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Abstract. We consider the problem of finding a lowest cost dominating
set in a given disk graph containing n disks. The problem has been
extensively studied on subclasses of disk graphs, yet the best known
approximation for disk graphs has remained O(log n) – a bound that is
asymptotically no better than the general case. We improve the status
quo in two ways: for the unweighted case, we show how to obtain a PTAS
using the framework recently proposed (independently) by Mustafa and
Ray [16] and by Chan and Har-Peled [4]; for the weighted case where
each input disk has an associated rational weight with the objective of
finding a minimum cost dominating set, we give a randomized algorithm
that obtains a dominating set whose weight is within a factor 2O(log∗ n)

of a minimum cost solution, with high probability – the technique follows
the framework proposed recently by Varadarajan [19].

1 Introduction

For a set D of n disks in the Euclidean plane, define an intersection graph,
G = (V, E), thus: V = D; {u, v} ∈ E ⇔ disk (u) ∩ disk (v) 6= ∅. G is called a
disk graph; it is a unit disk graph when the disk radii are identical.

Given a graph the minimum dominating set (MDS) problem is to find a
smallest subset D′ ⊆ V such that every vertex is either in D′ or is adjacent to a
vertex in D′. On general graphs, the problem is (1− ε) lnn hard to approximate
for any ε > 0 under standard complexity theoretic assumptions [10,5], while a
greedy algorithm yields an O(log n) approximation [20].

Nevertheless, better approximations are possible for restricted domains. For
example, the problem admits a polynomial-time approximation scheme (PTAS)
for unit disk graphs and growth-bounded graphs [13,17]. The problem is NP-hard
on these domains [6]. However, for the disk graph case, o(log n) approximations
have remained elusive – perhaps, in part, because known techniques for unit
disk graphs and solutions to other problems on disk graphs have either relied
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on packing properties [13,17,8,3], or when packing property does not hold, as
in the minimum weighted dominating set on unit disk graphs, the fact that
disk radii are uniform [1,18]. Erlebach and van Leeuwen recently studied the
dominating set problem on fat objects, e.g., disk graphs, [9]. They note that
existing techniques for disk graphs do not seem sufficient to solve MDS [9]; they
also give an O(1)-approximation for fat objects of bounded ply.

In their recent break-through papers, Chan and Har-Peled [4], and Mustafa
and Ray [16] independently showed how a simple local search algorithm on cer-
tain geometric graphs yields a PTAS for some problems; Chan and Har-Peled
[4] show local search yields a PTAS for maximum independent set problem on
admissible objects, while Mustafa and Ray [16] show local search yields a PTAS
for the minimum hitting set problem given a collection of points and half-spaces
in R

3, and also for points and admissible regions in R
2. They both use the planar

separator theorem to relate the cost of the local search solution with the optimum
solution. In the framework, at the crux lies the analysis of a certain graph whose
vertices are objects found by local search and ones that belong to an optimum
solution, and whose edges (which are only between the two kinds of vertices)
satisfy a property relating the two solutions. They show that there exists such a
graph which is also planar. Mustafa and Ray [16] refer to the existence of such
a planar graph as the locality condition.

Results: Our first result is a PTAS for the minimum dominating set problem
for disk graphs via a local search algorithm, as in [4,16]. Our analysis also uses
the framework introduced by these two papers. Our main new contribution is
to show the existence of a planar graph satisfying the locality condition. This
graph turns out to be the dual of a weighted Voronoi diagram in the plane.

The minimum dominating set problem for disk graphs can be reduced to
the problem of hitting half-spaces in R

4 with the smallest number of a given
set of points. That is, given the set D of disks that form the input to the MDS
problem, we can easily compute a map π from D to a set of points in R

4, and
a map h from D to a set of half-spaces in R

4, with the following property: Two
disks d1 and d2 from D intersect if and only if π(d1) lies in h(d2). Thus we can
efficiently reduce the MDS problem for disks to a hitting set problem for points
and half-spaces in R

4. While there is a PTAS for the hitting set problem in R
3,

as shown by [16], there is none known for R
4. It is not hard to see that a local

search such as the one in [16] does not yield a PTAS in R
4.

Rather than reduce to a hitting set problem, we are able to establish the
locality condition by staying in the plane itself. In fact, the graph for the locality
condition is the dual of the weighted Voronoi diagram of the centers of the disks
in the local search solution and the optimal solution, where the weights are the
radii of the disk. This can be seen as generalizing the situation considered by
[16] for the hitting set problem with points and disks in the plane. In that case,
the graph for the locality condition is the Delaunay triangulation, which is the
dual of the unweighted Voronoi diagram.



