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Abstract. Given an n-point metric (P, d) and an integer k > 0, we
consider the problem of covering P by k balls so as to minimize the
sum of the radii of the balls. We present a randomized algorithm that
runs in nO(log n·log ∆) time and returns with high probability the optimal
solution. Here, ∆ is the ratio between the maximum and minimum in-
terpoint distances in the metric space. We also show that the problem
is NP-hard, even in metrics induced by weighted planar graphs and in
metrics of constant doubling dimension.
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1 Introduction

Given a metric d defined on a set P of n points, we define the ball B(v, r)
centered at v ∈ P and having radius r ≥ 0 to be the set {q ∈ P |d(v, q) ≤ r}.
In this work, we consider the problem of computing a minimum cost k-cover for
the given point set P , where k > 0 is some given integer which is also part of
the input. For κ > 0, a κ-cover for subset Q ⊆ P is a set of at most κ balls, each
centered at a point in P , whose union covers (contains) Q. The cost of a set D
of balls, denoted cost(D), is the sum of the radii of those balls.

This problem and its variants have been well examined, motivated by appli-
cations in clustering and base-station coverage [6, 4, 13, 3, 1].

Doddi et al. [6] consider the metric min-cost k-cover problem and the closely
related problem of partitioning P into a set of k clusters so as to minimize
the sum of the cluster diameters. Following their terminology, we will call the
latter problem clustering to minimize the sum of diameters. They present a
bicriteria poly-time algorithm that returns O(k) clusters whose cost is within
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a multiplicative factor O(log(n/k)) of the optimal. For clustering to minimize
the sum of diameters, they also show that the existence of a polynomial time
algorithm that returns k clusters whose cost is strictly within 2 of the optimal
would imply that P = NP . Notice that this hardness result does not imply the
NP-hardness of the k-cover problem. Charikar and Panigrahy [4] give a poly-
time algorithm based on the primal-dual method that gives a constant factor
approximation – around 3.504 – for the k-cover problem, and thus also a constant
factor approximation for clustering to minimize the sum of diameters.

The well known k-center problem is a variant of the k-cover problem where
the cost of a set of balls is defined to be the maximum radius of any ball in
the set. The problem is NP-hard and admits a polynomial time algorithm that
yields a 2-approximation [10]. Several other formulations of clustering such as
k-median and min-sum k-clustering are NP-hard as well [11, 5].

Recently, Gibson et al. [9] consider the geometric version of the k-cover prob-
lem where P ⊂ ℜl for some constant l. When the L1 or L∞ norm is used to
define the metric, they obtain a polynomial time algorithm for the k-cover prob-
lem. With the L2 norm, they give an algorithm that runs in time polynomial
in n, the number of points, and in log(1/ǫ) and returns a k-cover whose cost is
within (1 + ǫ) of the optimal, for any 0 < ǫ < 1.

Our Results

Our first result generalizes the algorithmic approach of Gibson et al. [9] to the
metric case. For the k-cover problem in the general metric setting, we obtain an
exact algorithm whose running time is nO(log n·log ∆), where ∆ is the aspect ratio
of the metric space, the ratio between the maximum interpoint distance and the
minimum interpoint distance. The algorithm is randomized and succeeds with
high probability. Thus when ∆ is bounded by a polynomial in n, the running time
of the algorithm is quasi-polynomial. This result for the k-cover problem should
be contrasted with the NP-hardness results for problems such as k-center, k-
median, and min-sum k-clustering, which hold when the aspect ratio is bounded
by a polynomial in n.

The main idea that underlies this result is that if we probabilistically partition
the metric into sets with at most half the original diameter [2, 7], then with high
probability only O(log n) balls in the optimal k-cover of P are “cut” by the
partition. A recursive approach is then used to compute the optimal k-cover.

This algorithmic result raises the question of whether an algorithm whose
running time is quasi-polynomial in n is possible even when the aspect ratio
is not polynomially bounded. Our second result shows that this is unlikely by
establishing the NP-hardness of the k-cover problem. The aspect ratio in the NP-
hardness construction is about 2n. The metrics obtained are induced by weighted
planar graphs, thus establishing the NP-hardness of the k-cover problem for this
special case.

