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Abstract. Our main concern is the following variant of the image seg-
mentation problem: given a weighted grid graph and a set of verti-
cal and/or horizontal base lines crossing through the grid, compute a
maximum-weight object which can be decomposed into based rectilinear
convex objects with respect to the base lines. Our polynomial-time algo-
rithm reduces the problem to solving a polynomial number of instances
of the maximum flow problem.

1 Introduction

An area of work that has recently attracted extensive attention in the pattern
recognition and computer vision communities is image segmentation. It is the
process of partitioning a digital image into multiple objects for better represen-
tation and analysis of an image. From another view point, image segmentation
is assigning labels to the pixels of an image such that the pixels with the same
label define a particular object which may have certain visual characteristics.
In practice image segmentation is used to detect objects and boundaries in the
image. An example, in medical imaging, image segmentation is used to help lo-
cate tumors and other pathologies, measure tissue volumes, computer-guided
surgery, diagnosis, treatment planning, study of anatomical structure etc. There
are many other applications of image segmentation including fingerprint recog-
nition, traffic control systems and agriculture imaging.

Image Segmentation as an Optimization Problem. Finding a “good” seg-
mentation is often treated as an optimization problem, see for example
[2,12,13,4,5,9,7,1]. Using the framework of Asano et al. [2] we are given a weighted
grid graph where each grid cell corresponds to a pixel in the original image and
weights on the grid cells are related to the likelihood that the particular pixel
is in the object we wish to identify (positive weights are assigned to grid cells
whose corresponding pixel is likely in the object and negative weights are as-
signed to grid cells whose corresponding pixel is likely in the background). Then
we attempt to find some subset of the grid that optimizes an objective function
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subject to some constraints. Let G be an
√
n×√

n four-neighborhood grid graph.
For 1 ≤ i ≤ √

n and 1 ≤ j ≤ √
n the grid cell p at the (i, j) position in the grid

has a real value w(p) called the weight of p. We call i the x-coordinate of p
and j the y-coordinate of p and let px (resp. py) denote the x-coordinate (resp.
y-coordinate) of p. A region (or object) R will be defined as any subset of grid
cells, and we define the weight of R to be w(R) =

∑
p∈R w(p). We are interested

in computing the region R with maximum weight subject to some constraints.
Research has shown that knowledge of the geometric shape of the object

that you are looking for can greatly increase an algorithm’s effectiveness in
practice, see for example [10,19,3,18,11]. Polynomial-time algorithms have been
given which identify an optimal solution for the following classes of objects:
x-monotone regions, based monotone regions, rectilinear convex regions, and
star-shaped regions [4,9,8].

Objects Decomposable into Elementary Shapes. Chun et al. [7] consider the
maximum-weight region problem with a twist on the constraints of some previ-
ous works. They are interested in finding a maximum-weight region that may
not have simple geometric structure, but can be decomposed into objects with
simple geometric structure. A region R can be decomposed into m objects of a
particular structure if and only if there exists a coloring of the grid cells of R
using m colors such that each of the objects induced by the grid cells of each of
the color classes have the desired structure.

This type of problem is very interesting from both a practical perspective as
well as a theoretical perspective. It is interesting in practice because an algorithm
for such a problem can identify more complicated objects while still allowing
control of the topology of the output object. It is interesting from a theoreti-
cal perspective because the decomposition constraints of the problem poses an
interesting computational challenge to overcome. If we instead consider finding
objects which are the union of m objects with simple geometric structure, the
problem often becomes much harder (for example, finding the maximum-weight
object that is the union of two star-shaped objects is NP-hard [7]). The decom-
position variant of the problems may admit polynomial-time algorithms, but it
is not trivial to design such an algorithm for many classes of objects even when
m = 2.

Chun et al.[7] give an efficient algorithm for computing the maximum-weight
region that can be decomposed into two digital star-shaped regions with respect
to two given “center” grid cells. Gibson et al. [14] give a maximum-flow based
algorithm for the same 2-star problem and recently Gibson et al. [15] extend
the result of [14] to identify the maximum-weight object decomposable into c
star-shaped objects for any constant c in polynomial time.