For the case when the disks are weighted, we give the first o(log n) approxi-
mation algorithm; we give a 2O(log∗ n) approximation algorithm3. This result is
based on the framework recently introduced by Varadarajan for the weighted
geometric set cover problem [19]. Our contribution here is to observe that the
framework is applicable to our dominating set problem as well; the weighted
Voronoi diagram is the key to this result also.

We assume that the inputs for both problems satisfy non-degeneracy assump-
tions – no three disk centers on a line and no four disks tangent to a circle. This
is without loss of generality, as these conditions can be enforced by simple per-
turbations. In Section 2, we present our PTAS for the unweighted dominating
set problem, and in Section 3 our algorithm for weighted dominating set.

2 The Unweighted Case: PTAS via Local Search

In this section, we give our PTAS for minimum dominating set for disk graphs.
Here, we are given a disk graph with a set D of n disks in the Euclidean plane,
and we are interested in computing a minimum cardinality dominating set of
the disk graph. The algorithm is given in Section 2.1 and the analysis of the
approximation ratio is given in Section 2.2.

2.1 The Algorithm

Local Search. Call a subset of disks, B ⊆ D, b-locally optimal if one cannot
obtain a smaller dominating set by removing a subset X ⊆ B of size at most b
from B and replacing that with a subset of size at most |X |−1 from D\B. Our
algorithm will compute a b-locally optimal set of disks for b = c

ǫ2 where c > 0
is a large enough constant. Our algorithm begins with an arbitrary feasible set
of disks and proceeds by making small local exchanges of size b = O( 1

ǫ2 ), for a
given ǫ > 0. We stop when no further local improvements are possible.

Suppose that the solution returned is B. Finally, for reasons apparent in the
analysis, we check to see if for any disk u ∈ B there is a disk v ∈ D such that u
is completely contained in v ∈ D \ B. If such a disk exists, then simply replace
u with the largest such disk v. We return this as our final solution and call it
B. Our replacement step ensures that there is no disk in B that is properly
contained in some other disk in D.

Running Time. Moved to Appendix A.1.

2.2 Approximation Ratio

We will show that our algorithm is a PTAS, thus proving the following theorem:

Theorem 1. For any ǫ > 0, there exists a polynomial time algorithm for the
minimum dominating set problem on disk graphs that returns a solution whose
cost is at most (1 + ǫ)OPT where OPT is the cost of an optimal solution.

3 log∗

n is the fewest number of iterated “logarithms” applied to n to yield a constant.



Let R be the disks in an optimal solution; we may assume no disk in R is
properly contained in any other disk in D. Thus, no disk in R ∪ B is properly
contained in any other disk of R ∪ B. Note that by the definition of PTAS, we
need to show that |B| ≤ (1 + ǫ) · |R|. We will refer to R as the set of red disks
and B as the set of blue disks. Without loss of generality, we will assume that
R ∩ B = ∅, i.e. there is no disk that is both red and blue. For a disk u ∈ D, we
say a disk v ∈ R ∪ B is a dominator of u if u and v intersect. Similarly, we also
say that v dominates u.

We must show the existence of an appropriate planar graph which relates
the disks in R with the disks in B. Here, we state the locality condition as per
Mustafa and Ray [16]:

Lemma 1 (Locality Condition). There exists a planar graph with vertex set
R ∪ B, such that for every d ∈ D, there is a disk u from amongst the red
dominators of d and a disk v amongst the blue dominators of d such that {u, v}
is an edge in the graph.

Section 2.3 is devoted to a proof of Lemma 1. In Section B.1 in the appendix,
we describe the argument (from [16]) that uses the lemma to show that |B| <
(1 + ǫ)|R|.

2.3 Establishing the Locality Condition

This section is devoted to the proof of Lemma 1, that is, the construction of an
appropriate planar graph which satisfies the locality condition.

Weighted Voronoi Diagram. We will be using a generalization of Voronoi dia-
grams called a weighted Voronoi Diagram (WVD). Instead of defining cells with
respect to a set of points, we will be defining cells with respect to red and blue
disks. In order to do this generalization for disks, we must define the distance
between a point in the plane and a disk.

Let u be a disk and let x be a point in the plane. We define wvd(x, u) =
d(x, cu) − ru where cu is the center of u, ru is the radius of u, and d(x, cu) is
the Euclidean distance between x and cu. Intuitively, for a point x, wvd(x, u)
is the Euclidean distance from x to the boundary of u; the distance to a disk is
negative for points that are strictly inside the disk. Alternatively, if x 6∈ u, then
wvd(x, u) is the amount we would need to increase the radius of u so that x lies
on the boundary of u; if x ∈ u, then wvd(x, u) is the negative of the amount we
would need to decrease the radius of u so that x lies on the boundary of u. See
Figure 1 for an illustration.

