Optimal Speed Assignment for Probabilistic Execution Times

2nd Power-Aware Real-Time Computing Workshop

Claudio Scordino

University of Pisa, Italy scordino@di.unipi.it

Enrico Bini

Scuola Superiore Sant'Anna, Italy e.bini@sssup.it

Energy-constrained real-time systems

- Embedded systems
 - Special purpose computers, part of larger systems which may not be of electronic kind
 - Often powered by rechargeable batteries
 - Battery influences autonomy, size, weight and cost
 - Goal: extend the lifetime of the system
- Servers
 - The power consumed by the processors is increasing
 - Dissipating the heat generated is becoming very difficult
 - Cooling devices can consume up to 50% of total energy
 - Goal: reduce the thermal dissipation

Energy-constrained real-time systems

- Embedded systems
 - Special purpose computers, part of larger systems which may not be of electronic kind
 - Often powered by rechargeable batteries
 - Battery influences autonomy, size, weight and cost
 - **Goal**: extend the lifetime of the system

Servers

- The power consumed by the processors is increasing
- Dissipating the heat generated is becoming very difficult
- Cooling devices can consume up to 50% of total energy
- Goal: reduce the thermal dissipation

Dynamic Voltage Scaling

- Dynamic Voltage Scaling (DVS):
 - Technique to reduce the power consumed by the processor
 - Change of processor voltage and frequency at runtime
 - ⇒ Tasks take more time to be executed
 - Allows to balance computational speed vs. energy consumption
- Power-aware scheduling algorithm
 - Selects both the task to be scheduled and the processor speed
 - Must provide the worst-case computational requirement

Dynamic Voltage Scaling

- Dynamic Voltage Scaling (DVS):
 - Technique to reduce the power consumed by the processor
 - Change of processor voltage and frequency at runtime
 - ⇒ Tasks take more time to be executed
 - Allows to balance computational speed vs. energy consumption
- Power-aware scheduling algorithm
 - Selects both the task to be scheduled and the processor speed
 - Must provide the worst-case computational requirement

Our problem

- The design of a new algorithm from scratch is complex
 - The problem with many tasks is complex
 - We preferred a bottom-up procedure
 - Provide the basis for the design of new algorithms
- Simple case:
 - A certain amount of "work" to be finished in [0, T]
 - One task τ
 - One hard deadline T
 - Processor with continuous speed scaling
- General model:
 - No specific power functions
 - Consider energy and time overheads during voltage transition

Our problem

- The design of a new algorithm from scratch is complex
 - The problem with many tasks is complex
 - We preferred a bottom-up procedure
 - Provide the basis for the design of new algorithms
- Simple case:
 - A certain amount of "work" to be finished in [0, T]
 - ullet One task au
 - One hard deadline T
 - Processor with continuous speed scaling
- General model:
 - No specific power functions
 - Consider energy and time overheads during voltage transition

Our problem

- The design of a new algorithm from scratch is complex
 - The problem with many tasks is complex
 - We preferred a bottom-up procedure
 - Provide the basis for the design of new algorithms
- Simple case:
 - A certain amount of "work" to be finished in [0, T]
 - One task τ
 - One hard deadline T
 - Processor with continuous speed scaling
- General model:
 - No specific power functions
 - Consider energy and time overheads during voltage transition

Probabilistic execution times

- The probability of a task executing for its WCEC is very low
 - Embedded systems: variations up to 87% wrt WCEC
 - Servers: average processor use between 10% and 50% of peak capacity
- Many algorithms try to predict the actual execution cycles
 - Typically, only the average value is used
- Better reduction can be achieved using a more detailed information on the required workload
 - Idea: exploit probabilistic information about execution times
 - Goal: minimize expected energy consumption while meeting the deadline

Probabilistic execution times

- The probability of a task executing for its WCEC is very low
 - Embedded systems: variations up to 87% wrt WCEC
 - Servers: average processor use between 10% and 50% of peak capacity
- Many algorithms try to predict the actual execution cycles
 - Typically, only the average value is used
- Better reduction can be achieved using a more detailed information on the required workload
 - Idea: exploit probabilistic information about execution times
 - Goal: minimize expected energy consumption while meeting the deadline