Chun et al. [7] consider the problem of computing the maximum-weight object
decomposable into based monotone object with respect to a set of k given base
lines. A base line of the grid graph G is a vertical (x = i) or horizontal (y =
j) path of grid cells across the grid for 1 ≤ i ≤ √

n and 1 ≤ j ≤ √
n. For

a given horizontal base line l : y = i, a based monotone object is a union of
segments of columns intersecting the base line. See Figure 1 (a) and (b) for an
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illustration. They do not require a based monotone object for a particular base
line to be a connected region. This allows them to use the base lines to partition
the grid into O(k2) subproblems which they solve independently using dynamic
programming. Recently Chun et. al [6] gave an algorithm for finding the optimal
baseline locations using quadtree decomposition.

Our Contribution. Given a weighted grid graph, we are interested in identifying
the maximum-weight object decomposable into Based Rectilinear Convex (BRC)
objects with respect to c given base lines for a constant c. For a given horizontal
base line l : y = i, a BRC object with respect to l satisfies the properties of being
a based monotone object with the additional constraint that the intersection of
the object with any horizontal line is always undivided (a symmetric notion is
defined for vertical base lines). See Figure 1 (c) and (d) for an illustration. In
contrast to a based monotone object, a BRC object is by definition a connected
object. Therefore, as opposed to the based monotone case, the base lines do not
decompose the grid into subproblems which can be solved independently.

(a) (b) (c) (d)

Fig. 1. Part (a) is a based monotone object with respect to the base line. Part (b) is
not a based monotone object. Part (c) is a BRC object with respect to the base line.
Part (d) is not a BRC object (the intersection of the object with the dotted line is not
connected).

Fig. 2. A 3-BRC object with respect to 3 given base lines

We call an object which can be decomposed into c different BRC objects a
c-BRC object. See Figure 2 for an illustration. When c = 1 the problem is easily
solvable, but until now there has been no polynomial-time algorithm given even
when c = 2. Our main contribution is the following theorem.
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Theorem 1. There exists a polynomial-time algorithm which computes a
maximum-weight object decomposable into based rectilinear objects with respect
to a set of c given base lines in a weighted grid graph for any constant c ≥ 1.

We prove Theorem 1 by giving a polynomial-time algorithm for computing a
maximum-weight 2-BRC object for a restricted special case of the 2-BRC prob-
lem. We solve this restricted special case by observing some key geometric prop-
erties of a BRC object and show that these observations allow us to reduce the
problem to computing the maximum-weight closed set in a polynomial number of
appropriately defined directed graphs. It is well known that a maximum-weight
closed set can be computed in polynomial time [17,16] via a reduction to the
maximum flow problem. We then show how to carefully reduce the c-BRC prob-
lem to several instances of the restricted 2-BRC problem. This reduction will
be done in a way so that the solution to the 2-BRC instances can be merged to
obtain an optimal solution for the c-BRC instance.

To guarantee that our algorithm returns an optimal solution, our algorithm
iteratively guesses the structure of an optimal solution. For each guess, we com-
pute the maximum-weight c-BRC object which corresponds to this guess. We
show that by making a polynomial number of guesses, we can guarantee that we
guess the correct structure for an optimal solution; however, the polynomial is
too large to be of practical interest. That being said, our result shows how the
structure of a solution can be used to reduce the problem to the maximum flow
problem. If this structure is given as input by a user or is found via a heuristic,
then our work shows that the problem can be reduced to solving a small number
of maximum flow instances which would be of practical interest. Also, our tech-
nique can easily be modified to compute the complement of a maximum weight
c-BRC object (this may be more efficient for some inputs).

Organization of the Paper. In Section 2, we give an algorithm which computes
a maximum-weight 2-BRC object for a restricted version of the problem. In
Section 3, we extend the result to find a maximum-weight c-BRC object for any
constant c ≥ 2.