For a disk u in any collection of disks, let cell(u) be the set of points x in
the plane such that wvd(x, u) ≤ wvd(x, v), u 6= v. The cells of all the disks in
the collection induce a decomposition of the plane, and this is the WVD. This
is just the standard weighted Voronoi diagram of the centers of the disks, where
the weight of the center of a disk is simply the radius of the disk [2].
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Fig. 1. An illustration for the distances used in our WVD. (a) wvd(x, u) when
x is not in u. (b) wvd(x, u) when x is in u.

Consider the WVD of the disks in R ∪ B. First, we will show that for every
u ∈ R ∪ B, u has a non-empty cell in the WVD. That is, there is some point in
the plane that is closer to u than it is to any other red or blue disk.

Lemma 2. In the weighted Voronoi diagram of the union of red and blue disks,
the cell of every disk u is nonempty. Moreover, cu (the center of u) belongs only
to cell(u).

Proof. We will show that cu is only in cell(u). Suppose for the sake of con-
tradiction that cu ∈ cell(v) such that u 6= v. This means that wvd(cu, v) ≤
wvd(cu, u) = d(cu, cu) − ru = −ru. So, −ru ≥ wvd(cu, v) = d(cu, cv) − rv ⇒
rv ≥ d(cu, cv)+ ru. This implies that u is contained in v, and since the two disks
are not the same, the containment is proper. But this is a contradiction, since
no disk in R ∪ B contains another such disk. ⊓⊔

The Graph. Any cell in the WVD of R ∪ B is star-shaped with respect to the
center of the corresponding disk. That is, for every point y ∈ cell(u), the segment
cuy is contained within cell(u).

The graph for the locality condition is simply the dual of the WVD of R∪B.
That is, for each cell in the WVD there is a vertex, and there is an edge between
two vertices if and only if their corresponding cells share a boundary in the
diagram (that is, if and only if there is a point in the plane equidistant from
the two disks). The graph is planar – exploiting the fact that the cells are star-
shaped, the edges can easily be drawn so that no two edges intersect [2].

Corollary 1. The dual of the power diagram of R ∪ B is a planar graph.

Because every red and blue disk has a nonempty cell in the WVD, every
such disk will also have a corresponding vertex in our planar graph. We are
now ready to show that for each d ∈ D, there is a disk u from amongst the
red dominators of d and a disk v amongst the blue dominators of d such that
cell(u) and cell(v) share a boundary in the WVD. This would then imply that



their corresponding vertices in the graph share an edge, completing the proof of
Lemma 1. For simplicity, if there is an edge connecting the vertex corresponding
to cell(u) and the vertex corresponding to cell(v), then we will simply say there
is an edge connecting u and v.

Lemma 3. In the dual graph of the weighted Voronoi diagram for R ∪ B, for
an arbitrary input disk u ∈ D, there is an edge between some red dominator of
u and some blue dominator of u.

Proof. Consider the WVD of R ∪ B. Without loss of generality, assume cu ∈
cell(r) for some r ∈ R. Now, r must be a dominator of u, because r is the
closest disk in R∪B to cu. If r does not dominate u, u is not dominated by any
disk in R∪B which contradicts the fact that both R and B are dominating sets.

Let b denote a closest blue disk to cu, that is wvd(cu, b) ≤ wvd(cu, b′) for
all other blue disks b′. Note that b must dominate u, because if it did not, then
no blue disks would dominate u. This would contradict the fact that B is a
dominating set. Also, note that for any disk d ∈ D such that wvd(cu, d) ≤
wvd(cu, b), d must intersect with u.

If wvd(cu, b) = wvd(cu, r), we are done, since then there is an edge in the
dual graph incident on r and b. So, let us assume that wvd(cu, b) > wvd(cu, r).

We will walk from cu to cb along the straight line segment cucb. The proof
strategy is that during this walk, we will be crossing red cells and at some point
before reaching cb we will enter a blue cell, in particular, cell(b). We must have
entered this cell from a red cell cell(r′) which shares a boundary with cell(b),
and thus {r′, b} is an edge in our planar graph. Moreover, we will argue that r′

necessarily dominates u, completing the proof.
As seen in the proof of Lemma 2, cb ∈ cell(b), and thus we will enter cell(b)

at some point in time along our walk from cu to cb. Let x be the point at which
we first enter cell(b). Then x is on the boundary of cell(b) and cell(r′) for some
r′ ∈ R ∪ B. If r′ = r, we are done. Otherwise, we have

wvd(cu, r′) < d(cu, x) + wvd(x, r′) = d(cu, x) + wvd(x, b) = wvd(cu, b).

