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Abstract

Recent studies show that, voltage scaling, which is an ef-
ficient energy management technique, has a direct and neg-
ative effect on system reliability because of the increased
rate of transient faults (e.g., those induced by cosmic par-
ticles). In this work, we propose schemes that explore dy-
namic slack for energy savings while taking system reliabil-
ity into consideration. The proposed schemes dynamically
schedule an additional recovery to recuperate the reliabil-
ity loss due to energy management. Based on the amount
of available slack, the application size and the fault rate
changes, we analyze when it is profitable to reclaim the
slack for energy savings without sacrificing system reliabil-
ity. Checkpoint technique is further explored to efficiently
use the slack. Analytical and simulation results show that,
the proposed reliability-aware energy management schemes
can achieve comparable energy savings as ordinary energy
management schemes while preserving system reliability.
The ordinary energy management schemes that ignore the
effects of voltage scaling on fault rate changes could lead
to drastically decreased system reliability.

1 Introduction

The performance of modern computing systems has in-
creased at the expense of dramatically increased power con-
sumption. For battery-operated embedded systems (e.g.,
PDAs and cell phones), the increased power consumption
reduces their operation time. Many hardware and software
techniques have been proposed to manage power consump-
tion in modern computing systems and power aware com-
puting has become an important research area recently. As
an efficient energy management technique,voltage scaling,
which reduces system supply voltage for lower operation
frequencies [29, 30], has been used extensively in the re-
cently proposed power management schemes [1, 17, 19,
23].

Due to the effects of cosmic ray radiation, transient faults
may occur during the execution of an application, especially
for systems deployed in vulnerable environments (such as in
deep space). Since the critical charge required to maintain
proper circuit state is proportional to system supply volt-
age [24], when system supply voltage is reduced, the criti-
cal charge decreases which leads to dramatically increased
transient fault rates [34]. Therefore, scaling down voltages
and frequencies for energy savings has a severe effect on
system reliability [7, 26, 34] and should be carefully evalu-
ated before it is applied, especially for mission critical em-
bedded real-time applications, such as satellite and surveil-
lance systems, where both high level of reliability and low
energy consumption are important.

To obtain a certain level of system reliability in the worst
case, only static slack in a system has been explored as tem-
poral redundancy traditionally. However, as real-time appli-
cations exhibit large variations in actual execution time, and
in many cases, only consume a small fraction of their worst
case execution time [8], large amount of dynamic slack is
available during run-time. As mentioned earlier, simply
reclaiming this dynamic slack for energy savings through
voltage scaling technique could dramatically reduce system
reliability due to increased failure rates as well as extended
execution time [7, 34]. Therefore, special considerations are
needed when exploiting dynamic slack for energy savings.

In this work, we propose schemes that utilize dynamic
slack for energy savings while taking system reliability into
consideration. Specifically, the proposed schemesdynami-
cally schedulean additional recoveryusing dynamic slack
to recuperate the reliability loss due to energy management.
To the best of our knowledge, this is the first work that ad-
dresses the complications of exploring dynamic slack for
both energy and reliability.

The remainder of this paper is organized as follows. The
models and problem description are presented in Section 2.
Reliability-aware dynamic energy management is proposed
and analyzed in Section 3 and Section 4 explores check-

1



pointing techniques to efficiently use dynamic slack. The
simulation results are presented and discussed in Section 5.
Section 6 addresses the closely related work and Section 7
concludes the paper.

2 Models and Problem Description

2.1 Power Model

For embedded systems, the power is consumed mainly
by the processor, memory, I/O interfaces and underlying
circuits. While the power consumption is dominated by
dynamic power dissipation, which is quadratically related
to supply voltage and linearly related to frequency [3], the
static leakage power is ever-increasing and cannot be ig-
nored, especially with increased levels of integration [27].
To incorporate all the power consuming components in an
embedded system while keeping the power model simple,
we assume that the system has only two states:sleepandac-
tive states. However, different supply voltages/frequencies
may be employed in active state to deliver different levels
of performance.

Considering the almost linear relation between supply
voltage and operating frequency [3],voltage scalingre-
duces the supply voltage for lower frequencies [18]. In this
paper, we use frequency changes to stand for changing both
supply voltage and frequency and adopt the power model
developed in [35]:

P = Ps + h̄(Pind + Pd) (1)

= Ps + h̄(Pind + Ceffm) (2)

where Ps is the sleep power1, Pind is the frequency-
independent active power2 and Pd is the frequency-
dependent active power3. Considering the large overhead of
turning on/off a system [2], we assume the system is always
on (in eithersleepor activestate) andPs is not manage-
able. h̄ equals0 if the system is in sleep state andh̄ equals
1 otherwise. The effective switching capacitanceCef and
the dynamic power exponentm (in general, larger than or
equal to 2) are system/application dependent constants [3]
andf is the processing frequency. For easy discussion, nor-
malized frequencies are used and the maximum frequency
fmax is assumed to be1 (with corresponding normalized
supply voltageVmax = 1). The maximum frequency-
dependent active power is denoted byPmax

d and we assume
Ps = αPmax

d andPind = βPmax
d .