2 Algorithm for a Restricted 2-BRC Problem

In this section, we give a polynomial-time algorithm for a restricted version of
2-BRC object using an

√
n×√

n four-neighborhood grid graph G and two base
lines at the boundary of the grid. We show that this problem can be solved by
computing the maximum-weight closed set for a linear number of appropriately
constructed directed graphs. Given a weighted, directed graph D = (V,E), a
closed set is a subset of the vertices C ⊆ V such that if u ∈ C and (u, v) ∈ E
then v ∈ C. Intuitively, if C is a closed set then there is no edge from a vertex
in C to a vertex in V \C. The weight of a closed set C is simply the sum of the
weights of the vertices in C.
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Preliminaries. Initially, we assume that the base lines are parallel and without
loss of generality the base lines are at y = 1 and y =

√
n. At the end of this

section, we show how to handle the case where base lines are perpendicular. We
view each grid cell as having a x-coordinate and a y-coordinate (the grid cell in
the lower left corner has x-coordinate = y-coordinate = 1 and the grid cell in
the upper right corner has x-coordinate = y-coordinate =

√
n). If O is a BRC

object with respect to the top of the grid, we say that O is a type-N BRC object
(its base line is the “northern” base line). Similarly, if O is a BRC object with
respect to the bottom of the grid, we say that O is a type-S BRC object.

Let O be a BRC object and without loss of generality assume it is a type-S
object. A peak of O is a grid cell p ∈ O for which no other grid cells p′ ∈ O have
y-coordinate greater than the y-coordinate of p. Similarly, for type-N object,
a peak is a pixel with minimum y-coordinate over all pixels in the object. We
define a peak line of O to be a vertical line through the grid which contains a
peak. See Figure 3 (a) for an illustration.

l1 l2

(a) (b)

Fig. 3. Peak lines: (a) A peak line where the shaded region is a type-S BRC object. (b)
The patterned and shaded portion of the grid are the peak lines l1 and l2 respectively.

The following observation is the key idea that allows us to reduce the restricted
2-BRC problem to a maximum-weight closed set problem. The proof has been
omitted due to lack of space.

Observation 2. Let O be a subset of grid cells in the grid, and let l be the
vertical line through the grid at x = α. Then O is a type-S (resp. type-N) BRC
object with respect to peak line l if and only if the following properties hold:

1. for each o ∈ O such that ox ≤ α, each grid cell p such that px = ox and
py ≤ oy (resp. py ≥ oy) is in O and each grid cell q such that qy = oy and
ox ≤ qx ≤ α we have q ∈ O.

2. for each o′ ∈ O such that o′x > α, each grid cell p′ such that p′x = o′x and
p′y ≤ o′y (resp. p′y ≥ o′y) is in O and each grid cell q′ such that q′y = o′y and
o′x ≥ q′x ≥ α we have q′ ∈ O.

The consequence of Observation 2 is that if we know a peak line for each BRC
object, then we can compute them via a single maximum-weight closed set com-
putation in an appropriately defined directed graph (we can guess all possible
pairs of peak lines using

√
n×√

n = n guesses).



6 M. Ahmed et al.

Construction of the Directed Graph. We now describe the construction of the
directed graph to find the 2-BRC object with respect to two peak lines l1 and
l2. See Figure 3 (b) which shows the peak line l1 for type-S object and l2 for
type-N object. For the remainder section, we assume when we mention a 2-BRC
object, we refer a 2-BRC object with respect to l1 and l2.

We call our graphD{l1,l2}. There are two “sections” of vertices in D{l1,l2}, and
each grid cell in G has exactly one vertex in each of these sections. The vertices in
a closed set from the first section will determine what grid cells are in the type-S
BRC object in G, and the vertices in a closed set from the second section will
determine what grid cells are in the type-N BRC object in G. Let V1 denote the
vertices in the section for the type-S BRC object, and let us define V2 similarly
for type-N BRC object. For a grid cell g, let v1g denote its corresponding vertex
in V1 and let v2g denote its corresponding vertex in V2. For ease of description,
we view V1 and V2 being embedded in the same layout as the grid cells in G.

