
Decomposing Coverings and the Planar Sensor Cover Problem

Matt Gibson Kasturi Varadarajan

August 17, 2009

Abstract

We show that a k-fold covering using translates of an arbitrary convex polygon can be decom-
posed into Omega(k) covers (using an efficient algorithm). We generalize this result to obtain
a constant factor approximation to the sensor cover problem where the ranges of the sensors
are translates of a given convex polygon. The crucial ingredient in this generalization is a con-
stant factor approximation algorithm for a one-dimensional version of the sensor cover problem,
called the Restricted Strip Cover (RSC) problem, where sensors are intervals of possibly different
lengths. Our algorithm for RSC improves on the previous O(log log log n) approximation.

1 Introduction

Let us call an object (set) P in the plane cover-decomposable if there there exists a constant c > 0
(which may depend on P) such that any collection of translates of P , with the property that every
point in the plane has c or more translates covering it, can be partitioned into two covers. Pach
conjectured in the 1980s that every convex object is cover decomposable [8, 9], and this remains
open. Let us focus on a finite version of this definition and say that P is cover-decomposable if
there exists a constant c > 0 such that any finite collection of translates of P can be partitioned
into two sub-collections, so that each sub-collection covers every point in the plane covered by c or
more translates in the original collection.

In the 1980’s, Mani and Pach [7] showed that a unit disk is cover-decomposable (with the
constant c being 33.) Also in the 1980’s, Pach [8] showed that any centrally symmetric convex
polygon is cover-decomposable. Tardos and Tóth [14] showed somewhat more recently that any
triangle is cover-decomposable. Finally, a very recent result due to Pálvölgyi and Tóth [11] shows
that any convex polygon is cover-decomposable. The constant c in the results of [8] and [11]
depends on the convex polygon, in particular the number of its sides, and that is why these results
say nothing about the original conjecture of Pach. Examples of non-convex polygons that are not
cover-decomposable are known [10].

Motivated partly by questions in scheduling sensors [3], an extension of the cover-decomposability
question has recently attracted a lot of attention: Given a collection of translates of P and any in-
teger k, partition the collection into as many sub-collections as possible so that each sub-collection
covers every point covered by k or more of the original translates. That is, we would like to be
able to decompose a k-fold cover into as many disjoint covers as possible. While the original results
on cover-decomposability do yield non-trivial bounds for this question, these are usually far from
optimal. For instance, Tardos and Tóth [14] implies that a k-fold cover with translates of a triangle
can be partitioned into Ω(log k) covers.

1

In this line of work, Pach and Tóth [9] showed that a k-fold cover with a centrally symmetric
convex polygon P can be decomposed into Ω(

√
k) covers, where the constant as before depends on

P . Aloupis et al. [1] improved this result and obtained an optimal bound, showing that one can
obtain Ω(k) covers. Both of these results have corresponding efficient algorithms that compute the
desired decompositions. Aloupis et al. [2] consider other related problems.

The problem of decomposing multiple coverings seems to be harder if instead of a convex polygon
we have a unit disk. Pandit, Pemmaraju and Varadarajan [12] consider a special case where the
universe that needs to be covered is the same as the centers of the covering disks. For this version
of the problem, better known as the domatic partition problem for unit disk graphs [13], they show
that it is possible to compute Ω(k) disjoint covers in polynomial time.

1.1 Sensor Cover

The work on decomposing multiple coverings is related to a problem motivated by scheduling
sensors. Suppose we have a universe, which is simply some collection of points, and a set of sensors
such that each sensor covers some subset of the universe. Further suppose that each sensor is
powered by a battery and thus can only be turned on for some amount of time. We refer to this
amount of time as the sensor’s duration. We are interested in scheduling a start time to each of the
sensors such that the entire universe is covered for as long as possible. This problem was introduced
by Buchsbaum et al. [3] as the sensor cover problem. We only consider the non-preemptive case in
which once a sensor has been turned on, it will remain on until its duration has been depleted.

We now formally define the combinatorial sensor cover problem, followed by the geometric
instances that are the subject of this paper. We are given a finite universe U that we wish to cover,
and a set S of n sensors. For each sensor s ∈ S, we let R(s) ⊆ U denote the region that s covers.
We call this region the range of s. For each x ∈ R(s), we say that s is live at x. Each sensor s also
has a duration d(s) which is some positive integer.

A schedule of the set S of sensors is an assignment of a positive integer, called the start time, to
each sensor in some subset S′ ⊆ S. We will denote by t(s) the start time of sensor s. The sensors
in S \S′ are said to be unassigned. A sensor s that is assigned a start time t(s) is said to be active
at times {t(s), t(s) + 1, ..., t(s) + d(s)− 1}.