Our final result is that the k-cover problem is NP-hard in metrics of con-
stant doubling dimension for a large enough constant. This result is somewhat
surprising given the positive results of [9] for fixed dimensional geometric spaces.



Before concluding this section, we point out that our algorithmic result for
the metric k-cover problem readily yields a randomized approximation algorithm

that runs in time 2polylog(n/ǫ) and returns with high probability a k-cover whose
cost is at most (1+ ǫ) times the cost of the optimal k-cover. This approximation
algorithm is obtained by applying a simple transformation (involving discretiza-
tion) that reduces the approximate problem to several instances of the exact
metric κ-cover problem with aspect ratio bounded by poly(n/ǫ).

The rest of this article is organized as follows. In Section 2, we present our
algorithm for the k-cover problem. In Section 3, we establish the NP-hardness of
the k-cover problem for metrics induced by weighted planar graphs. In Section
4, we establish NP-hardness for metrics of constant doubling dimension.

2 Algorithm for General Metrics

We consider the k-cover problem whose input is a metric (P, d), where P is
a set of n points and d is a function giving the interpoint distances, and an
integer k > 0. We assume without loss of generality that the minimum interpoint
distance is 1. Let ∆ denote diam(P ), the maximum interpoint distance. We
present a randomized algorithm that runs in nO(log n log ∆) time and with high
probability returns the best k-cover for P . We will assume below that k ≤ n.

The main idea for handling the metric case is that probabilistic partitions [2,
7] can play a role analogous to the line separators were used in the geometric case
[9]. To formalize this, let Q denote some subset of P such that diam(Q) ≥ 50,
and consider the following randomized algorithm (taken from [7]) that partitions
Q into sets of diameter at most diam(Q)/2:

Algorithm 1 Partition(Q)

1: Let π denote a random permutation of the points in Q.
2: Let β denote a random number in the range [diam(Q)/8, diam(Q)/4].
3: Let R← Q.
4: for all i← 1 to |Q| do

5: Let Qi ← {p ∈ R|d(p, π(i)) ≤ β}.
6: Let R← R \Qi.

Since each Qi is contained in a ball of radius at most diam(Q)/4, we have
that diam(Qi) ≤ diam(Q)/2. Clearly, the Qi also partition Q. Let us say that a
ball B ⊆ P is cut by this partition of Q if there are two distinct indices i and
j such that (B ∩ Q) ∩ Qi 6= ∅ and (B ∩ Q) ∩ Qj 6= ∅. The main property that
the probabilistic partition enjoys is encapsulated by the following lemma, whose
proof follows via the methods of Fakcharoenphol et al. [7].

Lemma 1. Let B ⊆ P be some ball of radius r. The probability that B is cut
by the partition of Q output by Partition(Q) is at most r

diam(Q)
O(log |Q|).



Proof. Let q1, . . . q|Q| denote the ordering of the points in Q according to in-
creasing order of distance from B′ = B ∩ Q, with ties broken arbitrarily. We
may assume that B′ 6= ∅ for otherwise the lemma trivially holds. For each qj let
aj (resp. bj) denote the distance to the closest (resp. furthest) point in B′. By
the triangle inequality it follows that bj −aj ≤ 2r. We say that π(i) settles B if i
is the first index for which some point in B′ belongs to Qi. Note that exactly one
point in Q settles B. We say that π(i) cuts B if π(i) settles B and at least one
point in B′ is not assigned to Qi. The probability that B is cut by the partition
equals

∑

i

Pr[π(i) cuts B] =
∑

j

Pr[qj cuts B].

The event that qj cuts B requires the occurrence of two events: E1, the event
that β lands in the interval [aj , bj), and E2, the event that qj appears before
q1, . . . , qj−1 in the ordering π. Using independence,

Pr[qj cuts B] ≤ Pr[E1] ∗ Pr[E2|E1] = Pr[E1] ∗ Pr[E2]

≤
2r

diam(Q)/8
·
1

j
=

16r

diam(Q)
·
1

j
.

So the probability that B is cut by the partition is bounded above by

16r

diam(Q)

∑

j

1

j
=

r

diam(Q)
O(log |Q|).

⊓⊔

Let S denote the optimal κ-cover for Q some κ > 0. The following states the
main structural property that S enjoys.

