)

The Lagrangianmultiplierα has to be chosen appropriately in order
to satisfy the conservation constraint Eq. (28). Using Eqs. (47), (28),
we get

qu−1
i=1


βµu

s

α − θs − βdsu
=

qu−1
i=1

µu
i − Lu. (50)

Using Eq. (22) above equation becomes

qu−1
i=1


βµu

s

α − Ci
=

qu−1
i=1

µu
i − Lu. (51)

Thus the qu is the minimum index which satisfies

qu
i=1


βµu

s

α − Ci
6

qu
i=1

µu
i − Lu. (52)

R. Tripathi et al. / J. Parallel Distrib. Comput. 107 (2017) 76–86 85
From the above discussions, we know that one or more λsu is
positive, due to Eq. (27). Hence at the crossroad qu, we have λquu =

0. And setting λquu = 0 in Eq. (47) we get

α = θqu + β


1

µu
qu

+ dsu


. (53)

A.3. Proof of Theorem 2

The while loop in step 4 finds the minimum index qu for which

qu
i=1


βµu

s

α − Ci
6

qu
i=1

µu
i − Lu. (54)

In the same loop, λiu are set to zero for i = qu, . . . , n. In

step 5, λiu is set equal to µu
s −


βµu

s
α−Cs

for i = 1, . . . , qu − 1.
These are in accordance to Theorem 1. Thus, the allocation λu =

(λ1u, λ2u, . . . , λnu) computed by Best-reply algorithm is the opti-
mal solution of Best-replyu.

References

[1] A revolution in data center efficiency,
http://multimedia.3m.com/mws/media/1127920O/
2-phase-immersion-coolinga-revolution-in-data-center-efficiency.pdf.

[2] ‘‘Electricity price in USA’’, http://www.eia.gov/.
[3] X. Fan, W.-D. Weber, L.A. Barroso, Power provisioning for a warehouse-sized

computer, ACM SIGARCH Comput. Archit. News 35 (2) (2007) 13–23.
[4] ‘‘Fmincon’’,

http://in.mathworks.com/help/optim/ug/choosing-the-algorithm.html.
[5] A. Gandhi, Y. Chen, D. Gmach, M. Arlitt, M. Marwah, Minimizing data center

SLA violations and power consumption via hybrid resource provisioning, in:
Proc. of IEEE IGCC, 2011, pp. 1–8.

[6] P.X. Gao, A.R. Curtis, B. Wong, S. Keshav, It’s not easy being green, in: Proc. of
the ACM SIGCOMM, 2012, pp. 211–222.

[7] D. Grosu, A.T. Chronopoulos, Noncooperative load balancing in distributed
systems, J. Parallel Distrib. Comput. 65 (9) (2005) 1022–1034.

[8] D. Grosu, A.T. Chronopoulos, M.-Y. Leung, Load balancing in distributed
systems: An approach using cooperative games, in: Proc. of IEEE IPDPS, 2001,
pp. 10–pp.

[9] D. Grunwald, C.B. Morrey III, P. Levis, M. Neufeld, K.I. Farkas, Policies for
dynamic clock scheduling, in: Proc. of the 4th Conference on Symposium on
Operating System Design & Implementation-Volume 4, Article No. 6. USENIX
Association, 2000.

[10] M.Guo, L. Yang, NewHorizons of Parallel andDistributed Computing, Springer,
US, 2006.

[11] ‘‘Internet world stats’’, http://www.internetworldstats.com/unitedstates.htm.
[12] C. Kim, H. Kameda, An algorithm for optimal static load balancing in

distributed computer systems, IEEE Trans. Comput. 41 (3) (1992) 381–384.
[13] K. Le, R. Bianchini, T. Nguyen, O. Bilgir, M. Martonosi, Capping the brown

energy consumption of Internet services at low cost, in: Proc. of International
green Computing Conference, Aug 2010, pp. 3–14.

[14] K. Li, C. Liu, K. Li, A. Zomaya, A framework of price bidding configurations for
resource usage in cloud computing, IEEE Trans. Parallel Distrib. Syst. 27 (8)
(2016) 2168–2181.

[15] Z. Liu, M. Lin, A. Wierman, S. Low, L.L. Andrew, Greening geographical load
balancing, IEEE/ACM Trans. Netw. 23 (2) (2015) 657–671.

[16] K. Lu, R. Subrata, A.Y. Zomaya, Towards decentralized load balancing in a
computational grid environment, in: Proc. of International Conference on Grid
and Pervasive Computing, 2006, pp. 466–477.

[17] L. Mashayekhy, M.M. Nejad, D. Grosu, A.V. Vasilakos, An onlinemechanism for
resource allocation and pricing in clouds, IEEE Trans. Comput. 65 (4) (2016)
1172–1184.

[18] D. Meisner, B.T. Gold, T.F. Wenisch, Powernap: eliminating server idle power,
ACM Sigplan Not. 44 (3) (2009) 205–216.

