
On Clustering to Minimize the Sum of Radii∗

Matt Gibson Gaurav Kanade Erik Krohn Imran A. Pirwani
Kasturi Varadarajan

1 Introduction

Given a metric d defined on a set V of points (a metric
space), we define the ball B(v, r) centered at v ∈ V and
having radius r ≥ 0 to be the set {q ∈ V |d(v, q) ≤ r}.
In this work, we consider the problem of computing a
minimum cost k-cover for a given set P ⊆ V of n points,
where k > 0 is some given integer which is also part of
the input. For κ ≥ 0, a κ-cover for subset Q ⊆ P is a
set of at most κ balls, each centered at a point in P ,
whose union covers (contains) Q. The cost of a set D of
balls, denoted cost(D), is the sum of the radii of those
balls.

In the metric version of the min-cost k-cover prob-
lem, we are given P and k and the distance d between
every pair of points in P . In the Euclidean version, P
is given as a set of points in some fixed dimensional
Euclidean space ℜl, and d is then the standard Eu-
clidean distance. Both the metric and the Euclidean
version of the problem have been well examined, mo-
tivated by applications in clustering and base-station
coverage [8, 6, 11, 5, 2].

Doddi et al. [8] consider the metric min-cost k-cover
problem and the closely related problem of partitioning
P into a set of k clusters so as to minimize the sum of the
cluster diameters. Following their terminology, we will
call the latter problem clustering to minimize the sum
of diameters. They present a bicriteria poly-time algo-
rithm that returns O(k) clusters whose cost is within a
multiplicative factor O(log(n/k)) of the optimal. They
also show that the existence of a polynomial time al-
gorithm that returns k clusters whose cost (sum of di-
ameters) is strictly within 2 of the optimal would imply
that P = NP . Charikar and Panigrahy [6] give a poly-
time algorithm based on the primal-dual method that
gives a constant factor approximation – around 3.504 –
for the k-cover problem, and thus also a constant fac-
tor approximation for clustering to minimize the sum of
diameters.

∗All the authors are at the Department of Com-

puter Science at the University of Iowa. Work by the

first, second, third, and fifth authors was partially sup-

ported by NSF CAREER award CCR 0237431. Email:

{mrgibson,gkanade,eakrohn,pirwani,kvaradar}@cs.uiowa.edu

Lev-Tov and Peleg [11] give a polynomial time ap-
proximation scheme for a problem that is closely re-
lated problem to the geometric min-cost k-cover prob-
lem. Here we are given a finite set S ⊆ ℜ2 of servers and
a finite set C ⊆ ℜ2 of clients, and the goal is to cover
the clients by a min-cost set of disks centered at the
servers. They call this the minimum sum of radii cover
(MSRC) problem. One significant difference from the
k-cover problem is that here the number of disks that
can be used is not bounded. Bilo et al. [5] give poly-
nomial time approximation schemes for generalizations
of the MSRC problem. They also give such approxima-
tion schemes when the cost of a set of balls is defined
to be the sum of the α-th power of their radii, where
α ≥ 1. They also show that the min-cost k-cover prob-
lem in the plane and the MSRC problem are NP-hard
with this generalized definition of cost for every α ≥ 2.
Alt et al. [2] show that the NP-hardness result for the
MSRC problem can be extended to any α > 1. They
give fast constant-factor approximation algorithms for
the MSRC problem, and also consider various related
problems.

The well known k-center problem is a variant of the
k-cover problem where the cost of a set of balls is defined
to be the maximum radius of any ball in the set. The
metric version of this problem has a 2-approximation,
and even the geometric version is hard to approximate
to within a certain constant factor (see the survey by
Bern and Eppstein [4]).

Our Results and Techniques. We show that the Eu-
clidean min-cost k-cover problem (α = 1) is solvable
exactly in polynomial time. This result also extends
to variants of the problem such as the MSRC problem
considered by LevTov and Peleg [11] and the general-
izations studied by Bilo et al. [5] for α = 1.