Lemma 2. The expected number of balls in S that are cut by Partition(Q) is
O(log |Q|). Consequently, the probability is at least 1/2 that the number of balls
in S that are cut by Partition(Q) is at most c log n, where c > 0 is some constant.

Proof. The expected number of balls in S cut is equal to

∑

B∈S

Pr[B is cut] = O(log |Q|)
∑

B∈S

radius(B)

diam(Q)
= O(log |Q|)

cost(S)

diam(Q)
.

The Lemma follows by observing that cost(S) ≤ diam(Q) since Q can be covered
by a single ball of radius diam(Q). ⊓⊔

The Randomized Algorithm

We describe a recursive algorithm BC-Compute that takes as arguments a set
Q ⊆ P and an integer 0 ≤ κ ≤ n and returns with high probability an opti-
mal κ-cover for Q. We begin by noting that we may restrict our attention to



balls B(x, r) whose radius r equals d(x, q) for some q ∈ P . Henceforth in this
section we only refer to this set of balls. For easing the description of the algo-
rithm, it is convenient to add to this set of balls an element I whose cost is ∞.
Any subset of this enlarged set of balls that includes I will also have a cost of ∞.

Algorithm 2 BC-Compute(Q, κ)

1: If |Q| = 0, return the empty set.
2: Otherwise, if κ = 0, return {I} (not possible to cover).
3: Otherwise, if diam(Q) ≤ 50, directly compute the optimal solution in polynomial

time. In this case, the optimal solution has cost at most 50, so it consists of a set S
of at most 50 balls of non-zero radius plus zero or more singleton balls. The number
of such solutions is polynomial, and our algorithm checks them all.

4: for all 2 log2 n iterations do

5: Call Partition(Q) to obtain a partition of Q into two or more sets. Let
Q1, . . . , Qτ denote the nonempty sets in this collection.

6: for all sets C of at most c log n balls, where c is the constant in Lemma 2 do

7: Let Q′

i be the points in Qi not covered by C. For each 1 ≤ i ≤ τ and 0 ≤
κ1 ≤ κ, recursively call BC-Compute(Q′

i, κ1) and store the set returned in the
local variable best(Q′

i, κ1).
8: For 0 ≤ i ≤ τ − 1, let Ri = ∪τ

j=i+1Q
′

j . Note that Rτ−1 = Q′

τ and Ri =
Q′

i+1 ∪Ri+1 for 0 ≤ i ≤ τ − 2.
9: for all i← τ − 2 down to 0 and 0 ≤ κ1 ≤ κ, do

10: set local variable best(Ri, κ1) to be the lowest cost solution among
{best(Q′

i+1, κ
′) ∪ best(Ri+1, κ1 − κ′)|0 ≤ κ′ ≤ κ1}.

11: Let S denote the lowest cost solution best(R0, κ− |C|)∪C over all choices
of C tried above with |C| ≤ κ.

12: Return the lowest cost solution S obtained over the Θ(log n) trials.

Running time. To solve an instance (Q, κ) of the problem with diam(Q) ≥ 50,
the algorithm makes nO(log n) recursive calls to instances with diameter at most
diam(Q)/2. The additional book keeping takes nO(log n) time. It follows that
the running time of the algorithm invoked on the original instance (P, k) is
nO(log n·log ∆).

Correctness. We will show that BC-Compute(P, k) computes an optimal k-cover
for P with high probability. We begin by noting that the base case instances
(Q, κ) are solved correctly with a probability of 1. We will show by induction on
|Q| that any instance (Q, κ) with |Q| ≥ 2 is optimally solved with a probability

of at least 1 − |Q|−1
n2 .

If the (Q, κ) instance happens to fit in one of the base cases, we are done.
Otherwise, consider an optimal κ-cover OPT for Q. It is enough to show that
BC-Compute(Q, κ) returns a κ-cover of cost at most cost(OPT) with a probability

of at least 1 − |Q|−1
n2 .