[19] A.-H. Mohsenian-Rad, A. Leon-Garcia, Energy information transmission
tradeoff in green cloud computing, Carbon 100 (2010).

[20] A.-H. Mohsenian-rad, A. Leon-garcia, Energy-information transmission trade-
off in green cloud computing, in: Proc. of IEEE Conference on Global Commu-
nications (GLOBECOM), 2010.

[21] M.J. Osborne, A. Rubinstein, A Course in Game Theory, MIT press, 1994.
[22] ‘‘Page view statistics for wikimedia projects’’,

http://dumps.wikimedia.org/other/pagecounts-raw/.
[23] S. Penmatsa, A.T. Chronopoulos, Cooperative load balancing for a network of
heterogeneous computers, in: Proc. of 20th IEEE IPDPS, 2006, pp. 8–pp.

[24] S. Penmatsa, A.T. Chronopoulos, Game-theoretic static load balancing for
distributed systems, J. Parallel Distrib. Comput. 71 (4) (2011) 537–555.

[25] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, B. Maggs, Cutting the electric
bill for Internet-scale systems, ACM SIGCOMM Comput. Commun. Rev. 39 (4)
(2009) 123–134.

[26] L. Rao, X. Liu, L. Xie, W. Liu, Minimizing electricity cost: optimization of
distributed Internet data centers in a multi-electricity-market environment,
in: Proc.of IEEE INFOCOM, 2010, pp. 1–9.

[27] B.M. Roger, Game theory: analysis of conflict, 1991.
[28] W. Saad, Z. Han, M. Debbah, A. Hjorungnes, T. Basar, Coalitional game theory

for communication networks, IEEE Signal Process. Mag. 26 (5) (2009) 77–97.
[29] E. Samadiani, Y. Joshi, F. Mistree, The thermal design of a next generation data

center: a conceptual exposition, J. Electron. Packag. 130 (4) (2008) 041104.
[30] ‘‘Server efficiency: Aligning energy use with workloads’’,

http://www.datacenterknowledge.com/archives/2012/06/12/server-
efficiency-aligning-energy-use-with-workloads/.

[31] Y. Shoham, K. Leyton-Brown, Multiagent Systems: Algorithmic, Game-
Theoretic, and Logical Foundations, Cambridge University Press, 2008.

[32] S. Song, T. Lv, X. Chen, Load balancing for future Internet: an approach based
on game theory, J. Appl. Math. 2014 (2014).

[33] B. Subramaniam, W.-c. Feng, Enabling efficient power provisioning for
enterprise applications, in: Proc. of 14th IEEE/ACM CCGrid, 2014, pp. 71–80.

[34] R. Subrata, A.Y. Zomaya, B. Landfeldt, A cooperative game framework for QoS
guided job allocation schemes in grids, IEEE Trans. Comput. 57 (10) (2008)
1413–1422.

[35] R. Subrata, A.Y. Zomaya, B. Landfeldt, Game-theoretic approach for load
balancing in computational grids, IEEE Trans. Parallel Distrib. Syst. 19 (1)
(2008) 66–76.

[36] S. Tadelis, Game Theory: An Introduction, Princeton University Press, 2013.
[37] M. Wardat, M. Al-Ayyoub, Y. Jararweh, A. Khreishah, To build or not to build?

addressing the expansion strategies of cloud providers, in: Proc. of FiCloud,
Aug 2014, pp. 477–482.

[38] P. Wendell, J.W. Jiang, M.J. Freedman, J. Rexford, Donar: decentralized server
selection for cloud services, ACM SIGCOMM Comput. Commun. Rev. 40 (4)
(2010) 231–242.

[39] H. Xu, B. Li, A general and practical datacenter selection framework for cloud
services, in: Proc. of IEEE CLOUD, IEEE, 2012, pp. 9–16.

[40] Y. Zhang, Y. Wang, X. Wang, Greenware: Greening cloud-scale data centers
to maximize the use of renewable energy, in: Middleware, Springer, 2011,
pp. 143–164.

Rakesh Tripathi received the B.Tech degree from UPTU
Lucknow, India, and the M.Tech. degree from the Tezpur
University, India. He is currently working toward the Ph.D.
degree with Indian Institute of Technology Guwahati.
His research interests include Data center networks,
distributed systems, game theory in networks.

S. Vignesh received the B.Tech degree from NIT, Tiruchi-
rappalli, India, and the M.Tech. degree from the Indian
Institute of Technology Guwahati, India. His research
interests include Data center networks, distributed sys-
tems, Internet of things.