The result is enabled by a simple observation about
the structure possessed by optimal solutions – they are
eminently separable. To state this formally, we focus on
the planar case and define the length of a rectangle as
the length of its longer side. If the rectangle is a square,
the longer side is defined arbitrarily. The width of the
rectangle is the length of its shorter side. A separator

for R is any line s that is perpendicular to the longer
side (length) of R, intersects R, and whose distance from
each of the two shorter sides of R is at least a third of
the length of R.

Lemma 1.1. Consider an optimal κ-cover D for some
set Q ⊆ P of points contained in a rectangle R. The
rectangle R has a separator that intersects at most 12
disks in D.

Proof. Let l denote the length of R. Choose a separator
uniformly at random from the set of separators for R.
The probability that it intersects a disk D ∈ D is

bounded by 2·radius(D)
l/3 . It follows that the expected

number of disks in D intersected by a separator is at

most 6
l

∑
D∈D

radius(D) = 6·cost(D)
l . Now cost(D), the

sum of the radii of disks in D, is at most 2l. This is
because one disk of radius 2l centered at any point in
Q covers Q. We conclude that the expected number of
disks in D intersected by a random separator is at most
12. �

This observation opens up the possibility of com-
puting an optimal k-cover efficiently via dynamic pro-
gramming, as exemplified by [1, 12]. Some additional
play is however needed to achieve a polynomial time al-
gorithm – we have to deal with the accumulation of the
number of disks we need to guess in a recursive applica-
tion of Lemma 1.1, and also with some complexity that
arises because the aspect ratio of the input point set P
is not assumed to be bounded by a polynomial in n.

Our result as stated is obtained under an assump-
tion about the model of computation, which we now
describe. In the geometric min-cost k-cover problem,
the optimal solution is a set of k disks, each of which
is centered at some input point and each of which has
a radius that is the distance between two input points.
If the input points have integer coordinates, the cost of
such a solution is the sum of square roots of integers.
Our algorithm requires the ability to determine, given
two such candidate solutions, the one that has lower
cost. We make the assumption, not unusual in such
contexts, that this can be done in polynomial time.

Notice that for variants of the problem such as the
one in which the underlying distance metric is the L1

rather than the Euclidean metric, we can indeed com-
pare the costs of two candidate solutions in polynomial
time. Our approach readily yields a polynomial time
algorithm for such variants without any assumptions on
the model of computation. In the context of the Eu-
clidean metric, however, it is a longstanding open prob-
lem as to whether two sums of square roots of integers
can be compared in polynomial time [7, 13].

We therefore translate our exact algorithm for the
Euclidean metric into an approximation algorithm that
does not make the above assumption on the computa-
tional model. We obtain an approximation algorithm
that for any parameter 0 < ǫ < 1 runs in time polyno-
mial in the input size and log 1

ǫ and returns a solution
whose cost is at most (1 + ǫ) times the optimal.

Organization of the paper. The rest of this ar-
ticle is organized as follows. In Section 2, we estab-
lish basic observations used subsequently. In Section
3, we present the exact polynomial time algorithm for
the min-cost k-cover problem in the plane. The exten-
sions to any fixed dimensional Euclidean space and to
related problems such as MSRC are straightforward and
are omitted from this version. We then remove our as-
sumption about the model of computation and obtain
an approximation algorithm. In the rest of this section,
we outline extensions of the above results to the metric
case.

Metric Min-Cost k-cover. The fact that optimal
solutions are eminently separable holds true in some
appropriate way even for the metric min-cost k-cover
problem. In [10], we show that if the aspect ratio
of the input point set P , that is, the ratio of the
maximum to minimum interpoint distance within P , is
bounded by ∆, then a randomized algorithm that runs
in nO(log n·log ∆) time returns an optimal k-cover of P
with high probability. Thus when ∆ is bounded by a
polynomial in n, we obtain quasi-polynomial running
time. The main tool in this extension to the metric
case is the use of probabilistic partitions [3, 9] in place
of the line separators above.

A natural question is whether there is a quasipoly-
nomial time algorithm for the case where the input met-
ric has unbounded aspect ratio. This is unlikely to be
the case because, as we show, the general metric min-
cost k-cover problem is NP-hard.