We will now define three edge sets E1, E2, and E3. E1 will consist of edges
with both endpoints in V1, E2 will consist of edges with both endpoints in V2,
and E3 will consist of edges with their tail in V1 and their head in V2. Let us now
define the edge set E1. See Figure 4(a) for an illustration. In V1, every vertex
has an edge to a vertex directly ‘below’ it (if it exists). And all the “horizontally
adjacent” vertices have an edge between the corresponding vertices directed
towards the peak line l1. These are the all edges in the edge set E1.

(a) (b)

Fig. 4. (a) The arrangement of edge set of E1 where patterned line is the peak line l1
and this vertex set is in V1. (b) The arrangement of edge set of E2 where lightly shaded
line is the peak line l2 and this vertex set is in V2.

We now describe the edge set E2. See Figure 4(b) for an illustration. Similarly,
in V2, every vertex has an edge to a vertex directly below it (if it exists). But
all the horizontally adjacent vertices have an edge between the corresponding
vertices directed away from the peak line. These are all the edges in the set E2.

The edge set E3 consists of the directed edges (v1g , v
2
g) for each grid cell g.

This completes the construction of the edge sets E1, E2, and E3.
Our directed graph D{l1,l2} has vertex set V := V1 ∪ V2 and edge set E :=

E1 ∪ E2 ∪ E3. We assign weights on the vertices as follows. The weight of each
vertex v1g ∈ V1 is set to be w(g). The weight of each vertex v2g ∈ V2 is set to be
−w(g). This completes the construction of the graph.
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Relationship between a Closed Set and a 2-BRC Object. We now describe a
function T which will take as input a subset of vertices in D{l1,l2} and outputs
a subset of grid cells in G. Fix any subset V ′ ⊆ V of D{l1,l2}. For any vertex
v1g ∈ V ′∩V1, the corresponding grid cell g is in T (V ′). For any vertex v2g ∈ V2\V ′,
the corresponding grid cell g is in T (V ′). In other words, a grid cell g is in T (V ′)
if v1g is in V ′ or if v2g is not in V ′. If v1g is not in V ′ and v2g is in V ′, then g is not
in T (V ′). We will prove in Lemma 1 that if V ′ is a closed set of D{l1,l2} then
T (V ′) is a 2-BRC object whose weight is the same as the weight of V ′ (minus a
constant).

We now define another function T ′ which takes as input a 2-BRC object and
returns a set of vertices in D{l1,l2}. T

′ is the inverse of T . Fix R to be any subset
of grid cells that can be decomposed into a type-S BRC object and a type-N
BRC object. Fix such a decomposition, and color the grid cells in the type-S
BRC object red and the cells in the type-N BRC object blue. Let us call the
red grid cells R1 and the blue grid cells R2. For each red cell r ∈ R1 we have
that v1r ∈ T ′(R) and v2r ∈ T ′(R). For each blue cell b ∈ R2 we have v1b 	∈ T ′(R)
and v2b 	∈ T ′(R). For all uncolored cells g we have v1g 	∈ T ′(R) and v2g ∈ T ′(R).
This concludes the definition of the function T ′(R), and in Lemma 2 we will
prove that T ′(R) is a closed set in D{l1,l2} and has weight equal to R (minus a
constant).

Note that we have T ′(T (C)) = C for every closed set C and T (T ′(R)) = R
for every 2-BRC object. Thus proving Lemma 1 and Lemma 2 will complete the
proof that the maximum-weight region in G that is decomposable into two BRC
objects with respect to the peak lines can be computed by finding a maximum-
weight closed set in D{l1,l2}. The proof of Lemma 2 is similar to the proof of
Lemma 1 and is omitted due to lack of space.

Lemma 1. Fix any closed set C of D{l1,l2}. Then T (C) is a 2-BRC object and
has weight equal to C (minus a constant).