Probabilistic execution times

- The probability of a task executing for its WCEC is very low
 - Embedded systems: variations up to 87% wrt WCEC
 - Servers: average processor use between 10% and 50% of peak capacity
- Many algorithms try to predict the actual execution cycles
 - Typically, only the average value is used
- Better reduction can be achieved using a more detailed information on the required workload
 - Idea: exploit probabilistic information about execution times
 - Goal: minimize expected energy consumption while meeting the deadline

Deferring the work

- Since we don't know actual execution cycles, we can't compute the optimal constant speed
- Idea: defer some work
 - We expect that the task will request less than its WCEC
 - Technique widely adopted in many power-aware algorithms
 - Examples: DRA, RTDVS, EDF-DVS, PACE, PPACE
- We use only 2 levels of speed in [0, T]
 - **Goal**: find the optimal speed assignments and the optimal instant for speed change
 - We want the analytical expression in a closed form

Deferring the work

- Since we don't know actual execution cycles, we can't compute the optimal constant speed
- Idea: defer some work
 - We expect that the task will request less than its WCEC
 - Technique widely adopted in many power-aware algorithms
 - Examples: DRA, RTDVS, EDF-DVS, PACE, PPACE
- We use only 2 levels of speed in [0, T]
 - **Goal**: find the optimal speed assignments and the optimal instant for speed change
 - We want the analytical expression in a closed form

Deferring the work

- Since we don't know actual execution cycles, we can't compute the optimal constant speed
- Idea: defer some work
 - We expect that the task will request less than its WCEC
 - Technique widely adopted in many power-aware algorithms
 - Examples: DRA, RTDVS, EDF-DVS, PACE, PPACE
- We use only 2 levels of speed in [0, T]
 - **Goal**: find the optimal speed assignments and the optimal instant for speed change
 - We want the analytical expression in a closed form

System model

- Processor model:
 - Speed: $0 \le \alpha \le \alpha_{max}$
 - Generic function for power consumption: $p(\alpha)$
 - Overhead of voltage transition
 - o: time overhead
 - e: energy consumed
- Task model:
 - Hard deadline: T
 - Actual execution cycles c unknown
 - $f_c(c)$: p.d.f. of number of cycles required in [0, T]
 - \blacksquare C_{max} : worst case execution cycles in [0, T]

System model

- Processor model:
 - Speed: $0 \le \alpha \le \alpha_{max}$
 - Generic function for power consumption: $p(\alpha)$
 - Overhead of voltage transition
 - o: time overhead
 - e: energy consumed
- Task model:
 - Hard deadline: T
 - Actual execution cycles c unknown
 - $f_c(c)$: p.d.f. of number of cycles required in [0, T]
 - lacksquare C_{max}: worst case execution cycles in [0, T]

Energy management scheme (1)

Q: instant when to switch

 C_x : number of cycles provided at α_L

Energy management scheme (2)

• How much should we execute in the first part ??

Energy management scheme (2)

- On average 50% of times we need only the first part
- Sub-optimal solution

Energy management scheme (2)

 We increase the number of times that we need only the first part

Average energy consumed

From the worst-case constraint we have

$$\alpha_L(C_x, Q) = \frac{C_x}{Q - o}$$
 $\alpha_H(C_x, Q) = \frac{C_{\mathsf{max}} - C_x}{T - Q - o}$

$$\bullet \ E = \left\{ \begin{array}{ll} e + \frac{p_L}{\alpha_L} c & \text{if} \ f \leq Q \\ \\ 2e + \frac{p_L}{\alpha_L} C_x + \frac{p_H}{\alpha_H} (c - C_x) & \text{if} \ f > Q + o \end{array} \right.$$

•
$$E_{\text{avg}} = \int_0^{C_{\text{max}}} E f_C(c) dc$$
 Expectation of E

Average energy consumed

From the worst-case constraint we have

$$\alpha_L(C_x, Q) = \frac{C_x}{Q - o}$$
 $\alpha_H(C_x, Q) = \frac{C_{\mathsf{max}} - C_x}{T - Q - o}$

$$\bullet \ E = \left\{ \begin{array}{ll} e + \frac{p_L}{\alpha_L} c & \text{if} \ f \leq Q \\ \\ 2e + \frac{p_L}{\alpha_L} C_x + \frac{p_H}{\alpha_H} (c - C_x) & \text{if} \ f > Q + o \end{array} \right.$$