Using standard techniques, however, we obtain a
quasi-polynomial time approximation scheme for the
metric min-cost k-cover problem. We also investigate
the problem for interesting special cases such as metrics
of constant doubling dimension.

2 Preliminaries

The following lemma states a structural property of the
optimal solution in the planar case. It is similar to
observations made by Lev-Tov and Peleg [11] and its
proof is sketched here for completeness.

Lemma 2.1. Let OPT denote an optimal k-cover for
P ⊆ ℜ2. Let R be a rectangle of length a > 0. The
number of disks in OPT of radius at least a that intersect
R is bounded by a constant.

Proof. Let OPT′ ⊆ OPT be the disks whose radius is
at least a. The rectangle R can be enclosed by a disk B
of radius a. We will show that the number of disks in
OPT′ that intersect B is O(1).

A basic property of the optimal solution OPT is its
admissibility, the fact that no disk in OPT contains in
its interior the center of another disk in OPT of positive
radius. This implies that the centers of any two disks
in OPT′ are at least a apart. It follows that there are
O(1) disks in OPT′ whose centers lie within the disk B′

concentric with B and with radius 10a.
To bound the number of disks in OPT′ with center

outside B′ that also intersect B, we partition the plane
radially into 8 sectors with angle π/4 and centered at the
center of B. (See Figure 1.) It is an easy consequence of
admissibility that for each sector there can be at most
one disk in OPT (and thus also OPT′) that is centered
in the sector outside B′ and that intersects B. �

B

B′

Figure 1: At most one disk from OPT can have its center
in the shaded area and intersect B.

3 The Algorithm in the Planar Case

We describe a polynomial time algorithm to compute an
optimal k-cover for a set P of n points in the plane. We
will assume that k ≤ n, since otherwise the optimal k-
cover is trivially computed. We start by observing that
there is an optimal k-cover of P whose disks are chosen
from the set D of disks whose center is some p ∈ P and
whose radius is |pq| for some q ∈ P . Note that |D| = n2.
In the rest of the article we will reserve D to denote this
set of disks.

Canonical and Critical lines. We say that a
vertical (resp. horizontal) line is critical if it passes
through a point in P or a point of vertical (resp.
horizontal) tangency of some disk in D. (See Figure 2.)
Note that if l and l′ are two vertical (resp. horizontal)
noncritical lines with no vertical (resp. horizontal)
critical line between them, then l and l′ intersect the
same set of disks in D. Motivated by this, we define
a set of Θ(n2) canonical vertical lines that includes
any one vertical line between every two consecutive
vertical critical lines, one vertical line to the left of the
leftmost critical line and one vertical line to the right
of the rightmost critical line. We define a set of Θ(n2)
canonical horizontal lines analogously.

Figure 2: Critical (dashed) and canonical (solid) lines.

Balanced Rectangles and Compression. A
rectangle is said to be balanced if its width is at
least a third of its length. We describe a procedure
compress(R) that takes as input a balanced rectangle R
that contains at least two of the points in P and returns
a balanced rectangle R′ such that (a) R′ is contained in
R, (b) R′ contains P ∩R, and (c) for any separator for
R′, there are points of P ∩R in both the open halfspaces
that it bounds (and consequently, any separator for R′

partitions P ∩R into two nonempty subsets).
To describe the procedure compress(R), we assume

without loss of generality that the separators of R are
vertical (its length is horizontal). The procedure first
checks if there is a point in P ∩R that is strictly to the
left of the leftmost separator of R, and if there is a point
in P ∩ R that is strictly to the right of the rightmost
separator of R. If so, the procedure returns R′ = R.

Otherwise, let R′ be the minimal rectangle enclosing
P ∩R. Let l′ be its length and w′ its width. Let l and
w denote the length and width of R, respectively. If
w′ ≥ l′/3, we are done and we simply return R′.