(Here the strictness of the first inequality comes from our non-degeneracy as-
sumption which implies that cr′ cannot lie on the line through cu and cb.) Now,
it must be the case that r′ ∈ R because wvd(cu, r′) < wvd(cu, b) and b is the
closest blue disk to cu. This also implies that r′ must dominate u. See Figure 2
for an illustration.

Therefore cell(b) and cell(r′) share a boundary implying that the edge {b, r′}
is in our graph. Moreover, b is blue, r′ is red, and both dominate u, which
completes the proof. ⊓⊔

Together, Corollary 1 and Lemma 3 prove Lemma 1.

2.4 Proof of Theorem 1

Moved to Appendix B.1.
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Fig. 2. Proof of Lemma 3. The dotted disk is u with center cu and radius ru.
The two red disks r and r′ are shown as dashed disks with centers cr and cr′ ,
respectively. The only blue disk b is shown as a solid disk with center cb.

3 The Weighted Dominating Set Case

In this section, we study a classical generalization of the dominating set problem.
Each disk u now has an associated rational weight, wu. The goal is to find a
dominating set D having the lowest cost, that is, wt (D) =

∑

u∈D wu be as
small as possible. We will prove the following theorem:

Theorem 2. Given a disk graph, G = (V, E) of n weighted disks D in the
plane, there is a randomized algorithm that produces a dominating set V ′ ⊆ V ,
and wt (V ′) ≤ 2O(log∗ n)·opt, w.h.p., where opt denotes the cost of an optimal
solution.

The high-level structure of the algorithm is as follows: we first solve a natural
linear programming relaxation, followed by a randomized rounding step; this
step allows us to ignore the weights of the disks in the sampling (pruning) stage.
In the rounding step, we make several copies of the disks to ensure that two
properties hold. First, every disk in D is covered by at least n of the copies.
Second, the weight of the copies is O(n · λ∗), where λ∗ is the objective function
value of an optimal LP solution. Following this step, we recursively apply a
randomized pruning step where we remove some of the copies according to the
algorithm given in the proof of Theorem 3 while ensuring that the remaining
copies are a dominating set of D. The main goal of the pruning step is to remove
some of the copies while approximately preserving the ratio of the cost of the
remaining copies to the “depth” of the disks in D with respect to the remaining
copies. We recursively apply the pruning step until the disks in D are covered
by only a constant number of the remaining copies; the depth of our recursion is
Θ(log∗ n). We can then show that the expected weight of our final dominating
set is at worst 2O(log∗ n) · λ∗.



First, we define some terms that are used in the remaining part of the section.
Given a disk v and a set of disks S, we say that v is L-covered by S if there are
exactly L disks in S each of which intersects v. In other words, neighborhood of
v in S has size L. We will make use of the following lemma, which is our main
contribution to the weighted case:

Lemma 4 (Intersection Lemma). Let S be a set of m disks, and 1 ≤ L ≤ m
an integer. Let Q be another (possibly infinite) set of disks. There are O(m·L2)
disks of Q that intersect distinct subsets of S each of size at most L.

Proof. We first define a few concepts that we use in the proof. We focus on
subsets S′ ⊆ S of size at most L and disks of Q whose neighborhood is precisely
one of these subsets; let us denote this subset of Q by Q′. For a set S′ ⊆ S of size
at most L, and a pair of disks u, v ∈ Q′, we say that u and v are related if they
both intersect every disk in S′ and no other disk of S\S′, i.e. u∩S = v∩S = S′. So
we have an equivalence relation on Q′ where each equivalence class corresponds
to a set S′ ⊆ S. We wish to bound the number of these equivalence classes. Let
these subsets of S be {S1, S2, . . . , St}, and correspondingly, t equivalence classes
{Q1, Q2, . . . , Qt}, where each disk in Qi intersects every disk in Si, and no other
disk of S \ Si. Consider any set Qi and an arbitrary disk v ∈ Qi. By scaling
and/or translating v we can obtain a disk v′ with the following property: v′ has
the same neighborhood as all the disks in Qi and is sharing a single point with
three, two, or one disk in Si and is intersecting all the other disks in more than
one point; for the cases when v′ is touching a single disk in Si, or two disks in Si,
we continue to translate and scale v′ so that it touches two disks outside of Si, or
one disk outside of Si, respectively. Without loss of generality, we assume that
S has four special disks whose borders form the North, South, East, and West
boundary, respectively, of the region that contains the input disks. We call these
special disks N, S, E, W , respectively. Such a transformed disk, v′, that touches
exactly three disks is referred to as vi. We say that a disk d is canonical with
respect to a set of points D′ if there are three distinct disks in D′ such that d
intersects the three disks at only one point each. Note that each vi is a canonical
disk for the set S. We say that a canonical disk v is κ-canonical with respect to
a set of disks D′ if at most κ disks from D′ intersect the interior of v. Therefore,
each of the canonical disks vi that we defined are L-canonical disks. It is easy
to see that t is within a constant factor of the number of L-canonical disks with
respect to S. For each vi, the set of disks that shares exactly one point with it is
called the defining set of vi and every disk of Si that shares more than one point
with vi is said to be in the conflict set of vi. Note that the defining set of vi has
at least one disk from Si, but at most two remaining disks can be from outside
Si. We will upper bound the number of L-canonical disks with respect to S (and
hence upper bound t) by choosing a random sample S′ ⊆ S and calculating the
expected number of 0-canonical disks with respect to S′. This technique dates
back to that of Clarkson [7].