Considering the energy consumption related to the sleep
power Ps is fixed for a given time period (e.g., within

1It is used to maintain basic circuits, keep the clock running etc.
2It consists of the components of memory and processor power that can

be efficiently removed by putting systems to sleep and is independent of
system supply voltage and frequency [5, 22].

3It includes processor dynamic power and any power that depends on
system supply voltage and frequency [3, 27].

the deadlineD), in what follows, we focus on the energy
consumption that comes from active power. Though volt-
age scaling can reduce energy consumption due to reduced
frequency-dependent active powerPd, the computation will
take more time and more energy will be consumed due
to the effects of frequency-independent active powerPind.
Therefore, lower voltages/frequencies may not result in less
energy consumption and there exists a minimum energy-
efficient voltage/frequency pair [9]. From Equation 1, it is
easy to find out that theenergy efficient frequencyis [35]:

fee = m

√
β

m− 1
(3)

For energy consideration, we should never run at a fre-
quency belowfee, since doing so consumes more energy.
For simplicity, we assume thatfee ≥ flow, whereflow is the
lowest frequency in the system, and define theminimum en-
ergy efficient frequencyasfmin = max{flow, fee} = fee.
Moreover, frequency is assumed to be able to change con-
tinuously4 from fmax to fmin.

2.2 Fault Model

During the execution of an application, a fault may oc-
cur due to various reasons, such as hardware failures, soft-
ware errors and the effect of cosmic ray radiations. Since
transient faults occur much more frequently thanperma-
nent faults [4, 12, 13], in this paper, we focus on transient
faults, especially the ones caused by cosmic ray radiations,
and explore temporal redundancy to tolerate them. It is as-
sumed that faults are detected using sanity or consistency
checks when a task completes [20].

Traditionally, transient faults have been modeled to fol-
low Poisson distribution with an average arrival rateλ [31].
However, considering the effects of voltage scaling on tran-
sient faults [7, 34], the average arrival rateλ will depend
on system processing frequency and supply voltage. There-
fore, the fault rate at frequencyf (and its corresponding
voltage level) can begenerallymodeled as

λ(f) = λ0g(f) (4)

whereλ0 is the average fault rate corresponding to the max-
imum frequencyfmax = 1 (and supply voltageVmax).
That isg(fmax) = 1.

In general, transient fault rates are exponentially-related
to the circuit’scritical charge(which is the smallest charge
required to cause a soft error in a circuit node) [10]. More-
over, the critical charge is proportional to system supply
voltage [24]. When the system supply voltage is reduced,
the critical charge decreases and a lower energy particle

4For discrete frequency levels, we can use two adjacent levels to emu-
late the execution at any frequency [11].
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could strike the sensitive region in a semiconductor device
and cause a soft error. Considering the fact that the number
of low-energy particles is two magnitude higher than that of
the high-energy particles [36], in our analysis and simula-
tions, we focus on the exponential fault rate model proposed
in [34] :

λ(f) = λ0g(f) = λ010
d(1−f)
1−fmin (5)

Here, the maximum average fault rate is assumed to be
λmax = λ010d, which corresponds to the lowest frequency
fmin (and supply voltageVmin), whered (> 0) is a con-
stant. That is, reducing the supply voltage and frequency
for energy savings results in exponentially increased fault
rates and largerd indicates that the fault rate is more sen-
sitive to voltage scaling. However, the reliability-aware en-
ergy management schemes proposed in this paper are very
generic and do not rely on this specific fault model.

2.3 Problem Description

In this work, we consider a real-time application that
consists of a set ofaperiodic tasks. The worst case exe-
cution time (WCET) of taskTi at the maximum frequency
fmax is assumed to beci andTi should finish execution be-
fore its deadlineDi (i = 1, · · · , n). Due to early completion
of tasks, slack will exist during the execution of the appli-
cations [8]. For a given amount of slackS, we focus on
the problem of how to useS for energy savings without
sacrificing system reliability, while taking the effects of
voltage scaling on fault rates into consideration.

The reliability of a real-time system depends on the cor-
rect execution of all tasks in an application. For the applica-
tion that consists ofn tasks, its reliability isR =

∏n
i=1 Ri,

whereRi is the probability of taskTi being executed cor-
rectly. Without loss of generality, we assume that, when
all tasks use their WCETs and are executed at the max-
imum frequencyfmax, the reliability of the application,
R0 =

∏n
i=1 R0

i , is satisfactory. Here, R0
i = e−λ0ci is

the probability of taskTi being executed correctly at fre-
quencyfmax with execution timeci. In order to preserve
the reliability of an application, for simplicity, we focus on
maintaining the reliability of individual tasks in this work.
That is, we propose schemes to keep the probability of task
Ti being correctly executed no less thanR0

i (i = 1, · · · , n).