If w′ < l′/3, we have to make R′ wider while
still keeping it enclosed in R. There are two cases to
consider, depending on whether the longer side of R′ is
parallel to the longer side of R. If the longer side of R′

is parallel to the shorter side of R, we know that l′ ≤ w.
We also know that l ≥ w ≥ l/3. The width of R′ needs
to be expanded to l′/3. Since l′/3 ≤ w/3 ≤ l/3, there
is enough room for this expansion.

R′

R

Figure 3: R and R′ = compress(R). (Dashed is R′

before expansion.)

The second case involves the longer side of R′ being
parallel to the longer side of R. (See Figure 3.) In this
case, it must be that l′ ≤ 2l/3. The width of R′ needs
to be expanded to l′/3. Since l′/3 ≤ 2l/9 ≤ l/3 ≤ w,
there is enough room for this expansion.

The Algorithm. We describe a procedure
DC(R, κ, T) that takes as input a balanced rectangle R,
an integer κ ≥ 0, and a subset T ⊆ D. It returns a κ
cover of the set

Q = {q ∈ P ∩R | q is not covered by T }.

We will later argue that DC(S, k, ∅) computes an optimal
k-cover for P when S is any balanced rectangle contain-
ing P .

The result of a call to procedure DC(R, κ, T) is
stored in a table entry indexed by P ∩ R, κ, T ; the
entry Table(P ∩ R, κ, T) stores a κ-cover for the set Q
defined above. It will be useful for the description of the
algorithm to define a special “disk” I whose cost is ∞.
If an entry Table(P ∩R, κ, T) stores a set that contains
I, this means that the algorithm has determined that
there is no κ-cover for Q.

See Algorithm 1 below for the description of the
procedure DC(R, κ, T).

A couple of remarks about the algorithm are in
order. Observe that partitioning a balanced rectangle
by a separator results in two balanced rectangles. It

follows that R1 and R2 are balanced given that R′ is
balanced.

No separator that the algorithm considers on step 6
passes through a point in P . We therefore do not have
to worry about breaking ties because input points land
on a separator.

Suppose that the procedure DC(R, κ, T) finds that
in step 1, the entry Table(P ∩ R, κ, T) has not been
created. It then proceeds to create this entry. In
between the time this entry is created and subsequently
filled in by this procedure, no subproblem will need the
entry Table(P ∩ R, κ, T). This is because for any call
DC(R̂, κ̂, T̂) that is nested within DC(R, κ, T), P ∩ R̂ is a
strict subset of P ∩ R. Such a call DC(R̂, κ̂, T̂) will not
enquire as to whether the entry Table(P ∩ R, κ, T) has
been created, nor will it seek to know the content of this
entry.

Running Time. We now bound the overall run-
ning time of a call to DC(S, k, ∅), where S is some bal-
anced rectangle containing P . Note that each table en-
try is indexed by a set of points P ∩R for some balanced
rectangle R, a κ ≤ k, and a set T ⊆ D such that |T | ≤ β.
The number of such P ∩R is O(n4), the number of such
κ is O(n) and the number of such T is O(n2β). As-
suming β is a constant, the number of table entries is
therefore bounded by a polynomial in n. We use this to
bound the total number of calls DC(R, κ, T) made.

The number of calls of the form DC(R, κ, T) that
create a corresponding table entry Table(P ∩R, κ, T) is
polynomially bounded, since the number of table entries
is polynomially bounded and each table entry is created
only once. Any call of the form DC(R, κ, T) that does not
create the table entry Table(P ∩R, κ, T) does not make
any recursive calls and takes O(1) time. We charge this
to the parent instance of DC() that makes the recursive
call DC(R, κ, T). Note that this parent instance creates
its corresponding table entry. Since any instance of
DC() makes only a polynomial number of direct recursive
calls, we can conclude using our charging argument that
the number of calls of the form DC(R, κ, T) that do not
create a corresponding table entry Table(P ∩R, κ, T) is
also bounded by a polynomial.

Since any instance of DC() takes polynomial time in
n not counting the time for the recursive calls, we can
conclude that the overall running time of DC(S, k, ∅) is
bounded by a polynomial in n.