Proof. We first show that T (C) is a 2-BRC object. Let C1 be C∩V1, and abusing
notation let T (C1) ⊆ T (C) be the grid cells g such that v1g ∈ C1. We will argue
that T (C1) is a type-S BRC object by showing T (C1) satisfies properties 1 and
2 of Observation 2. We can show this is true by considering the construction of
D{l1,l2}. There is an edge in D{l1,l2} from v1g to the vertex corresponding to the
grid cell towards l1 on the same horizontal line and the vertex directly below it.
Since C is a closed set, it follows that both of these vertices must also be in the
closed set. It follows from a simple inductive argument that for any v′g ∈ C1,
all of the vertices v1c which are between v′g and the peak line l1 on the same
horizontal line and all of the vertices v1c′ which are below v′g on the same vertical
line will be in C. See Figure 4 (a). By the definition of T , it must be that all
such grid cells c and c′ are in T (C). We thus have by Observation 2 that T (C1)
is a type-S BRC object.

Now let C2 be C ∩ V2, and abusing notation let T (C2) ⊆ T (C) be the grid
cells g such that v2g /∈ C2. We will now show that T (C2) is a type-N BRC object.
Let α2 denote the x-coordinate of the points on l2. We remind the reader that
by the definition of T , vertices in V2 \ C2 correspond with the grid cells that
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are in T (C2). Again, to show that T (C2) is type-N BRC object, we will show
that properties 1 and 2 of Observation 2 hold for T (C2). Suppose for the sake
of contradiction that g ∈ T (C2) (without loss of generality assume gx ≤ α2) but
there is a grid cell g′ such that gx = g′x and gy < g′y and g′ is not in T (C2). Since
g′ is not in T (C2), we have v2g′ ∈ C2. According to the construction of D{l1,l2},
there must be an edge from v2g′ to the vertex below it. Since C is a closed set,
we must have that these vertices are in C2. An inductive argument follows that
all of the vertices corresponding to grid cells below g′ on the same vertical line
must be in C2. This of course implies that g 	∈ T (C2), a contradiction. We have
the similar argument for a grid cell g′′ such that g′′y = gy and gx ≤ g′′x ≤ α2. We
thus prove the properties 1 and 2 of Observation 2 and hence T (C2) is a type-N
BRC object.

We will now argue that T (C) is a 2-BRC object. We will prove this by showing
that T (C1) and T (C2) are disjoint. This is easy to see from the definition of the
edge set E3. Let g be some grid cell in T (C1). By definition, this implies that
v1g ∈ C1. The edge (v1g , v

2
g) is in E3, and since C1 is a closed set it must be

that v2g ∈ C2. This implies that for any g ∈ T (C1), we have g /∈ T (C2). This
completes the proof that T (C1) and T (C2) are disjoint and therefore T (C) can
be decomposed into two BRC objects.

This concludes the proof that T (C) is a 2-BRC object, and we will now prove
that C and T (C) have the same weight (minus a constant). First let w1 be the
sum of the weights of the vertices in C1, and let w2 be the sum of the weights
of the vertices in C2. The weight of the closed set is exactly w1 + w2. The
corresponding grid cell for each vertex in C1 is also in T (C), and moreover has
the exact same weight. So the sum of the weights of the grid cells in T (C1) is
w1. Recall that the vertices in C2 correspond to the exact set of grid cells that
are not in T (C2), and thus the weight of the grid cells in T (C2) is w(V2) + w2

(we remind the reader that the weight of a vertex in C2 is the negative of the
weight of its corresponding grid cell). Therefore, the weight of the grid cells in
T (C) is w1+w2+w(V2). Since w1+w2 is the weight of C, we conclude that the
weight of C is equal to the weight of the grid cells in T (C) minus w(V2). This
concludes the proof of the lemma. 
�

Lemma 2. Fix any subset R of grid cells in G that is a 2-BRC object. Then
T ′(R) is a closed set in D{l1,l2} and has weight equal to R (minus a constant).