In next Section, we propose a reliability-aware dynamic
energy management scheme and analyzes its performance
on both reliability and energy consumption for single tasks
when the amount of available dynamic slackS is no less
than ck, the size of the next taskTk. WhenS is smaller
than ck, checkpointing techniques are further explored to
efficiently use the available dynamic slack in Section 4.

3 Reliability-Aware Dynamic Energy Man-
agement

Although sophisticated dynamic power management
schemes that explore tasks’ statistical information have
been proposed [1, 17], we will focus ongreedyscheme for
it’s simplicity. Exploring other advanced schemes is beyond
the scope of this paper and will be considered in our future
work. We first illustrate the problem of ordinary greedy
power management on reliability in Section 3.1. Then Sec-
tion 3.2 presents the new reliability-aware greedy energy
management scheme and the analysis.

3.1 Ordinary Greedy Power Management

In ordinary greedypower management, all the available
dynamic slack will be used to scale down the processing of
the next task for energy savings [1, 17]. For example, as
shown in Figure 1a, due to the early completion of previous
tasks, there are3 units of available dynamic slack at time
t, that is,S = 3. The WCET of the next ready taskTk is
ck = 2. Recall thatDk is the deadline of taskTk.

Dkf

t+1t t+2 t+3 t+4 t+5

time
Tk

Dkf

t+1t t+2 t+3 t+4 t+5

time

Tk

Dkf

t+1t t+2 t+3 t+4 t+5

time

S

a. at time t, slack S is available

b. Greedy power management

S

Tk

RC k

c. Reliability−aware greedy scheme

S

Figure 1. Ordinary and Reliability-Aware
Greedy Schemes.

Suppose thatβ = 0.1 (i.e., Pind = 0.1Pmax
d ) and

m = 3, we have the minimum energy efficient frequency
fee = 0.37 (recall thatfmax = 1, Section 2). Therefore,
all the available dynamic slackS can be allocated to task
Tk and the processing speed ofTk can be reduced from
fmax = 1 to f = 2

2+3 = 0.4 as shown in Figure 1b. From
Equation 1, it is easy to find that scaling down the process-
ing of Tk could save63% of theactive energy5.

However, as discussed in Section 2, with reduced pro-
cessing frequency and supply voltage, the processing of task

5Notice that the sleep powerPs is not manageable and we focus on
active energy consumption in this work.
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Tk is more susceptible to transient faults [7, 34]. Suppose
that the exponent in the fault rate model isd = 2 (see Equa-
tion 5 in Section 2), the probability of having fault(s) during
the execution of taskTk at the reduced speed will be:

ρk = 1−Rk = 1− e−λ010
d(1−f)
1−fmin (S+ck)

= 1− e−λ010
d(1−f)
1−fmin

ck
f = 1− e−λ0ck10

2(1−0.4)
1−0.37 1

0.4

≈ 1− (R0
k)200 = 1− (1− ρ0

k)200 ≈ 200ρ0
k (6)

whereρ0
k is the probability6 of having fault(s) when task

Tk uses its WCET at the maximum processing frequency
fmax. That is, though63% active energy is saved by scaling
down the processing of taskTk, it leads to approximately
200 times higher in the probability of failure! The increase
in the probability of failure during the processing of individ-
ual tasks will degrade the overall system reliability, which
is unbearable, especially for mission-critical systems where
the requirement for high levels of reliability is strict.

3.2 Reliability-Aware Greedy Scheme

In order to recuperate the reliability loss due to energy
management, we propose thereliability-aware greedy (RA-
Greedy)power management scheme, which dynamically
schedules arecoveryfor the task to be scaled by energy
management. Here, the recovery task takes the form of sim-
ple re-execution (thus has the same size of the task to be re-
covered) and will be executed (if needed) at the maximum
frequencyfmax = 1.

Notice that, in this section, the amount of dynamic slack
S is assumed to be no less thanck, the size of next taskTk.
After reservingck units of dynamic slack for the recovery
task, the remaining dynamic slack (S − ck, if any) can be
allocated toTk for energy savings. Therefore, the execution
of taskTk will haveck +(S− ck) = S units of time and be
processed at a reduced frequencyfk = ck

S . For example, as
shown in Figure 1c, a recovery taskRCk is scheduled for
taskTk which uses2 units of dynamic slack. The remaining
1 unit of dynamic slack allows taskTk to run at a lower
frequencyf = 2

2+1 = 0.66 and save energy.