By Lemma 2, the probability is at least 1 − 1
n2 that one of the 2 log2 n

calls to Partition(Q) returns a partition (Q1, . . . , Qτ ) of Q into τ ≥ 2 sets
such that no more than c log n balls in OPT are cut by the partition. As-
suming this good event happens, fix such a partition (Q1, . . . , Qτ ) of Q and
consider the choice of C that exactly equals the balls in OPT that are cut
by the partition. The balls in OPT \ C are not cut by the partition and can
be partitioned into subsets (OPT1, . . . , OPTτ ) (some of these can be empty)
such that for any ball B ∈ OPTi, we have B ∩ Q ⊆ Qi. It is easy to see that
OPTi must be an optimal |OPTi|-cover for Q′

i. By the induction hypothesis,
BC-Compute(Q′

i, |OPTi|) returns an |OPTi|-cover for Q′
i with a probability of at

least 1− |Q′

i
|−1

n2 if |Q′
i| ≥ 2 and with a probability of 1 otherwise. The probability

that BC-Compute(Q′
i, |OPTi|) returns an |OPTi|-cover for Q′

i for every i is at
least

∏

i:|Q′

i
|≥2

1 −
|Q′

i| − 1

n2
≥

∏

i

1 −
|Qi| − 1

n2
≥ 1 −

|Q| − 2

n2
.

Assuming this second good event also happens, it follows from an easy back-
wards induction on i that best(Ri,

∑

j>i |OPTj |) is a (
∑

j>i |OPT|j)-cover for Ri

with cost at most
∑

j>i cost(OPTj). Thus best(R0, κ−|C|) is an (κ−|C|)-cover

for R0 =
∑τ

i=1 Q′
i with cost at most

∑τ
i=1 cost(OPTi). Thus best(R0, κ−|C|)∪C

is a κ-cover of Q with cost at most cost(OPT). The probability of this happen-
ing is at least the product of the probabilities of the two good events we as-

sumed, which is at least (1− |Q|−1
n2 ). This completes the inductive step, because

BC-Compute(Q, κ) returns the lowest cost κ-cover among the 2 log2 n κ-covers
that it sees.

Theorem 1. There is a randomized algorithm that, given a set P of n points
in a metric space and an integer k, runs in nO(log n·log ∆) time and returns, with
probability at least 1/2, an optimal k-cover for P . Here ∆ is an upper bound on
the ratio between the maximum and minimum interpoint distances within P .

3 NP-hardness of Min-Cost k-Cover

A natural question is whether there is a quasipolynomial time algorithm in n
for the case where the input metric has unbounded aspect ratio. This is unlikely
to be the case because, as we show in this section, the general problem is NP-
hard even in case of a planar metric. We give a reduction from a version of the
planar 3-SAT problem - the pn-planar 3-SAT problem. This problem was shown
to be NP-complete in [14]. Planar 3-SAT is defined as follows: Let Φ = (X, C)
be an instance of 3SAT, with variable set X = {x0, . . . , xn−1} and clauses C =
{c1, . . . , cm} such that each clause consists of exactly 3 literals. Define a formula
graph GΦ = (V, E) with vertex set V = X

⋃

C and edges E = E1

⋃

E2 where
E1 = {(xi, xi+1)|0 ≤ i ≤ n−1}1 and E2 = {(xi, cj)|cj contains xi or xi}. A 3SAT
formula Φ is called planar if the corresponding formula graph GΦ is planar. The

1 Here we assume that the arithmetic wraps around i.e. (n− 1) + 1 = 0



edge set E1 defines a cycle on the vertices X , and thus divides the plane into
exactly 2 faces. Each node cj ∈ C lies in exactly one of those two faces. In the
pn-planar 3SAT problem, we have the additional restriction that there exists a
planar drawing of GΦ such that if cj and cj′ contain opposite occurrences of the
same variable xi, then they lie in opposite faces. In other words, all clauses with
the literals xi lie in one of the two faces and all clauses with xi lie in the other
face. We have to determine whether there exists an assignment of truth values
to the variables in X that satisfies all the clauses in C.

We describe a simple transformation, easily seen to be effected by a poly-
nomial time algorithm, from such a pn-planar 3SAT instance to an instance
of finding an optimal k-cover in a metric induced by a weighted planar graph
G = (V, E). The transformation has the property that there is a k-cover in the
metric of cost at most 2k − 1 if and only if the original pn-planar 3SAT instance
is satisfiable.