Let us choose a random subset S′ ⊆ S using k independent trials in which
we pick each disk from S with uniform probability, while we add N, S, E, W



in S′ with probability 1. Now, for a fixed vi to be a 0-canonical disk in S′, its
defining set must have been picked in S′, and its conflict set must not be in S′.
The probability of this event is at least

(

k

m

)3

·
(

1 − L

m

)k

Thus, the expected number of disks among v1, . . . , vt (L-canonical disks for the
sets) that are 0-canonical disks for S′ is at least

t·
(

k

m

)3

·
(

1 − L

m

)k

We will show that the maximum number of 0-canonical disks for S′ is O(k).

Claim. For a set S′ of disks of size k, the maximum number of 0-canonical disks
induced is O(k).

Proof. We will bound the number of 0-canonical disks by the number of Voronoi
vertices of a weighted Voronoi diagram with k sites in which the sites are repre-
sented by the k centers of disks in S′, and the weight of each site is the radius
of the corresponding disk. Every Voronoi vertex is equidistant from the disks of
the regions sharing that vertex. So each Voronoi vertex in the Voronoi diagram
corresponds to the center of a disk that touches the boundary of exactly three
disks of S′ (disks corresponding to the three regions defining that vertex) and
does not intersect any other disk of S′. Since the number of Voronoi vertices
of a Voronoi diagram having k sites is bounded linearly in k, the number of of
canonical disks that touch three disks of S′ are thus bounded linearly in k as
well. This leads to the final bound of O(k) on the maximum number of canonical
disks that S′ admits. ⊓⊔

According to the claim, the maximum number of 0-canonical disks for S′ is O(k).
So,

t·
(

k

m

)3

·
(

1 − L

m

)k

≤ c1k,

for some constant c1 > 0. Choosing k = 2m
L yields t ≤ c′mL2. ⊓⊔

We prove the following variant of a theorem of Varadarajan in [19].

Theorem 3. Given a disk graph G = (V, E) and set of n weighted disks D ⊆ V
in the plane s.t. D dominates V , there is a randomized algorithm that produces
a subset D′ ⊆ D, such that for any disk v ∈ V , if v is L-covered in D, then v is
at least log L-covered in D′ and Pr [d ∈ D′] ≤ c·log L

L .

Proof. We only describe a randomized process that selects a subset, D′ of disks
such that any disk v ∈ V that is covered by D in the range [L, 2L], v is at
least log L-covered in D′. Let Nm = D, and let Cm denote the set of equivalence
classes of disks in V such that each class intersects at most 2L disks of D. Note



that since the disks in one equivalence class of V have the same neighborhood
in D, if we obtain a set D′ that at least log L-covers one disk in that class,
then all the disks in that class are also at least log L-covered. Therefore, we
can assume we have one representative disk from each class and our goal is to
at least log L-cover these disks. We use this fact crucially in our analysis. By
Lemma 4, |Cm| ≤ c′·nmL2, nm = |Nm|. So, there is a disk dm that covers at
most 2c′L2 classes of Cm. Find such a disk dm ∈ Nm, and recursively compute
a sequence for Nm−1 = Nm \ {dm}, and append the sequence to dm. That is, in
the arrangement of Nm−1 we consider the classes Cm−1 whose coverage in Nm−1

is at most 2L. The recursion stops when there are fewer than L disks remaining,
at which point, we compute an arbitrary sequence of the remaining set of disks.