3.2.1 System Reliability under RA-Greedy

With the additional recovery taskRCk, the reliability Rk

of taskTk will be the summation of the probability of pri-
mary taskTk being executed correctly andthe probability of
having fault(s) duringTk ’s execution whileRCk being exe-
cuted correctly. Notice that, if the execution of the primary
taskTk is faulty, the recovery taskRCk will be executed
at the maximum frequencyfmax and the probability of its

6Note that,ρ0
k is a small number (usually< 10−4).

fault-freeexecution ise−λ0ck = R0
k. Therefore, we have:

Rk = e−λ(fk)S +
(
1− e−λ(fk)S

)
R0

k > R0
k (7)

whereλ(fk) is the fault rate at the reduced frequencyfk.
From the above equation, we can see that, under the RA-
Greedy scheme, with the help of the additional recovery
task RCk, the reliability of taskTk is always better than
R0

k regardless different fault rate increases (i.e., different
values ofd in Equation 5) and the reduced processing fre-
quencyfk of the primary taskTk. That is, when the amount
of dynamic slack is no less than the size of the next task,
by dynamically scheduling a recovery task before applying
energy management schemes, the RA-Greedy scheme can
achieve better reliability for individual tasks, and thus pre-
serve system reliability.

3.2.2 Expected Energy Consumption

Suppose that the energy consumption to execute taskTk

for time ck at the maximum frequencyfmax is E0
k =

(Ps +Pind +Pmax
d )ck = (α+β+1)Pmax

d ck. Considering
the probability ofRCk being executed, theexpected energy
consumptionfor processing taskTk will be:

Ek = (Ps + Pind + Ceffm
k )S + (1− e−λ(fk)S)E0

k

= E0
k

[
1− e−λ(fk)S +

(α + β + cm
k

Sm ) S
ck

1 + α + β

]
(8)

Intuitively, the more the available dynamic slack is allocated
for energy management, the lower the processing frequency
can be for executing taskTk, and thus more energy savings
can be obtained. However, due to the limitation of the min-
imum energy efficient frequencyfee, the maximum amount
of dynamic slack that should be allocated to taskTk for en-
ergy management is limited, which can be easily calculated
as ck

fee
− ck = USmax − ck, whereUSmax (= ck

fee
) is the

maximum amount of dynamic slack that may be used when
processingTk. When more dynamic slack thanUSmax is
available, part of the slack will be saved for future tasks due
to energy consideration.

Moreover, with reduced processing frequency and sup-
ply voltage, the fault rate increases and the execution of
Tk takes more time, which results in higher probability of
having fault(s) during the execution ofTk. Therefore the
probability of recovery taskRCk being executed increases,
which may overshadow the energy savings and lead to more
expected energy consumption. However, considering the
exponential component in Equation 8, it is hard to obtain a
simple closed formula for the optimal amount of dynamic
slack that minimizes the expected energy consumption. In
what follows, we present some analytical results to illus-
trate the relation between the expected energy consump-
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Figure 2. The normalized expected energy consumption vs. the amount of available dynamic slack.

tion, the amount of available dynamic slack and the fault
rate changes due to energy management.

Without loss of generality, in the analysis, we assume
ck = 1 and λ0 = 10−6 (which corresponds to 100,000
FITs, failure in time in terms of errors per billion hours of
use per megabit, that is a reasonable fault rate as reported
[25, 37]). Moreover, we assumeα = 0 (i.e., Ps = 0)
and m = 3. Figure 2 shows the expected energy con-
sumption for executing taskTk, normalized toE0

k, ver-
sus the amount of available dynamic slack under differ-
ent frequency-independent power (i.e.,β) and fault rate
changes (d). Notice that, one unit (ck) of dynamic slack is
reserved for the recovery task. From Section 2, for different
frequency-independent powerβ = 0.1, 0.2 and0.4, the cor-
responding energy efficient frequency arefee = 0.37, 0.46
and 0.58, which in turn limits the maximum amount of
dynamic slack used by RA-Greedy schemeUSmax to be
2.70ck, 2.17ck and1.72ck, respectively.

From the figures we can see that, when the amount of
available dynamic slack is more thanck (= 1), the size
of the next taskTk, dynamic slack is available for energy
management and the expected energy consumption to exe-
cuteTk is less thanE0

k (i.e., energy savings is expected).
As the amount of available dynamic slack increases, more
slack is available for energy management and the expected
energy consumption for executing taskTk generally de-
creases. However, when the fault rate increases dramati-
cally with reduced supply voltages (e.g.,d = 5), as more
dynamic slack is available and the reduced frequency ap-
proachesfee, more expected energy may be consumed due
to the increased probability of recovery task being executed.
In this case, the optimal amount of dynamic slack to mini-
mize expected energy consumption is less thanUSmax.

Notice that, when the fault rate change is not that se-
vere (e.g.,d ≤ 4), the maximum amount of dynamic slack
USmax limited by fee is very close to the optimal amount
of slack that minimizes the expected energy consumption.
Considering the difficulty of finding the close formula for
the optimal amount of slack, for simplicity, in this work,
the amount of dynamic slack that will be allocated for en-

ergy management is only limited byfee (i.e., up toUSmax

amount of dynamic slack will be used). Moreover, for
higher frequency-dependent active power (i.e.,β = 0.4),
fee increases andUSmax decreases, which results in less
energy savings (note the difference in the scale of Y-axis of
Figure 2).