We set k = n. The vertex set V of the graph is a union of k + 2 sets: (a) a
set X = {x0, x0, . . . , xk−1, xk−1} that can be identified with the set of variables
of the pn-planar 3SAT instance with each variable occurring twice - once as a
positive literal and once as a negative literal, (b) a set C = {c1, . . . , cm} that
can be identified with the set of clauses of the pn-planar 3SAT instance, and
(c) sets W 0, . . . , W k−1, where each W l consists of k + 1 vertices. To obtain the
edge set E, we add an edge between each vertex xl and xl in X with weight
2l for 0 ≤ l ≤ k − 1. For each vertex xl ∈ X we add an edge between xl and
every vertex in W l of weight 2l for 0 ≤ l ≤ k − 1. Analogously, we add an edge
between each vertex xl and every vertex in W l again of weight 2l. In addition
we add edges between every vertex ci ∈ C and every variable vertex xl or its
negation xl whichever appears in it of weight 2l. Note that this graph G is planar
– this follows from the pn-planarity of the 3SAT instance. See Figure 1 for an
illustration.

Claim. Any k-cover of V whose cost is at most 2k − 1 includes, for each 0 ≤ l ≤
k − 1, a ball centered at either xl or xl with radius at least 2l.

Proof. Consider any k-cover of V and let t be the largest index such that there
is no ball in the k-cover centered at either xt or xt and having radius at least
2t. So for each t + 1 ≤ l ≤ k − 1, there is a ball Bl in the k-cover centered at
either xl or xl and having radius at least 2l. Since W t has k + 1 points in it,
there is point a ∈ W t that is not the center of any ball in the k-cover. Let B be
some ball in the k-cover that covers a. If B = Bl for some t + 1 ≤ l ≤ k − 1,
then Bl has radius at least 2l + 2 · 2t. In this case the k-cover has cost at least
2k−1 + 2k−2 · · · 2t+1 + 2 · 2t = 2k. If B 6= Bl for any t + 1 ≤ l ≤ k − 1, then the
radius of B is at least 2 · 2t, since the distance of a from any point other than
xt and xt is at least 2 · 2t. Thus in this case too the k-cover has cost at least
2k−1 + 2k−2 · · · 2t+1 + 2 · 2t = 2k. ⊓⊔

Now suppose the original pn-planar 3SAT instance is a yes instance. So there
is an assignment of truth values to x0, · · · , xk−1 such that all clauses in C are
satisfied. Consider the set of k balls B0, . . . , Bk−1, where Bl is centered at xl



l
x

2
l

1

l
w

2

l
w

3

l
w

1

l

k
w

+

lx

2
l

2
l

2
l

2
l

2
l

2
l

2
l

2
l

0x 0
x

2
x

2x

4x 4
x

3x 3
x

1
x

1x

5
x

5x

1
C

0
x

3
x

1
x

4
C

2
C

3
C

1
C

2
C

3
C

4
C

0
2

0
2

0
2

1
2

1
2

2
2

3
2

3
2

3
2

4
2

4
25

2

5
x

4
x

2
x

(a) (b)

Fig. 1. (a) The gadget for variable xl in Φ. (b) A planar embedding for Φ and construc-
tion of the corresponding instance of k-clustering problem. All “clause-literal” edges
have weight 2l for the variable xl. The optimal cover is highlighted with grey “blobs”.
Φ = (¬x0 ∨ x3 ∨ x4)∧ (x0 ∨¬x4 ∨¬x5)∧ (x0 ∨¬x1 ∨¬x3)∧ (x1 ∨¬x2 ∨ x3). Satisfying
assignment X = (0, 1, 1, 0, 0, 1). Weight of the covering is exactly 26 − 1

or xl (whichever is satisfied by the assignment) and has radius 2l. It is easily
checked that these balls form a k-cover of V of cost 20 + 21 + · · · 2k−1 = 2k − 1.

Now suppose the original pn-planar 3SAT instance is a no instance. We
claim that any k-cover of V has cost strictly greater than 2k − 1 in this case.
Suppose this is not the case and consider a k-cover of cost at most 2k − 1. As
a consequence of the claim, such a k-cover must consist of balls B0, . . . , Bk−1

where Bl is centered at either xl or xl and has radius precisely 2l. Since these
balls must cover each vertex in C, it follows that the assignment of truth values
to variables in X which comprises of xl being true if the ball Bl is centered at
xl and false if it is centered at xl satisfies all clauses in C. This contradicts the
supposition that the original pn-planar 3SAT instance is a no instance.