So now we have that if C is a maximum-weight closed set of D{l1,l2}, then T (C)
is a maximum-weight 2-BRC object. There are n total pairs of peak lines, so we
can check all possible pairs. One of those pairs will correspond with the peak
lines for the maximum-weight 2-BRC object, and therefore the maximum-weight
2-BRC object obtained for these peak lines will be the maximum-weight 2-BRC
object for the entire problem.

Handling Perpendicular Base Lines. Now we will assume that the base lines can
be perpendicular. Since we now have a vertical base line, the “sides” of the grid
can be base lines. In this setting, we say an object O is a type-W (resp. type-E)
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BRC object if O is a BRC object with respect to the “western” (resp. “eastern”)
base line.

Without loss of generality, assume we have the southern base line and the
western base line and we wish to find the maximum-weight 2-BRC object de-
composable into a type-S BRC object and a type-W BRC object. We can com-
pute this object using a similar approach as to what we used in Section 2 by
slightly changing the construction of the directed graph. Note that a peak line
for a type-W object is a horizontal line (perpendicular to the base line). Suppose
we are given a vertical peak line l1 and a horizontal peak line l2. We will con-
struct the directed graph D{l1,l2} slightly differently. The vertex set will again
be V1 ∪ V2 where V1 will be used to identify the type-S object and V2 will be
used to identify the type-W object. The edge sets E1 and E3 will be exactly as
defined above, but the edge set E2 will change. The edge set E2 will consist of
horizontal edges directed towards the base line and vertical edges directed away
from the peak line. The weights are assigned the same way as before. We can
argue similarly as we did in Lemma 1 and Lemma 2 that for a maximum-weight
closed set C of D{l1,l2}, we have T (C) is a maximum-weight 2-BRC object with
respect to l1 and l2, and by considering all

√
n×√

n possible pairs of base lines
we can compute in polynomial time the maximum-weight 2-BRC object with
respect to the southern and western base lines. We conclude that for any two
base lines, we can compute in polynomial-time the maximum-weight object for
the restricted 2-BRC problem.

3 Extension to the c-BRC Problem

We now give a polynomial-time algorithm for the original problem in which we
are given a weighted grid graph G and c base lines, and we wish to compute a
maximum-weight c-BRC object. Our algorithm iteratively makes guesses about
the structure of an optimal solution OPT . Using this structure, we reduce the
problem to several instances of the restricted 2-BRC problem. The reduction is
handled in two parts. First we decompose the grid into O(c2) rectangular-subgrid
instances of a restricted version of the 4-BRC problem. This restricted version
will be similar to the restricted 2-BRC problem considered in Section 2 (base
lines are at the boundary of the grid). The key property of this instance is that
for each instance I of the restricted 4-BRC problem, we have that I ∩OPT can
be decomposed into at most 4 BRC objects with respect to the base lines at the
boundary of I. We then use a digital Voronoi diagram to break the restricted
4-BRC problem into at most 5 instances of the restricted 2-BRC problem, which
we solve using the algorithm given in Section 2. The reduction is carefully done
so that the merging of the solutions will be a feasible c-BRC object. When we
correctly guess the structure of OPT , we show that the merged solutions will be
an optimal c-BRC object. This approach is similar in flavor to the approach of
Gibson et al. [15] for computing the maximum-weight object decomposable into
c star-shaped objects for any fixed c. An overview of our reduction is now given.
Further details and the algorithm have been omitted due to lack of space.
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Reduction to the Restricted 4-BRC Problem. We will now reduce the c-BRC
problem into O(c2) instances of the restricted 4-BRC problem in which there
are at most four base lines, each of which are at the boundary of the grid.
Let B1, B2, . . . , Bc be the c disjoint BRC objects that OPT decomposes into.
Consider some Bi, and without loss of generality assume that the base line of Bi

is horizontal. Let bi denote the intersection of Bi with its base line. Let �i and ri
denote the leftmost and rightmost grid cell of bi respectively, and consider the
vertical paths through �i and ri. Note that by the definition of a BRC object,
any g ∈ Bi cannot be “outside” of these vertical paths. Similarly a Bi with a
vertical base line has a vertical bi and must be between two horizontal paths.