Let σ be the reverse of this sequence, that is, σ = (d1, d2, . . . , dm). When
considering disk dj , we make an instant decision about including it in our cover
or not. Call a disk dj ∈ Nj forced if for some disk v ∈ Cj , not including dj will not
log L-cover v, whose coverage in Nm is in [L, 2L]. Otherwise, if dj is not forced,

we add it to D′ with probability c·log L
L . We will upper bound the probability of

dj being forced – we will show that it is at most O(1/L).
Observe that if a disk dj is forced because of v, then all the disks dj′ (with

j′ ≥ j) that cover v are also forced, and the number of such disks is at most
log L − 1 (otherwise dj won’t be forced). So it is sufficient to upper bound the
probability of a disk di being the first disk forced because of v. Let us denote
this event by Ei(v). Since from among the disks that cover v at most the last
log L disks can be forced, the probability of one of these log L disks being forced
is at most log L times the probability that one of the disks before it is the “first”
forced disk because of v. We use Ei to denote the event that di is the first disk
forced because of some disk that it covers.

Claim.

Pr [Ei(v)] ≤ 1

L4

Proof. Moved to Appendix B.2.

Note that any disk di′ that occurs before di in σ if di′ is forced for a disk v′

that is not covered by di, which forces a disk dk which occurs after di in σ and
that dk also covers v, then that event has no bearing on the event of di being
a first forced disk for v (see Figure 3). So, to upper bound the probability that
some dj is a forced disk for a fixed disk v, we sum over all valid indices i < j
with di being the first forced disk because of v, and obviously there are at most
log L of them,

Pr
[some dj is

forced by
disk v

]

≤
∑

i

1

L4
≤ 1

L3
.

Since there are at most 2c′L2 classes of Cj having coverage in the range [L, 2L]
that are covered by dj , dj can be a forced addition for any one of the at most
2c′L2 representative disks. So,

Pr

[

dj is forced
for some
disk v∈Cj

]

≤ 2c′

L
.



The probabilistic algorithm finds a dominating set D′ ⊆ D where the probability
of a given disk being in D′ is at most c·log L

L and each disk v ∈ V that is covered
in the range [L, 2L] by D, is at least log L-covered in D′. We repeat the process
for points that are between 2L and 4L deep, and so on. Note that the probability
of a disk being in D′ is still the same. ⊓⊔

3.1 Proof of Theorem 2

Let the input instance be a disk graph based on a set of disks D. For any disk
d ∈ D, let N [d] denote the set of neighbors of d in the graph, inclusive. Consider
the following natural LP relaxation for the weighted dominating set problem:

(LP) min
∑

d∈D

wdxd

subject to,
∑

d′:d′∈N [d]

xd′ ≥ 1, ∀d ∈ D

xd ≥ 0, ∀d ∈ D

After solving the LP relaxation, we create a set D0 of disks as follows. For
each disk d such that xd ≥ 1/2n, we add ⌊ xd

1/2n⌋ copies of d to D0. Each copy

of d inherits its original cost. For each disk d with xd < 1/2n, we don’t add any
copy to D0. It is easily verified that wt (D0) ≤ 2n ·λ∗, where λ∗ is the objective
function value of the optimal LP solution. Furthermore, we have that each disk
d ∈ D is n-covered by D0.

In the next phase, our algorithm will recursively apply Theorem 3 to obtain
a successively sparse dominating set. For the ith application of the theorem,
we set Li = log Li−1, for i = 2, 3, . . . , t to obtain a set Di ⊆ Di−1. For the
first application, we set L1 = n. Details of the approximation ratio appear in
Appendix B.3.

Running Time Moved to Appendix A.2.

4 Concluding Remarks and Open Questions

Given the negative result of Marx [15] which shows that even for the simple case
of unweighted unit disk graph, an EPTAS for the problem would contradict the
exponential time hypothesis [14]4, it is unlikely that the dependence of 1/ε as
an exponent of n on the running time for the PTAS can be improved to, say,
f(1/ε)·nO(1). However, the running time of the local search PTAS is nO(1/ε2).
Can this be improved to nO(1/ε)? In our work, we have made no attempt to
improve the running time.

For the weighted case, we are only able to show a constant integrality gap
for the lower bound despite numerous attempts. Thus, we believe that the right
upper bound for the approximation factor is O(1). The technique employed does
not seem amenable to showing a O(log∗ n) upper bound for this problem.

4 Marx [15] actually shows something stronger.
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A Running Times

A.1 Running Time of the Local Search Algorithm

We will now show that the running time can be bounded by a polynomial in n.
The number of swaps that the local search algorithm will make is at most n,
because there are n disks and each swap strictly decreases the number of disks
in the solution. For each swap, we need to check every subset of disks of size at
most b which can be done in time O(nb). Recall that b is only a function of ǫ,
and thus we can have the exponential dependence on b in the running time.

So we will make at most n swaps, each of which takes time O(nb). Clearly,
the last step (where we check to see if a disk is contained within another) can
be done in time polynomial in n, and therefore the entire running time of the
algorithm is efficient with respect to n.