Correctness. Establishing that DC(S, k, ∅) returns
an optimal k-cover of P is more involved than show-
ing that it runs in polynomial running time, mainly be-
cause of the pruning step that ensures that instance
DC(R, κ, T) that is called has |T | bounded by β. We be-
gin by showing the following fact about the algorithm.

Lemma 3.1. Let DC(R1, κ1, T1) be a recursive call made

Algorithm 1 DC(R, κ, T)

1: If Table(P ∩R, κ, T) has already been created, return. Otherwise, create table entry Table(P ∩R, κ, T) which
will be assigned below.

2: Let Q = {q ∈ P ∩R | q is not covered by T }. If Q = ∅, let Table(P ∩R, κ, T)← ∅, and return.
3: If κ = 0, let Table(P ∩R, κ, T)← {I} (covering is infeasible) and return.
4: If |Q| = 1, assign to Table(P ∩ R, κ, T) the set containing the trivial disk consisting of the one point in Q,

and return.
5: If we are in this step, the set P ∩ R has at least two points in it. Call compress(R) to obtain a balanced

rectangle R′ containing P ∩ R. Let us assume for the purposes of exposition that the separators for R′ are
vertical. Let L(R′) be the set consisting of those vertical canonical lines that are separators for R′. Also
include in L(R′) the leftmost (resp. rightmost) separator for R′ provided it is not critical. Initialize a cover
D′ ← {I}.

6: for all choices of a separator l ∈ L(R′) do

7: for all choices of a set D0 ⊆ D of at most 12 disks that intersects l do

8: for all choice of κ1, κ2 ≥ 0 such that κ1 + κ2 + |D0| ≤ κ do

9: Let R1 and R2 be two rectangles into which l partitions R′. Let T1 = {D ∈ T ∪D0 | D intersects R1}.
Let T2 = {D ∈ T ∪ D0 | D intersects R2}.

10: if |T1| ≤ β and |T2| ≤ β (β is a large enough constant) then

11: Recursively call DC(R1, κ1, T1) and DC(R2, κ2, T2).
12: If cost(D0 ∪ Table(P ∩ R1, κ1, T1) ∪ Table(P ∩ R2, κ2, T2)) < cost(D′), then update D′ ← D0 ∪

Table(P ∩R1, κ1, T1) ∪ Table(P ∩R2, κ2, T2).
13: Assign Table(P ∩R, κ, T)← D′, and return.

inside a sequence of nested recursive calls that involved
DC(G1, k, ∅), DC(G2, ·, ·), . . . , DC(Gt, ·, ·), where G1 = S.
Let G′

j be the result obtained by a call to compress(Gj).
Let l(G′

j) be the separator chosen for G′
j so that for each

1 ≤ j ≤ t − 1, Gj+1 is one of the two rectangles into
which l(G′

j) partitions G′
j , and R1 is one of the two

rectangles into which l(G′
t) partitions G′

t. Denote by a
the length of R1. Then the horizontal distance between
any two distinct vertical separators l(G′

i) and l(G′
j) is

at least a/3, and the vertical distance between any two
distinct horizontal separators l(G′

i) and l(G′
j) is at least

a/3.

Proof. Since R1 ⊆ G′
t ⊆ Gt ⊆ G′

t−1 ⊆ Gt−1 ⊆ · · · ⊆
G′

1 ⊆ G1, the length of any G′
i is at least a. Let G′

i and
G′

j be such that i < j and l(G′
i) and l(G′

j) are vertical.
Note that G′

j is contained in one of the two rectangles
into which l(G′

i) partitions G′
i. Thus l(G′

i) is either to
the left of G′

j or to its right. Now l(G′
j) lies between the

two vertical sides of G′
j at a distance of at least a third

of the length of G′
j from either side. Since the length of

G′
j is at least a, it follows that the horizontal distance

between l(G′
i) and l(G′

j) is at least a/3. (See Figure 4.)
The case where l(G′

i) and l(G′
j) are horizontal is

reasoned similarly. �

The correctness of the algorithm follows from the
following lemma; let us fix an optimal k-cover OPT ⊆ D
of P .

l(G′
i)

l(G′
j)