Instead of scheduling the whole recovery task, check-
points may be employed to efficiently use dynamic slack
for more energy savings [14, 16], which is especially useful
for the case where the amount of available dynamic slackS
is less thanck, the size of next ready taskTk.

4 Checkpoints with Less Dynamic Slack
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a. Slack is less than the next task’s size

b. Checkpointing with one recovery section

c. Remaining slack for energy savings

S

Figure 3. Reliability-Aware Energy Manage-
ment with Checkpoints.

Checkpointing techniques insert checkpoints during the
execution of an application. Within a checkpoint, the state
of a system is checked and correct states are saved to a sta-
ble storage [20]. When faults are detected, the execution is
rolled back to the latest correct checkpoint by exploring the
temporal redundancy [14, 15].
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For example, Figure 3a shows that there are2 units of dy-
namic slack available at timet, which is less thanck = 3,
the size of the next ready taskTk. If the overhead of em-
ploying one checkpoint isr = 0.125 and3 checkpoints are
inserted, Figure 3b illustrates the case of one recovery sec-
tion being scheduled. Here there is0.5 units of remaining
dynamic slack, which can be used to scale down the pro-
cessing of the primary task sections for energy savings as
shown in Figure 3c.

In this work, for a given checkpoint overheadr, we fo-
cus on the problem offinding the minimum amount of
dynamic slack needed for energy savings while preserv-
ing system reliability. For easy discussion, we assume
that r = γ · ck. Suppose thatn checkpoints are inserted
during the execution of taskTk. The size of the recovery
section will beck

n and we have:

S ≥ n · r + (r +
ck

n
) = (nγ + γ +

1
n

)ck (9)

In order forn to have a real (non-imaginary) solution, we
can easily find that the minimum amount of slack needed
due to timing constraints isStime

min = (γ + 2
√

γ)ck and

the optimal number of checkpoints isnopt =
⌊√

1
γ

⌋
or

nopt =
⌈√

1
γ

⌉
. However, considering the integer property

of nopt and the energy overhead incurred by checkpoints,
the minimum amount of slack needed for energy savings
Senergy

min should be larger thanStime
min as illustrated in Sec-

tion 4.2.
Notice that the amount of dynamic slack considered in

this section is less thanck, the size of next taskTk. There-
fore, to employ checkpoints for energy management, we
need to haveStime

min = (γ + 2
√

γ)ck < ck. That is, for the
case we considered in this Section, the checkpoint overhead
needs to satisfyγ < γmax = 0.17 due to timing constraints.

4.1 Reliability with Checkpoints

With the optimal number of checkpointsnopt and one
recovery section, the amount of available slack for energy
management will beS − (nopt + 1)r − ck

nopt
, which can be

used to scale down the execution of the primary sections.
Therefore, the reduced frequency to execute the primary
sections will be

fckpt =
ck + nopt · r

S + ck − r − ck

nopt

(10)

and each primary section will taketsection =
S+ck−r− ck

nopt

nopt

time units. From Section 2, the fault rate at frequencyfckpt

will be λ(fckpt) = λ010
d(1−fckpt)

1−fmin and the probability of
having fault(s) during the execution of one primary section

is ρsection = 1 − e−λ(fckpt)tsection . Notice that, the re-
covery section is executed atfmax and the probability of
having fault(s) during the execution of the recovery section

is ρrecovery = 1 − e
−λ0(r+

ck
nopt

)
. Therefore, the reliability

of executing taskTk is

Rckpt
k = (1− ρsection)nopt + (11)

nopt · ρsection(1− ρsection)nopt−1(1− ρrecovery)

where the first part is the probability of all primary sections
being executed correctly and the second part is the proba-
bility of having fault(s) during the execution of one primary
section while the recovery section being executed correctly.

From Equation 11,Rckpt
k is determined by the amount

of available dynamic slackS, checkpoint overheadr and
fault rate changesd. For a given checkpoint overhead, more
dynamic slack leads to lower reduced frequency for the pri-
mary sections, which in turn leads to higher probability of
failure and lower reliabilityRckpt

k . However, due to the
complexity of Equation 11, it is hard to find the close for-
mula forS to ensureRckpt

k ≥ R0
k.

Figure 4 shows the normalized probability of failure,
1−Rckpt

k

1−R0
k

, when executing taskTk with different amount of

available dynamic slack under different checkpoint over-
heads. The same as before, we assumem = 3, λ0 = 10−6

and ck = 1. Moreover,β is assumed to be0.1 and we
havefee = 0.37. Thus, the maximum amount of dynamic
slack limited byfee for energy management is larger than
ck = 1 > S. Therefore, for given checkpoint overhead
r = γck, the amount of dynamic slack considered will be
in the range ofStime

min (= γ + 2
√

γ) and1.
From the figure, we can see that, with one recovery sec-

tion, the normalized probability of failure to execute taskTk

is lower than1 most of the time, which means that higher re-
liability thanR0

k is achieved. The exception comes from the
case where the checkpoint overhead is low (i.e.,γ = 0.01;
see Figure 4a) which leaves more slack for energy manage-
ment and the reduced frequency is close tofee when the
amount of dynamic slack is around1. With the exponent
of fault rate model beingd = 5, the fault rate atfee is 105

time higher thanλ0 = 10−6 and leads to worse thanR0
k

reliability. However, with moderate fault rate increase (e.g.,
d ≤ 4), exploring checkpoints with one recovery section
before applying energy management always obtains higher
reliability for executing taskTk.