Theorem 2. The (decision version of the) problem of computing an optimal
k-cover for an n-point planar metric (P, d) is NP-hard.

4 The Doubling Metric Case

We now consider the k-cover problem when the input metric (P, d) has doubling
dimension bounded by some constant ρ ≥ 0. The doubling dimension of the
metric (P, d) is said to be bounded by ρ if any ball B(x, r) in (P, d) can be
covered by 2ρ balls of radius r/2 [12]. In this section, we show that for a large
enough constant ρ, the k-cover problem for metrics of doubling dimension at
most ρ is NP-hard.

The proof is by a reduction from a restricted version of 3SAT where each
variable appears in at most 5 clauses [8]. Let Φ be such a 3-CNF formula with
variables x0, . . . , xn−1 and clauses c1, . . . , cm. We describe a simple transforma-
tion, easily seen to be effected by a polynomial time algorithm, from such a 3SAT



instance Φ to an instance of finding an optimal k-cover in a metric induced by a
weighted graph G = (V, E). The metric will have doubling dimension bounded
by some constant. The transformation has the property that there is a k-cover
in the metric of cost at most 2k − 1 if and only if the original 3SAT instance is
satisfiable.

The transformation is similar to the one in the previous section with some
modifications to ensure the doubling dimension property.

We set k = n. The vertex set V of the graph is a union of k + 2 sets: (a) a
set X = {x0, x0, . . . , xk−1, xk−1} that can be identified with the set of literals in
Φ, (b) a set C = {c1, . . . , cm} that can be identified with the set of clauses of Φ,
and (c) sets W 0, . . . , W k−1, where each W l consists of nl = 8(l+1)2 +1 vertices
wl

1, . . . , w
l
nl

. To obtain the edge set E, we add an edge between xl and xl with

weight 2l for 0 ≤ l ≤ k − 1. We add an edge between xl and every vertex in W l

of weight 2l for 0 ≤ l ≤ k−1. Analogously, we add an edge between xl and every
vertex in W l again of weight 2l. In addition we add edges between every vertex
ci ∈ C and every literal that appears in the clause ci. If the literal is either xl

or xl, the weight of the corresponding edge is 2l. Finally for each 0 ≤ l ≤ n − 1
and each 1 ≤ i ≤ nl − 1, we add an edge of weight 2l/(l + 1)2 between wl

i and
wl

i+1. See Figure 2 for an illustration of the transformation.
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Fig. 2. (a) The gadget for the variable xl in Φ. Each edge between wl
i and wl

i+1 has
weight exactly 2l/(l+1)2 and the number of wl

i’s is 8(l+1)2+1. (b) A representation of
an instance of k-clustering on a doubling metric constructed from an instance of Φ. All
“clause-literal” edges have weight 2l for variable xl. The optimal cover is highlighted
with grey“blobs”. Φ = (¬x0∨x3∨x4)∧(x0∨¬x4∨¬x5)∧(x0∨¬x1∨¬x3)∧(x1∨¬x2∨x3).
Satisfying assignment X = (0, 1, 1, 0, 0, 1). Weight of the covering is exactly 26 − 1

Lemma 3. There is a constant ρ ≥ 0 so that the doubling dimension of the
metric induced by the graph G = (V, E) is bounded by ρ.



Proof. Let B(x, r) be some ball in the metric. If r < 1, then either (a) the ball
consists of a singleton vertex, or (b) B(x, r) ⊆ W l for some l and the subgraph
of G induced by B(x, r) is a path. In either case, it is easily verified that O(1)
balls centered within B(x, r) and having radius r/2 cover B(x, r).

We therefore consider the case r ≥ 1. Let t be the largest integer that is at
most n − 1 such that 2t ≤ r. For each s ∈ {t − 3, t − 2, t − 1, t}, we place balls
of radius r/2 centered at (i) {xs, xs} ∩ B(x, r), (ii) clause vertices incident to
xs or xs that are in B(x, r), and (iii) O(1) points of B(x, r) ∩ W s so that these
balls cover B(x, r) ∩ W s (this is possible because B(x, r) ∩ W s induces a path
of length at most 2s+3.) In addition, if x ∈ W l for some l, we place O(1) balls
of radius r/2 at points of B(x, r) ∩ W l so that these balls cover B(x, r) ∩ W l.
Finally, we place a ball of radius r/2 at x. Clearly, we have placed O(1) balls
and we will show that these cover B(x, r). Let C denote the set of centers at
which we have placed balls.