G
′
i

≥ a

G′
j

≥ a
3

Figure 4: Illustration for Lemma 3.1

Lemma 3.2. Suppose the recursive instance DC(R, κ, T)
is called (at some recursion depth) by the top-level
invocation to DC(S, k, ∅). Suppose also that T ⊆ OPT
and T contains every disk in OPT that contains a
point in P ∩ R as well as a point in P \ R. (T
possibly contains other disks in OPT as well.) Let
Q = {q ∈ P ∩R | q is not covered by T }, and let OPT′

denote the set of disks in OPT that contain points in Q.
Suppose further that κ ≥ |OPT′|. Then after the call
to DC(R, κ, T) completes, Table(P ∩ R, κ, T) contains a

κ-cover for Q whose cost is at most cost(OPT′).

Proof. The proof is by induction on |P ∩ R|. We
may assume that Table(P ∩ R, κ, T) has not been
created when DC(R, κ, T) is called. For otherwise, this
table entry was created by a call DC(R̂, κ, T) for some
rectangle R̂ such that R̂ ∩ P = R ∩ P . We check that
the suppositions made for T and κ hold with R̂ in the
place of R, and also that Q and OPT′ are the same
in both cases. And we can use the arguments below
to conclude that after the call to DC(R̂, κ, T) completes,
Table(P ∩ R = P ∩ R̂, κ, T) contains a κ-cover for Q
whose cost is at most cost(OPT′). The subsequent call
to DC(R, κ, T) returns immediately without changing
Table(P ∩ R = P ∩ R̂, κ, T), which therefore continues
to contain a κ-cover for Q whose cost is at most
cost(OPT′).

The cases where the call to DC(R, κ, T) is returned
via steps 2 or 4 form the base cases of the induction, and
are easily established. Note that the call cannot return
via step 3, because if Q 6= ∅, then κ ≥ |OPT′| must be
at least 1.

The inductive case is when the call returns in step
13. Note that |P ∩ R|, |Q| ≥ 2 in this case. We will
assume without loss of generality that the separators of
R′ are vertical.

We first observe that OPT′ is an optimal |OPT′|-
cover for Q. This is because points in (P ∩ R) \ Q
are covered by T , and OPT′ does not cover any point
in P \ R – so the only role that OPT′ plays is to
cover Q, and it therefore must do this optimally. From
Lemma 1.1, we conclude that R′ has a separator l′ that
interesects at most 12 disks in OPT′. Let D̂0 denote this
set of disks. Since the set of critical lines is finite, the
argument of Lemma 1.1 tells us that we can assume l′ to
be a line that is not critical. It is easy to see that we can
move l′ to one of the lines in L(R′) (computed in step 5)
without changing the set of disks in D that it intersects.
We therefore consider the choice of a separator l ∈ L(R′)
whose intersection with OPT′ is exactly D̂0. Consider
the body of the innermost for loop where l is chosen
as above, D0 is chosen to be D̂0, κ1 is set to be the
number of disks in OPT′ to the left of l and κ2 is set to
be the number of disks in OPT′ to the right of l. Let
OPT1 and OPT2 denote the disks in OPT′ to the left
and right of l, respectively. Of course, |OPT1| = κ1 and
|OPT2| = κ2.

Let R1, R2, T1, and T2 be exactly as in the
algorithm. Note that |P ∩R1| < |P ∩R|, and |P ∩R2| <
|P ∩R|. Notice further that T1 ⊆ OPT and T1 contains
every disk in OPT that contains a point in P ∩ R1 as
well as a point in P \R1. Furthermore, OPT1 is the set
of disks in OPT that contain points in Q1 = {q ∈ P ∩
R1 | q is not covered by T1}, and k1 = |OPT1|. We can

invoke the induction hypothesis to claim that if the call
DC(R1, κ1, T1) is made, then after the call, Table(R1 ∩
P, κ1, T1) contains a κ1-cover of Q1 whose cost is at most
cost(OPT1). Similarly, we can invoke the induction
hypothesis to claim that if the call DC(R2, κ2, T2) is
made, then after the call, Table(R2∩P, κ2, T2) contains
a κ2-cover of Q2 = {q ∈ P∩R2 | q is not covered by T2}
whose cost is at most cost(OPT2). We will show that
|T1| and |T2| are bounded by β and that therefore
these calls are indeed made. It follows that in step
12, D0 ∪ Table(P ∩ R1, κ1, T1) ∪ Table(P ∩ R2, κ2, T2)
is a κ-cover for Q whose cost is at most cost(D0) +
cost(OPT1) + cost(OPT2) = cost(OPT′). Thus in step
13, Table(P ∩ R, κ, T) is assigned a κ-cover of Q with
cost at most cost(OPT′).