Moreover, the faster the fault rate increases (i.e., larger
d) with reduced frequencies and supply voltages, the higher
the probability of failure and the lower the reliability. As-
suming constant fault rate (e.g.,d = 0) is too optimistic
and could lead to lower reliability than expected when ex-
ploring slack for energy management, which is the same
observation as our previous results [34].
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Figure 4. The normalized probability of failure vs. the amount of available dynamic slack.

4.2 Expected Energy Consumption with
Checkpoints

With reduced frequencyfckpt, the energy consump-
tion for executing each primary section isEsection =(
α + β +

(
fckpt

fmax

)m)
Pmax

d tsection. The energy consump-

tion for executing the recovery section isErecovery =
(γ + 1

nopt
)E0

k. Considering the probability of recovery sec-
tion being executed, the expected energy consumption for
executing taskTk will be

Eckpt
k = noptEsection + (1− (1− ρsection)nopt)Erecovery (12)

where the first part is always consumed and is the energy for
executing the primary sections (including the checkpoints),
and the second part is the expected energy consumption for
executing the recovery section.

Due to the overhead of checkpoints, in order to obtain
energy savings (i.e.,Eckpt

k < E0
k), there is a minimum

amount of dynamic slackSenergy
min needed for energy man-

agement. Again, due to the complexity of Equation 12, it is
hard to get the close formula forSenergy

min and we illustrate
the relation betweenSenergy

min and checkpoint overheadγ in
the following analysis.

Figure 5 shows the normalized expected energy con-

sumption,
Eckpt

k

E0
k

, when executing taskTk with different

amount of available dynamic slack under different check-
point overheads. The same parameters as in Section 4.1 are
used here. For different fault rate changes (i.e., different
values ofd), due to the low probability of recovery sec-
tion being executed (lower than10−5 even whend = 5),
the expected energy consumption is almost the same for
a given checkpoint overhead and amount of available dy-
namic slack. Therefore, we only show the normalized ex-
pected energy consumption for the worst case ofd = 5.

From the figures, we can see that, though it is feasi-
ble to employ checkpoints when the amount of dynamic
slack is larger thanStime

min , due to the energy overhead of
checkpoints, no energy savings could be obtained until the
amount of slack is more thanSenergy

min . The smaller the

checkpoint overhead, the lower the value ofSenergy
min and the

more energy savings could be obtained for a given amount
of dynamic slack. When the checkpoint overhead is large
(e.g.,γ = 0.1, which is close toγmax = 0.17; Figure 5c),
almost no energy savings could be obtained and checkpoints
should not be employed.

Considering both reliability (Section 4.1) and energy
savings (Section 4.2), checkpoints should not be employed
for energy management when checkpoint overhead is rel-
atively large (e.g.,γ > 0.1). Moreover, when checkpoint
overhead is relatively small (e.g.,γ = 0.01), though more
energy savings could be obtained with more available dy-
namic slack, limitation may exist on the amount of em-
ployed dynamic slack due to reliability consideration, es-
pecially for dramatical fault rate increases with reduced fre-
quencies and supply voltages (e.g.,d = 5).

We have analyzed the performance of the proposed
schemes for a single task. In what follows, to illustrate
the merits of our proposed reliability-aware energy manage-
ment schemes and see how they performs for overall system
reliability and energy savings, we present simulation results
for dependable real-time applications that consist of a set of
aperiodic tasks. We compare the energy savings as well as
system reliability of the new proposed schemes with ordi-
nary energy management schemes.

5 Simulation Results and Discussion
In the simulations, we consider four different schemes:

a)no power management (NPM), which is used as the base-
line for comparison; b)ordinary greedy power management
(Greedy), which allocates all available dynamic slack for
next ready task to save energy without considering system
reliability; c) reliability-aware greedy power management
(RA-Greedy), which dynamically allocates a recovery task
for next ready task before applying greedy power manage-
ment. When the amount of available dynamic slack is less
than the size of next ready task, the slack is not used and
saved for future tasks; d)reliability-aware power manage-
ment with checkpoints (Ckpt), which is the same as RA-
Greedy except that checkpoints are employed when the
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Figure 5. The normalized expected energy consumption vs. the amount of available dynamic slack.

amount of available dynamic slack is less than the size of
next ready task.