Let y ∈ B(x, r) be a point that is not in C or in W s for s ∈ {t−3, t−2, t−1, t}
or in W l (if x ∈ W l). Fix a shortest path from x to y and let x′ be the last vertex
on this path that is in C. We first observe that none of the internal vertices on
the path from x to y is in W q for any q. Furthermore, if x ∈ W l for some l, then
by assumption y 6∈ W l. Thus all edges of the subpath from x′ to y have weight
2q for some 0 ≤ q ≤ n−1. No such edge can have weight 2t+1 or greater because
2t+1 > r if t ≤ n−2. No such edge can have weight 2s for s ∈ {t−3, t−2, t−1, t}
because otherwise the endpoint of the edge closer to y would be in C. Thus every
edge on the subpath from x′ to y has weight at most 2t−4. It is easy to see that
the subpath contains at most 3 edges of weight 2q for any q ≤ t − 4. Thus the
weight of the subpath from x′ to y is at most

3(2t−4 + 2t−5 + · · · + 20) < 3 · 2t−3 < 2t−1 < r/2.

So y is in the ball of radius r/2 centered at x′. ⊓⊔

Claim. Any k-cover of V whose cost is at most 2k − 1 includes, for each 0 ≤ l ≤
k − 1, a ball centered at either xl or xl with radius at least 2l.

Proof. Consider any k-cover of V and let t be the largest index such that there
is no ball in the k-cover centered at either xt or xt and having radius at least 2t.
So for each t + 1 ≤ l ≤ k − 1, there is a ball Bl in the k-cover centered at either
xl or xl and having radius at least 2l.

If some point in W t is covered by some Bl for t + 1 ≤ l ≤ k − 1, then
Bl has radius at least 2l + 2 · 2t. In this case the k-cover has cost at least
2k−1 + 2k−2 · · · 2t+1 + 2 · 2t = 2k. If some point in W t is covered by a ball B
different from the Bl’s and not centered at any of the points in W t, then the
radius of B is at least 2 ·2t. (Note that by assumpion B can’t be centered at xt or
xt.) Thus in this case too the k-cover has cost at least 2k−1+2k−2 · · · 2t+1+2·2t =
2k.

The only remaining case is when each point in W t is covered by some ball
centered at a point in W t. Since there can be at most t + 1 balls in the k-cover



centered within W t, the sum of the radii of these balls is at least

1

2

(

(nt − 1)
2t

(t + 1)2
− (t + 1)

2t

(t + 1)2

)

> 2 · 2t.

The k-cover has cost at least 2k−1 + 2k−2 · · · 2t+1 + 2 · 2t = 2k. ⊓⊔

We now argue that the transformation has the property that there is a k-
cover in the metric of cost at most 2k−1 if and only if the original 3SAT instance
Φ is satisfiable.

Suppose that Φ is satisfiable. Then we can choose for each 0 ≤ l ≤ k − 1
exactly one of xl or xl such that within each clause of Φ there is a chosen literal.
Consider the set of k balls B0, . . . , Bk−1 where Bl has radius 2l and is centered
at xl or xl, whichever was chosen. These balls form a k-cover of V with cost
2k − 1.

For the reverse direction, consider a k-cover of the target metric space of cost
at most 2k − 1. It follows from Claim 4 that the k-cover must consist of balls
B0, . . . , Bk−1, where Bl is centered at either xl or xl and has radius precisely 2l.
Let us choose the literals corresponding to the centers of these balls. For each l,
we clearly choose exactly one of xl of xl. Consider any clause vertex c. It must
be covered by at least one of the balls Bl. Given the radii of the balls, the only
balls that can cover c are the ones centered at literals contained in the clause. It
follows that our set of chosen literals contains, for each clause in Φ, at least one
of the literals contained in the clause. Thus Φ is satisfiable.

Theorem 3. For a large enough constant ρ ≥ 0, the (decision version of the )
k-cover problem for metrics of doubling dimension at most ρ is NP-hard.
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