A.2 Running Time of the Weighted Algorithm

The algorithm requires finding a disk dj in D such that dj intersects O(m·L2)
equivalence classes from amongst the subset of disks in V whose neighborhood
in D has size at most L. We construct these classes, {V1, V2, . . . , Vt}, by simply
examining a disk v and placing it in Vi such that any disk u ∈ Vi has the exact
same set of neighbors in D, and the size of each neighborhood is bounded by L.
Since t is bounded by O(|D|·L2), a naive approach of comparing the neighbor-
hood of each disk with the neighborhood of each of the Vi’s, takes O(|V |· |D|·L4)
time. So naively, the equivalence classes {V1, V2, . . . , Vt} can be constructed in
O(|V |2· |D|·L4) time. Constructing a set of representative disks U = {ui}t

i=1

from the equivalence classes takes O(|D|·L2) time. Finding a disk dj ∈ D such
that dj intersects O(L2) disks of U takes O(|D|2·L4) time. So, constructing the
sequence, σ, takes O(|D|3·L4) time. The quasi-uniform sampling stage takes
O(|D|2·L3) time for each disk dj because we need to determine if dj is forced
for any of the disks in U , any one of which may contain some subsequence of
disks that occur after dj in σ. Since there are a maximum of |D| disks that occur
after dj , the running time of the sampling stage, given σ, is O(|D|3·L3). So, the
overall running time is O(|V |2· |D|·L4 + |D|3·L3) for each recursive application
of the procedure in the proof of Theorem 3. Since each of |V |, L, |D| is bounded
polynomially in n, the number of input disks, and given that the depth of the
recursion is bounded by O(log∗ n) for each independent random experiment, and
O(log n) bounding the maximum number of random experiments, the over all
running time is bounded polynomially in n, using a naive approach that does
not seek to optimize the running time.

B Missing Proofs

B.1 Proof of Theorem 1

To show |B| ≤ (1 + ǫ) · |R|, we make use of the planar graph separator theorem
of Frederickson [11]. This argument is similar to the work in [4,16] and is only



given here for completeness. Given a graph G = (V, E), we denote N(V ′) for
subset of the vertices V ′ to be the set of all vertices in V that share an edge
with a vertex in V ′.

Theorem 4 (Frederickson [11]). There are constants c1, c2, c3 > 0, such that
for any planar graph G = (V, E) with n vertices and a parameter r ≥ 1, there
is a set X ⊆ V of size at most c1n/

√
r, and a partition of V \ X into n/r sets

V1, V2, . . . , Vn/r, satisfying: (i) |Vi| ≤ c2r, (ii) N(Vi) ∩ Vj = ∅, for i 6= j, and
(iii) |N(Vi) ∩ X | ≤ c3

√
r.

We will now show that |B| ≤ (1 + ǫ)|R|; this is similar to [4,16,12]. Let
r ≡ b/(c2 + c3) (where b is the parameter from the local search algorithm). From
Theorem 4(i),(iii), we get |Vi ∪ N(Vi)| ≤ c2r + c3

√
r ≤ b. Let Ri = R ∩ Vi

and Bi = B ∩ Vi. Due to the optimality of local search, we must have |Bi| ≤
|Ri|+ |N(Vi)|, otherwise local search can replace Bi with Ri ∪N(Vi) to obtain a
smaller dominating set, contradicting the local optimality of local search. This
is why we require that for each d ∈ D, there is a red dominator of d and a
blue dominator of d with an edge in the graph. If there were no such edge, then
making this swap could possibly leave some disks without a dominator. So now
we have,

|B| ≤ |X | +
∑

i

|Bi| ≤ |X | +
∑

i

|Ri| +
∑

i

|N(Vi)| ≤ |R| + c
|R| + |B|√

r

≤ |R| + c′
|R| + |B|√

b
,

where c and c′ are positive constants. With b a large enough constant times 1/ǫ2,
it follows that |B| ≤ (1 + ǫ)|R|.

B.2 Proof of Claim, Pr [Ei(v)] ≤ 1

L4

Consider a disk v whose coverage is in the range [L, 2L] and di covers it. To bound
the probability of Ei(v) consider the subsequence of σ, called σ′, that covers v (so
coverage of v is still in [L, 2L]). We will only focus on this subsequence since it
is the only one which is relevant to Ei(v). Observe that the length of σ′ is in the
range [L, 2L]. The probability that v forces any disk will then be the sum of the
probabilities of any of the last log L disks in σ′ being a “first” forced disk (by v).
Let the prefix of σ′ leading up to di be called σ′

i, that is, σ′
i = (da1

, da2
, . . . , dal=i).