For the system parameters, as discussed in Section 2,
we use normalized frequency withfmax = 1 and assume
frequency can be changed continuously. Moreover, cor-
responding to the analysis in Section 3 and 4, we assume
α = 0, β = 0.1 andm = 3. That is, we focus on active
power. For the effects of different values ofβ on energy
management, see [35] for more discussions. The same as in
Section 3, we assume that faults follow a Poisson distribu-
tion with an average fault rate asλ0 = 10−6 at fmax (and
correspondingVmax). We vary the values ofd (as0, 2 and
5 respectively) for different changes in fault rates due to the
effects of frequency and voltage scaling [7]. An applica-
tion fails if any task in the application fails and there is no
recovery or both the task and its recovery fail.

The number of tasks in an application is randomly gener-
ated between5 and20, where the WCETs of tasks are uni-
formly distributed in the range of1 and10. When every task
in an application uses its WCET, we assume that the appli-
cation finishes just in time and the system reliability is sat-
isfactory. To emulate the run-time behaviors of tasks, a pa-
rameterσ is used as an application-wide average over worst
execution time, which also indicates the amount of dynamic
slack available on average during execution. Smaller values
of σ imply more dynamic slack. The value ofσi for task
Ti in the application is generated from a uniform distribu-
tion with an average value ofσ. The actual execution time
of Ti follows a similar uniform distribution with an average
value ofσi · ci, whereci is the WCET of taskTi. For each
result point in the graphs,100 task sets are generated and
each task set is executed100, 000 times, and the result is
the average of all the runs.

5.1 Performance of RA-Greedy

First, we compare the performance ofGreedyandRA-
Greedyon reliability and energy consumption. For different
fault rate changes, Figure 6 shows the probability of failure
when executing the applications with different average sys-
tem loads (i.e., different amounts of dynamic slack).

Notice that, the fault rate underNPM is alwaysλ0 =
10−6, which is not affected by the different fault rate
changes (i.e., different values ofd). Therefore, from Fig-
ure 6, we can see that for a given average system load,
the probability of failure underNPM is roughly the same.
When the average system load increases, the applications
run longer and the probability of failure underNPM in-
creases linearly. Note the log scale of Y-axis in Figure 6.

From the figure, it can be seen that theGreedyscheme
results in higher probability of failure thanNPMeven when
d = 0 (i.e., constant fault rate), which comes from the
extended execution of tasks due to energy management.
When fault rate increases with reduced frequencies and sup-
ply voltages (i.e.,d > 0), the probability of failure under
Greedyscheme increases exponentially asd increases. For
example, whend = 5, Greedyscheme almost always leads
to system failure (with probability of failure close to1),
especially for the case of low average system loads where
more dynamic slack exists. When the average system load
increases, the probability of failure underGreedyscheme
increases first and then decreases, the reason is because of
the limitation of fee = 0.37. When the average system
load is extremely low (e.g.,σ < 20%), tasks in an applica-
tion always run atfee and the probability of failure mainly
depends on the execution time, which increases as average
system load increases. However, as average system load
continues to increase, less slack is available and tasks need
to run at higher frequencies thanfee, which has lower fault
rates and thus leads to lower probability of failure. More-
over, from Figure 6, we can also see thatRA-Greedyscheme
always has a lower probability of failure (i.e., higher sys-
tem reliability) thanNPM regardless the fault rate changes,
which coincides with the analysis in Section 3.2.1.

Figure 7 shows the corresponding normalized energy
consumption forGreedyandRA-Greedyschemes with the
one consumed byNPM as a baseline. AsGreedyscheme
does not consider system reliability when reclaiming dy-
namic slack for energy savings, the normalized energy con-
sumption forGreedyscheme only depends on the average
system load and is roughly the same for different fault rate
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Figure 6. The probability of failure vs. different average system loads.
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Figure 7. The normalized expected energy consumption vs. average system loads.

changes. ForRA-Greedyscheme, by providing an addi-
tional recovery for maintaining system reliability, it con-
sumes from10% to 20% more energy thanGreedyscheme
when the fault rate only increases moderately with reduced
frequencies and supply voltages (i.e.,d ≤ 2). However,
when the fault rate increases dramatically (e.g.,d = 5),
the probability of failure for the original scaled-down ex-
ecution is close to1 when the average system load is low
(see Figure 6c) and the recovery task is almost always exe-
cuted, which leads to higher energy consumption thanNPM
(Figure 7c). Therefore, when the fault rate increases dra-
matically with reduced frequencies and supply voltages, it
will be more energy efficient to use less dynamic slack for
energy management to keep the fault rate at a reasonable
level.

5.2 Effects of Checkpoints

Considering the checkpoint overhead could be very
small [21], we user = 0.01, 0.05, 0.1, which corresponds
to Ckpt-0.01, Ckpt-0.05andCkpt-0.10in the following fig-
ures, respectively. Recall that the size of tasks is in the
range of [1, 10] inclusively, which leads to the average
γ = 0.002, 0.01 and0.02, smaller than the ones we used
in the analysis in Section 4.