Now consider any grid cell g ∈ G, and consider shooting four axis-parallel
rays from g in all four directions until it hits the boundary of G or hits a bi. We
can hit at most four bis, and g can only be in a Bi such that a ray shot from g
hit bi. To see this, first note that g can only be in a Bi such that the vertical or
horizontal line through g hits bi (otherwise g would be outside of the “vertical
paths” described above). Now suppose for the sake of contradiction that an axis-
parallel ray from g ∈ Bi to bi pierces through a bi′ . By the definition of BRC
object, we have that every grid cell along this ray is in Bi including the grid cell
g′ ∈ bi′ pierced by the ray. That implies g′ ∈ Bi and g′ ∈ Bi′ , a contradiction.

The subset of grid cells whose axis-parallel rays hit the same set of bi (from the
same “ray direction”) induce the desired rectangular instances of the restricted
4-BRC problem. Let I be one such instance, and consider I ∩OPT . As we just
argued, there will be grid cells from c′ different Bi in I for some 1 ≤ c′ ≤ 4
(at most one from each “direction”). Clearly, Bi ∩ I for each of these Bi will be
a BRC object with respect to a unique “side” of I. Thus we can view I as an
instance of the restricted 4-BRC problem where we have c′ base lines, each on
a different “side” of I. We note that the optimal 4-BRC object for this problem
may not be OPT ∩ I. We can fix this issue by modifying the weights of the grid
cells along the base line.

Reduction to the Restricted 2-BRC Problem. We now suppose we are given an
instance I of the restricted 4-BRC problem and we give an overview of how to
reduce it to at most 5 instances of the restricted 2-BRC problem. Due to lack of
space, the details have been omitted.

First note that if there are at most 2 base lines in I, then the problem is
already an instance of the 2-BRC problem. It remains to show how to handle
the cases in which we have three or four base lines in a single instance. For the
rest of the paper, we will assume that our instance will have all four base lines
(it will be clear how to handle the case when we have three base lines).

We will now give a high level overview of the details of the decomposition of
the restricted 4-BRC problem into several instances of the 2-BRC problem. Let
OPT (I) denote OPT ∩ I. OPT (I) can be decomposed into type-N, a type-E, a
type-S, and a type-W BRC objects, so fix such a decomposition and let N,E, S,
and W respectively denote each of these objects. We will consider the digital
Voronoi diagram for these four sets. That is, we will partition the grid cells of G
into four Voronoi regions V (N), V (E), V (S), and V (W ) such that any grid cell
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in a Voronoi region is “closer” to that particular BRC object than it is to any of
the other three. See Figure 5 for an illustration. We will show that we can use the
vertices of the Voronoi diagram to help us partition the problem into instances
of the 2-BRC problem. Intuitively, a vertex of the Voronoi diagram occurs where
three or four different Voronoi regions “touch each other”. Consider a vertex of
the Voronoi diagram, and suppose this is a vertex where exactly three of the
Voronoi regions “come together”. For this vertex, we will find three paths in
the grid. Each path will begin at this vertex and will end at one of the base
lines (one path per base line). The paths will be chosen in a way such that
they will consist of grid cells which all belong to the same Voronoi region (the
Voronoi region associated with the base line at which the path ends). We find
these paths for each of the vertices of the Voronoi diagram, and we will show
that if we remove the grid cells in these paths then we are left with a constant
number of connected components, each of which contains grid cells from at most
2 Voronoi regions. This allows us to use the algorithm of Section 2 to compute the
maximum-weight 2-BRC object from these components and merge the solutions
together to obtain OPT (I).

(a) (b) (c)

Fig. 5. Decomposing into 2-BRC instances. (a) Suppose this is OPT (I). (b) The
Voronoi diagram associated with OPT (I). (c) The vertices and paths used to de-
compose into 2-BRC instances.
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