•
$$E_{\text{avg}} = \int_0^{C_{\text{max}}} E f_C(c) dc$$
 Expectation of E

Average energy consumed

From the worst-case constraint we have

$$\alpha_L(C_x, Q) = \frac{C_x}{Q - o}$$
 $\alpha_H(C_x, Q) = \frac{C_{\text{max}} - C_x}{T - Q - o}$

$$\bullet \ E = \left\{ \begin{array}{ll} e + \frac{p_L}{\alpha_L} c & \text{if} \ f \leq Q \\ \\ 2e + \frac{p_L}{\alpha_L} C_x + \frac{p_H}{\alpha_H} (c - C_x) & \text{if} \ f > Q + o \end{array} \right.$$

• $E_{\text{avg}} = \int_0^{C_{\text{max}}} E f_C(c) dc$ Expectation of E

Average energy consumed (2)

$$E_{\text{avg}} = e\left(2 - F_C(C_x)\right) + \frac{p_H}{\alpha_H}(C_{\text{avg}} - \gamma(C_x)) + \frac{p_L}{\alpha_L}\gamma(C_x)$$

where

•
$$\gamma(x) = G_C(x) + x(1 - F_C(x))$$
 $0 \le \gamma(x) \le C_{avg} \ \forall x$

•
$$F_C(x) = \int_0^x f_C(c) dc$$

•
$$G_C(x) = \int_0^x c f_C(c) dc$$

Level curves of E_{avg}

- ullet Plot of level curves of E_{avg} on a plane (C_x,Q)
- Particular case:
 - Exponential p.d.f.
 - Polynomial power function: $p(\alpha) = k \alpha^3$
 - T=1
 - $C_{avg} = 0.2929$

Level curves of E_{avg} (2)

$$C_x > C_{avg} = 0.2929$$

Minimum of E_{avg}

- The minimum satisfies $\nabla E_{\mathsf{avg}} = 0$
- For the general model the components of ∇E_{avg} are:

$$\begin{cases} \frac{\partial E_{\text{avg}}}{\partial C_x} = -e \, f_C(C_x) - \left(p_H' - \frac{p_H}{\alpha_H}\right) \frac{C_{\text{avg}} - \gamma(C_x)}{C_{\text{max}} - C_x} \\ + \left(p_L' - \frac{p_L}{\alpha_L}\right) \frac{\gamma(C_x)}{C_x} - \left(\frac{p_H}{\alpha_H} - \frac{p_L}{\alpha_L}\right) \gamma'(C_x) \\ \frac{\partial E_{\text{avg}}}{\partial Q} = \left(p_H' \alpha_H - p_H\right) \frac{C_{\text{avg}} - \gamma(C_x)}{C_{\text{max}} - C_x} - \left(p_L' \alpha_L - p_L\right) \frac{\gamma(C_x)}{C_x} \end{cases}$$

Polynomial power function

- Significant example:
 - Time and energy overheads equal to zero (i.e. e = o = 0)
 - Polynomial power function $p(\alpha) = k \alpha^{n}$

• $\nabla E_{avg} = 0$ can be simplified:

$$\begin{cases} \frac{\left(n-1\right)\,\gamma(\textit{C}_{\textit{x}}) + \textit{C}_{\textit{x}}\gamma'(\textit{C}_{\textit{x}})}{\left(n-1\right)\left(\textit{C}_{\mathsf{avg}} - \gamma(\textit{C}_{\textit{x}})\right) + \left(\textit{C}_{\mathsf{max}} - \textit{C}_{\textit{x}}\right)\gamma'(\textit{C}_{\textit{x}})} \left(\frac{\textit{C}_{\mathsf{max}}}{\textit{C}_{\textit{x}}} - 1\right) \left(\frac{\textit{C}_{\mathsf{avg}}}{\gamma(\textit{C}_{\textit{x}})} - 1\right) = \frac{\textit{T}}{\textit{Q}} - 1 \\ \left(\frac{\textit{C}_{\mathsf{max}}}{\textit{C}_{\textit{x}}} - 1\right)^{\textit{n}-1} \left(\frac{\textit{C}_{\mathsf{avg}}}{\gamma(\textit{C}_{\textit{x}})} - 1\right) = \left(\frac{\textit{T}}{\textit{Q}} - 1\right)^{\textit{n}} \end{cases}$$

Case study 1 - Uniform density

Uniform density function:

$$f_C(c) = egin{cases} rac{1}{C_{\sf max} - C_{\sf min}} & ext{if } C_{\sf min} \leq c \leq C_{\sf max} \\ 0 & ext{otherwise} \end{cases}$$