To complete the proof we show that |T1| ≤ β, where
β is a sufficiently large constant. The proof for T2 is
similar.

Suppose that we arrived at the (R, κ, T) instance by
proceeding through a sequence of nested recursive calls
that involved DC(G1, k, ∅), DC(G2, ·, ·), . . . , DC(Gt−1, ·, ·),
where G1 = S. Let Gt = R. Let G′

j be the result
obtained by a call to compress(Gj). Let l(G′

j) be the
separator chosen for G′

j so that for each 1 ≤ j ≤ t− 1,
Gj+1 is one of the two rectangles into which l(G′

j)
partitions G′

j . Finally, let l(G′
t) = l and note that

G′
t = R′. Thus R1 is one of the two rectangles into which

l(G′
t) partitions G′

t. Furthermore let D0(Gj) denote the
corresponding choice of D0 made in the call DC(Gj , ·, ·),
for 1 ≤ j ≤ t − 1, and let D0(Gt) equal the D0 above.
Note that T1 ⊆ ∪t

j=1D0(Gj).

Let R̄ be a square of side 10a that is centered at the
center of R1, where a is the length of R1. Lemma 3.1
implies that the number of j for which l(G′

j) intersects R̄
is bounded by a constant. It follows that the number of
disks in T1 that belong to D0(Gj) for such j is bounded
by a constant, since |D0(Gj)| ≤ 12.

Now consider the disks in T1 that belong to D0(Gj)
for j such that l(G′

j) does not intersect R̄. Any such disk
intersects l(G′

j) as well as R1, so it must have radius at
least a. It follows from Lemma 2.1 that the number of
such disks is also bounded by a constant.

We conclude that |T1| ≤ β for a large enough
constant β. �

It is immediate from Lemma 3.2 that after the call
DC(S, k, ∅) completes, Table(P, k, ∅) contains a k-cover
for P whose cost is at most cost(OPT), that is, an
optimal k-cover.

Theorem 3.1. There is a polynomial time algorithm
that, given a set P of points in the plane and an integer
k ≥ 1, returns an optimal k-cover of P .

3.1 Relaxing the Assumption on the Computa-

tional Model. We now remove the assumption made
in deriving Theorem 3.1 that the costs of two candidate
solutions can be compared in polynomial time, and ob-
tain an approximation algorithm. Let OPT continue to
denote an optimal k-cover for the point set P . Suppose
that for each disk D ∈ D, we are given a proxy cost
pcost(D) ≥ 0 which is some rational number. Define
the proxy cost pcost(D′) of a set D′ ⊆ D of disks to be
the sum of the proxy costs of the disks in D′.

Let us modify the procedure DC(R, κ, T) so that in
Step 12, it compares proxy costs rather than actual
costs. That is, the modified predicate checks if

pcost(D0∪Table(P ∩R1, κ1, T1)∪Table(P ∩R2, κ2, T2))

is less than pcost(D′). We also consider the proxy cost
of the special disk I to be infinity. Arguing along the
lines of the previous section, we conclude:

Lemma 3.3. After the call to the modified procedure
DC(S, k, ∅) completes, Table(P, k, ∅) contains a k-cover
for P whose proxy cost is at most pcost(OPT), the proxy
cost of OPT.