Figure 8 shows the probability of failure for the schemes
of RA-Greedyand Ckpt with different checkpoint over-
heads. From the figure, when the fault rate increase is mod-
erate (i.e.,d ≤ 2), Ckptachieves slightly better system re-

liability (lower probability of failure) by providing an addi-
tional recovery when the amount of available dynamic slack
is less than the size of the next ready task. When the check-
point overhead is smaller,Ckpthas more chances to use the
dynamic slack and generally gets better system reliability.
However, when the fault rate increase is high (e.g.,d = 5),
the additional recovery is almost always executed and over-
all probability of failure increases due to the execution over-
head of checkpoints. Smaller checkpoint overhead leads to
higher probability of using checkpoints and thus results in
higher probability of failure.

Figure 9 further shows the corresponding normalized en-
ergy consumption forRA-Greedyand Ckpt with different
checkpoint overheads. With additional chances for energy
management,Ckpt with smaller checkpoint overhead con-
sumes less energy, and all of them is less than the one con-
sumed byRA-Greedy. The same reason as before, due to
the limitation offee and higher failure rates, the normalized
energy consumption decreases first and then increases as the
average system load increases. All schemes consumes more
energy thanNPMwhend = 5 andσ ≤ 10%.

6 Closely Related Work
Using the primary/backup recovery model, Unsalet al.

proposed to postpone the execution of backup tasks to min-
imize the overlap of primary and backup execution and
thus the energy consumption [28]. The optimal number
of checkpoints, evenly or unevenly distributed, to achieve
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Figure 8. The probability of failure with checkpoints.
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Figure 9. The normalized expected energy consumption with checkpoints.

minimal energy consumption while tolerating one transient
fault was explored by Melhemet al. in [16]. Elnozahyet
al. proposed anOptimistic TMRscheme that reduces the
energy consumption for traditional TMR systems by allow-
ing one processing unit to slow down provided that it can
catch up and finish the computation before the application
deadline [6]. The optimal frequency settings for OTMR
was further explored in [35]. Assuming a Poisson fault
model, Zhanget al. proposed an adaptive checkpointing
scheme that dynamically adjusts checkpoint intervals for
energy savings while tolerating a fixed number of faults for
a single task [31]. The work is further extended to a set of
periodic tasks [33], and moreover, faults within checkpoints
are also considered [32].

Most of the previous research either focused on tolerat-
ing fixed number of faults [6, 16] or assumed constant fault
rate [31, 32, 35] when applying frequency and voltage scal-
ing for energy savings. The work reported in this paper is
different from all previous work in that we address the sys-
tem reliability problem when exploring dynamic slack for
energy savings, while explicitly taking the effects of energy
management on fault rates into consideration.

7 Conclusions
As fault rates generally increase with reduced supply

voltages, energy management exploring slack time through
voltage scaling will reduce system reliability, which is un-
desirable, especially for mission critical applications (e.g.,

satellite and surveillance systems), where system reliabil-
ity is as important as (or even more important than) energy
consumption. Considering the effects of voltage scaling on
fault rates, we proposereliability-aware dynamic energy
management schemes that preserve system reliability while
exploring dynamic slack for energy savings.

By scheduling an additional recovery task before re-
claiming dynamic slack for energy management, the pro-
posed reliability-aware energy management scheme ensures
that the system reliability achieved is higher than the case
when there is no power management. Checkpointing tech-
niques are further explored to more efficiently use the dy-
namic slack when the slack is not enough to schedule a re-
covery for a whole task. The performance of the proposed
schemes is analyzed and evaluated through simulations for
both system reliability and energy savings. The results show
that, the proposed schemes can achieve comparable energy
savings as ordinary energy management schemes while pre-
serving system reliability. Ignoring the effects of energy
management on fault rates is too optimistic and the ordi-
nary energy management schemes could lead to drastically
decreased system reliability.
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[1] H. Aydin, R. Melhem, D. Mosśe, and P. Mejia-Alvarez. Dynamic
and aggressive scheduling techniques for power-aware real-time sys-
tems. InProc. of The22th IEEE Real-Time Systems Symposium,
Dec. 2001.

[2] P. Bohrer, E. N. Elnozahy, T. Keller, M. Kistler, C. Lefurgy, C. Mc-
Dowell, and R. Rajamony.The case for power management in web
servers, chapter 1. Power Aware Computing. Plenum/Kluwer Pub-
lishers, 2002.

[3] T. D. Burd and R. W. Brodersen. Energy efficient cmos micropro-
cessor design. InProc. of The HICSS Conference, Jan. 1995.

[4] X. Castillo, S. McConnel, and D. Siewiorek. Derivation and calibera-
tion of a transient error reliability model.IEEE Trans. on computers,
31(7):658–671, 1982.

[5] Intel Corp. Mobile pentium iii processor-m datasheet. Order Num-
ber: 298340-002, Oct 2001.

[6] E. (Mootaz) Elnozahy, R. Melhem, and D. Mossé. Energy-efficient
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ment on reliability in real-time embedded systems. InProc. of the In-
ternational Conference on Computer Aidded Design (ICCAD), Nov.
2004.
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