If di is going to be the first forced disk in σ′, then i ≥ L − log L. Suppose v is
the representative disk of one of the O(L2) classes of Ci that are covered by di.
Since σ′

i−1 is a subset of disks that cover v, σi−1 is also the set of disks that
cover v. We will bound the probability that an insufficient number of disks were
picked from σ′

i−1, leading to the forced inclusion of di as the first forced disk for
v. Let x be the number of disks picked from σ′

i−1 and fix a particular choice of



x disks from σ′
i−1, 0 ≤ x < log L.

Pr

[

x particular
disks from σ′

i−1

are picked
∧ i−x−1

disks are
dropped

]

= Pr

[

x particular
disks from σ′

i−1

are picked

]

·Pr
[

i−x−1
disks are
dropped

]

=

(

c· log L

L

)x

·
(

1 − c· log L

L

)i−x−1

Since i ≥ L − log L and there are
(

i−1
x

)

ways to choose x disks from σ′
i−1:

Pr [Ei(v)] ≤
(

i−1
x

)

(

c·log L
L

)x

·
(

1 − c·log L
L

)L−2 log L−1

≤
(

L−1
x

)

·
(

c·log L
L

)x

·
(

1 − c·log L
L

)
L
2

≤
(

e·(L−1)
x

)x

·
(

c·log L
L

)x

·
(

1 − c·log L
L

)
L
2

=
(

c·e·(L−1)·log L
L·x

)x

·
(

1 − c·log L
L

)
L
2

Claim.

max
0<x<log L

{(

c· e· (L − 1)· logL

L·x

)x}

< L4

Proof. We analyze the continuous function,
(

c·e·(L−1)·log L
L·x

)x

, and apply the first

derivative test from elementary calculus with respect to x, x ∈ R. Note that the

only value for which the function maximizes x = (L−1) log Lc

L > log L. Restricting
the domain, it follows that it maximizes for the boundary point, log L, yielding
a value of less than L4, when c ∈ O(1). ⊓⊔
By applying the claim, in the case when x > 0,

Pr [Ei(v)] ≤ L4· 1
Lc/2

≤ 1
L4 , for c ≥ 16

B.3 Proof of Theorem 2

Fix a disk d and let t be the final application of Theorem 3, to yield Dt. Let us
calculate the expected weight of Dt. Let Ed

i denote the event that d ∈ Di. So,

E [wt (Dt)] =
∑

d∈D0

Pr
[

Ed
t

]

·wd (1)

For a disk d, note that,

Pr
[

Ed
t

]

= Pr

[

Ed
t

∣

∣

∣

t−1
∧

i=1

Ed
i

]

·Pr

[

Ed
t−1

∣

∣

∣

t−2
∧

i=1

Ed
i

]

. . .Pr
[

Ed
3

∣

∣

∣
Ed
2 ∧ Ed

1

]

·Pr
[

Ed
2

∣

∣

∣
Ed
1

]

·Pr
[

Ed
1

]

≤ c· log Lt

Lt
· c· log Lt−1

Lt−1
· c· logLt−2

Lt−2
· c· log Lt−3

Lt−3
· . . . c· log Li

Li
· . . . c· log L1

L1

=
c· log Lt

log Lt−1
· c· log Lt−1

log Lt−2
· c· log Lt−2

log Lt−3
· c· log Lt−3

log Lt−4
· . . . c· log Li

log Li−1
· . . . c· log L2

log L1
· c· log L1

L1

=
ct· log Lt

L1
=

ct· log(t) L1

L1



Our recursion stops at a depth t when log Lt ≤ 1. Eventually, we get a dominat-
ing set Dt, that is, each disk v ∈ V is at least 1-covered in Dt. So, truncating
the recursion at a depth of t = log∗ n, we get that,

Pr
[

Ed
t

]

≤ ct

L1

Since L1 = n and
∑

d∈D0
wd ≤ 2nλ∗, inequality-(1) becomes,

E [wt (Dt)] ≤
ct

L1

∑

d∈D0

wd ≤ ct2λ∗

Using Markov’s inequality,

Pr [wt (Dt) > 2·E [wt (Dt)]] ≤
1

2

Repeating O(log n) independent trials and taking the lowest cost amongst them
yields,

Pr
[

wt (Dt) ≤ 2O(log∗ n)·λ∗

]

> 1 − 1

n

This proves Theorem 2.

C Figure 3

di v dk v
′

di′

Fig. 3. di occurs after di′ and before dk in σ. di′ was forced for v′, so dk is
also forced for v′. However, dk also covers v. Suppose di becomes forced for v.
The fact that dk is already in D′ does not increase the probability of di’s forced
inclusion for v.
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