Suppose that the coordinates of the input points
P are integers whose binary encoding takes at most
L bits. Given our tolerance parameter ǫ > 0, we
compute for each disk D ∈ D a rational number that
lies in the interval [radius(D), (1 + ǫ)radius(D)] and
set pcost(D) to be this number. This computation
is readily accomplished in time polynomial in L and
log 1

ǫ for a single disk D. With the proxy costs set in
this manner, we conclude from Lemma 3.3 that after
the call to the modified procedure DC(S, k, ∅) completes,
Table(P, k, ∅) contains a k-cover for P whose cost is at
most (1 + ǫ)cost(OPT).

Finally, it is straightforward to ensure that the com-
putation of the canonical lines and the lines bounding
the rectangles that are encountered as arguments of our
recursive algorithm takes time that is polynomial in the
input size of the problem (and independent of ǫ). Also,
predicates such as testing whether a disk D ∈ D con-
tains a point p ∈ P , or testing whether a disk D ∈ D
intersects a rectangle that is encountered in the course
of the algorithm are also readily implemented in poly-
nomial time.

Theorem 3.2. There is an algorithm that, given a set
P of points in the plane, an integer k ≥ 1, and a
parameter 0 < ǫ < 1, runs in time polynomial in the
input size and log 1

ǫ , and returns a k-cover of P whose
cost is at most (1 + ǫ) times the cost of an optimal k-
cover.

Acknowledgements

We thank Chandra Chekuri for valuable suggestions and
the anonymous referees for their feedback.

References

[1] S. Arora. Polynomial-time approximation schemes for

Euclidean TSP and other geometric problems. Proceed-
ings of the IEEE Symposium on Foundations of Com-
puter Science, 1996, 2–12.

[2] H. Alt, E. Arkin, H. Bronnimann, J. Erickson,
S. Fekete, C. Knauer, J. Lenchner, J. Mitchell, and
K. Whittlesey. Mininum-cost coverage of points by

disks. Proceedings of the Annual Symposium on Com-
putational Geometry, 2006, 449–458.

[3] Y. Bartal. Probabilistic approximations of metric

spaces and its algorithmic applications. Proceedings of
the IEEE Symposium on the Foundations of Computer
Science, 1996, 184–193.

[4] M. Bern and D. Eppstein. Approximation algorithms

for geometric problems. In D. Hochbaum (Ed.), Ap-
proximation algorithms for NP-hard problems, PWS
Publishing Company, 1997, pages 296–345.

[5] V. Bilo, I. Caragiannis, C. Kaklamanis, and P. Kanel-
lopoulos. Geometric clustering to minimize the sum of

cluster sizes. Proceedings of the European Symposium
on Algorithms, LNCS vol 3669, 460–471, 2005.

[6] M. Charikar and R. Panigrahy. Clustering to minimize

the sum of cluster diameters. Journal of Computer and
Systems Sciences, vol. 68 (2), 417–441, 2004.

[7] E. D. Demaine, J. S. B. Mitchell, and
J. O’Rourke. The open problems project,

Problem 33: Sum of square roots,
http://maven.smith.edu/~orourke/TOPP/P33.html.

[8] S. R. Doddi, M. V. Marathe, S. S. Ravi, D. S.
Taylor, and P. Widmayer. Approximation algorithms

for clustering to minimize the sum of diameters. Nordic
Journal of Computing, Vol 7(3), 185–203, 2000.

[9] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight

bound on approximating arbitrary metrics by tree met-

rics, Proceedings of the ACM Symposium on the The-
ory of Computing, 2003, 448–455.

[10] M. Gibson, G. Kanade, E. Krohn, I. Pirwani, and
K. Varadarajan. On metric clustering to minimize the

sum of radii. Manuscript, 2007.
[11] N. Lev-Tov and D. Peleg. Polynomial time approxima-

tion schems for base station coverage with minimum

total radii. Computer Networks 47 (2005) 489–501.
[12] J. S. B. Mitchell. Guillotine subdivisions aprpoximate

polygonal subdivisions: A simple polynomial-time ap-

proximation scheme for geometric TSP, k-MST, and

related problems. SIAM Journal on Computing, 28(4):
1298–1309.

[13] J. Qian and C. A. Wang. How much precision is needed

to compare two sums of square roots of integers?,
Information Processing Letters 100 (2006): 194–198.