- $x = \frac{C_x}{C_{\max}}$ and $a = \frac{C_{\min}}{C_{\max}}$
- When n=2

$$x_{\rm opt} = \frac{1 + \sqrt{1 + 3 \, a^2}}{3}.$$

When n=3

$$x_{\text{opt}} = \frac{5 - \sqrt{5} + \sqrt{2}\sqrt{5(3 - \sqrt{5}) - 8(1 - \sqrt{5})} a^2}{8}$$

Case study 1 - Uniform density

Uniform density function:

$$f_C(c) = egin{cases} rac{1}{C_{\mathsf{max}} - C_{\mathsf{min}}} & \text{if } C_{\mathsf{min}} \leq c \leq C_{\mathsf{max}} \\ 0 & \text{otherwise} \end{cases}$$

- $x = \frac{C_x}{C_{\text{max}}}$ and $a = \frac{C_{\text{min}}}{C_{\text{max}}}$.
- When n=2

$$x_{\rm opt} = \frac{1 + \sqrt{1 + 3 \, a^2}}{3}.$$

When n=3

$$x_{\text{opt}} = \frac{5 - \sqrt{5} + \sqrt{2}\sqrt{5(3 - \sqrt{5}) - 8(1 - \sqrt{5})} a^2}{8}$$

Case study 1 - Uniform density

Uniform density function:

$$f_C(c) = \begin{cases} \frac{1}{C_{\text{max}} - C_{\text{min}}} & \text{if } C_{\text{min}} \leq c \leq C_{\text{max}} \\ 0 & \text{otherwise} \end{cases}$$

- $x = \frac{C_x}{C_{\text{max}}}$ and $a = \frac{C_{\text{min}}}{C_{\text{max}}}$.
- When n=2

$$x_{\rm opt} = \frac{1 + \sqrt{1 + 3 \, a^2}}{3}.$$

■ When n=3

$$x_{\text{opt}} = \frac{5 - \sqrt{5} + \sqrt{2}\sqrt{5(3 - \sqrt{5}) - 8(1 - \sqrt{5}) a^2}}{8}$$

Case study 1 - Uniform density (2)

Case study 2 - Exponential density

- What happens for asymmetric densities ?
- Exponential density:

$$f_C(c) = egin{cases} rac{1}{K}e^{eta c}(1-c)(c-a) & ext{if } c \in [a,1] \ 0 & ext{otherwise} \end{cases}$$

K such that $\int_a^1 f_C(c) dc = 1$.

- ullet eta allows to alter the symmetry of the density
 - ullet eta < 0 : values close to C_{\min} are more likely to happen
 - $= \beta > 0$: values close to C_{max} are more likely to happen

Case study 2 - Exponential density

- What happens for asymmetric densities ?
- Exponential density:

$$f_C(c) = egin{cases} rac{1}{K} \mathrm{e}^{eta c} (1-c)(c-a) & ext{if } c \in [a,1] \ 0 & ext{otherwise} \end{cases}$$

K such that $\int_a^1 f_C(c) dc = 1$.

- ullet eta allows to alter the symmetry of the density
 - m eta < 0 : values close to C_{\min} are more likely to happen
 - $= \beta > 0$: values close to C_{max} are more likely to happen

Case study 2 - Exponential density

- What happens for asymmetric densities ?
- Exponential density:

$$f_C(c) = egin{cases} rac{1}{K} \mathrm{e}^{eta c} (1-c)(c-a) & ext{if } c \in [a,1] \ 0 & ext{otherwise} \end{cases}$$

K such that $\int_a^1 f_C(c) dc = 1$.

- ullet eta allows to alter the symmetry of the density
 - ullet eta < 0 : values close to C_{\min} are more likely to happen
 - lacksquare eta>0 : values close to $oldsymbol{\mathcal{C}_{\mathsf{max}}}$ are more likely to happen

Case study 2 - Exponential density (2)

Case study 2 - Exponential density (3)

Conclusions

- Found the optimal solution with 2 speeds
 - Analytical expression
 - Very general model
 - No specific power functions
 - Time and energy overheads for voltage transition
- Applied to 2 case studies: uniform and exponential densities
- Still a work-in-progress
 - Basis for the design of new power-aware algorithms
 - Future work: see how this result can be extended to the case of *n* concurrent tasks