Venkatesh Tamarapalli received his Ph.D. in Computer
Science and Engineering from the Indian Institute of
Technology Madras, in 2009. He is currently a Associate
Professor in the Department of Computer Science and
Engineering, Indian Institute of Technology Guwahati.
He is currently serving as an Associate Editor for
Springer Journal of Network and Systems Management.
His research interests include, wireless sensor networks,
data center networks, and multimedia content delivery.

http://multimedia.3m.com/mws/media/1127920O/2-phase-immersion-coolinga-revolution-in-data-center-efficiency.pdf
http://multimedia.3m.com/mws/media/1127920O/2-phase-immersion-coolinga-revolution-in-data-center-efficiency.pdf
http://multimedia.3m.com/mws/media/1127920O/2-phase-immersion-coolinga-revolution-in-data-center-efficiency.pdf
http://multimedia.3m.com/mws/media/1127920O/2-phase-immersion-coolinga-revolution-in-data-center-efficiency.pdf
http://multimedia.3m.com/mws/media/1127920O/2-phase-immersion-coolinga-revolution-in-data-center-efficiency.pdf
http://multimedia.3m.com/mws/media/1127920O/2-phase-immersion-coolinga-revolution-in-data-center-efficiency.pdf
http://multimedia.3m.com/mws/media/1127920O/2-phase-immersion-coolinga-revolution-in-data-center-efficiency.pdf
http://multimedia.3m.com/mws/media/1127920O/2-phase-immersion-coolinga-revolution-in-data-center-efficiency.pdf
http://multimedia.3m.com/mws/media/1127920O/2-phase-immersion-coolinga-revolution-in-data-center-efficiency.pdf
http://www.eia.gov/
http://refhub.elsevier.com/S0743-7315(17)30128-4/sbref3
http://in.mathworks.com/help/optim/ug/choosing-the-algorithm.html
http://refhub.elsevier.com/S0743-7315(17)30128-4/sbref7
http://refhub.elsevier.com/S0743-7315(17)30128-4/sbref9
http://refhub.elsevier.com/S0743-7315(17)30128-4/sbref10
http://www.internetworldstats.com/unitedstates.htm
http://refhub.elsevier.com/S0743-7315(17)30128-4/sbref12
http://refhub.elsevier.com/S0743-7315(17)30128-4/sbref14
http://refhub.elsevier.com/S0743-7315(17)30128-4/sbref15
http://refhub.elsevier.com/S0743-7315(17)30128-4/sbref17
http://refhub.elsevier.com/S0743-7315(17)30128-4/sbref18
http://refhub.elsevier.com/S0743-7315(17)30128-4/sbref19
http://refhub.elsevier.com/S0743-7315(17)30128-4/sbref21
http://dumps.wikimedia.org/other/pagecounts-raw/
http://refhub.elsevier.com/S0743-7315(17)30128-4/sbref24
http://refhub.elsevier.com/S0743-7315(17)30128-4/sbref25
http://refhub.elsevier.com/S0743-7315(17)30128-4/sbref28
http://refhub.elsevier.com/S0743-7315(17)30128-4/sbref29
http://www.datacenterknowledge.com/archives/2012/06/12/server-efficiency-aligning-energy-use-with-workloads/
http://www.datacenterknowledge.com/archives/2012/06/12/server-efficiency-aligning-energy-use-with-workloads/
http://www.datacenterknowledge.com/archives/2012/06/12/server-efficiency-aligning-energy-use-with-workloads/
http://refhub.elsevier.com/S0743-7315(17)30128-4/sbref31
http://refhub.elsevier.com/S0743-7315(17)30128-4/sbref32
http://refhub.elsevier.com/S0743-7315(17)30128-4/sbref34
http://refhub.elsevier.com/S0743-7315(17)30128-4/sbref35
http://refhub.elsevier.com/S0743-7315(17)30128-4/sbref36
http://refhub.elsevier.com/S0743-7315(17)30128-4/sbref38
http://refhub.elsevier.com/S0743-7315(17)30128-4/sbref39
http://refhub.elsevier.com/S0743-7315(17)30128-4/sbref40

86 R. Tripathi et al. / J. Parallel Distrib. Comput. 107 (2017) 76–86
Anthony T. Chronopoulos received his Ph.D. in Computer
Science from the University of Illinois at Urbana Cham-
paign, USA in 1987. He is currently a Professor in Computer
Science at the University of Texas at San Antonio, USA. His
areas of interest are in Distributed Computing, Cloud and
Grid Computing, High Performance Computing, Scientific
Computing and Applications. He has published 57 jour-
nals and 71 peer-reviewed conference proceedings. He has
been awarded 15 federal/state USA government research
grants. He is a senior member of IEEE (since 1997).
Hajar Siar received her B.Sc. in computer engineering-
software from Islamic AzadUniversity in 2009. In 2014 she
has received her M.Sc. from Semnan University, Semnan,
Iran. Her main research interests are in Machine Learning,
Game theory, Resource allocation, Data mining, Big data,
Distributed computing and Networking.

	Non-cooperative power and latency aware load balancing in distributed data centers
	Introduction
	Related work
	System model
	Load Balancing as a non-cooperative game
	A Distributed load balancing algorithm
	Numerical results
	Experimental setup
	Results
	Effect of system size

	Impact of demand
	Impact of β
	Client latency comparison
	Convergence of NCG algorithm

	Conclusion
	Appendix
	Proof of claim
	Proof of Theorem 1
	Proof of Theorem 2

	References