Let S be some schedule of S. A point x ∈ U is said to be covered at time t > 0 if there is
a sensor s such that x ∈ R(s) and s is active at time t. For each x ∈ U , define the duration of
x in the schedule to be M(S, x) = max{j : ∀j′ ≤ j,∃s ∈ S, s covers x at time j′}. (If no sensor
covers x at time 1, then define M(S, x) = 0.) The duration of the schedule S is defined to be
M(S) = minxM(S, x). The goal of the problem is to compute a schedule of maximum duration.

The load at a point x ∈ U is L(x) =
∑

s∈S:x∈R(s) d(s). The load of the problem instance is
L = minxL(x). Let OPT denote the duration of an optimal schedule. Clearly, OPT ≤ L, and thus
any approximation ratio that is with respect to L is also with respect to OPT .

A closely related problem to the sensor cover problem is the domatic partition problem. In this
problem, we are given a graph with the goal of finding the maximum number of disjoint dominating
sets. A dominating set is a subset of the vertices such that for each vertex in the graph, either
it is in the set or it has a neighbor in the set. Domatic partition can be viewed as a special case
of the sensor cover problem where the universe is the vertex set, each vertex of the graph is a
sensor, the range of each sensor is its corresponding vertex’s closed neighborhood, and each sensor
has unit duration. Feige et al. [5] show that it is NP-hard to approximate this problem to within

2

a log n-factor and give a simple randomized algorithm that achieves an O(log n)-approximation,
where n is the number of vertices in the graph.

As pointed by Buchsbaum et al. [3], the lower bound above given by Feige et al. implies that
general sensor cover cannot be approximated to better than a log n factor. On the positive side,
Buchsbaum et al. [3] present a poly-time algorithm for the sensor cover problem that returns an
O(log U) approximation. This algorithm extends an algorithm for the set cover packing problem
[5], which is the special case of the sensor cover problem with the duration of all sensors being 1.
In many applications, the sensors do not cover arbitrary subsets of the universe, but rather the
points in the universe lie in some geometric space and the sensors cover some geometric subset of
the universe. In such cases, we will see that it is possible to do better than the log n lower bound
for general sensor cover.

Restricted Strip Cover (RSC) Here, the universe U is a set of points on the real line, and
the range R(s) of each sensor s is an interval on the real line. The RSC was introduced and
studied by Buchsbaum et al. [3], who showed that it is NP-hard and give a polynomial-time
O(log log log n)-approximation algorithm, where n is the number of sensors. They show that their
algorithm does better for special cases of RSC. In particular, they show that their algorithm is a
(2 + ǫ)-approximation for any ǫ > 0 when the sensors are non-nested; this includes the case where
the ranges of all the sensors have the same size. They also give an example instance whose load is
4 but the duration of the optimal schedule is 3.

The RSC bears some resemblance to the well studied dynamic storage allocation [6, 4]. The
RSC problem can be viewed in the following way. We are given a set of rectangles, and we are
allowed to slide each rectangle vertically; the goal is to find a placement of the rectangles so that
we cover a horizontal strip that is as tall as possible. In the dynamic storage allocation problem, we
are also given a set of rectangles, each of which we are allowed to slide vertically; the goal is to find
a placement of the rectangles such that no two of them overlap and the rectangles are contained
in a horizontal strip that is as short as possible. The dynamic storage allocation problem admits
constant factor approximation algorithms [6, 4], and these are with respect to the load, where now
the load is the maximum of the pointwise loads. We refer the reader to [3] for a review of the
similarities of the RSC to other problems studied in the literature.

Planar Sensor Cover for Polygon Translates Here, the universe U is a set of points in ℜ2,
and the range R(s) of each sensor is a translate of a fixed convex polygon. In the remainder of
this paper, we will refer to this problem as simply the planar sensor cover problem. The results on
decomposing multiple coverings have a clear implication for the special case of the planar sensor
cover problem where all sensors have unit durations. For instance, the result of Aloupis [1] gives
a constant factor approximation for centrally symmetric polygons, since it decomposes an L-fold
cover into Ω(L) covers, thus yielding a schedule of duration Ω(L).

For the planar sensor cover problem with the durations of the sensors not being the same, the
best known result is the logarithmic approximation inherited from the combinatorial sensor cover
problem.

1.2 Our Contributions

Decomposing Multiple Coverings We obtain an optimal result for translates of an arbitrary
convex polygon:

3

Theorem 1. For any convex polygon P in the plane, there exists a constant α ≥ 1 so that for
any k ≥ 1 and any finite collection of translates of P , we can partition the collection into k/α
sub-collections, each of which covers any point in the plane that is covered by k or more translates
in the original collection. Such a partition can be computed by an efficient algorithm.

Our techniques build upon the recent work of Aloupis et al. [1] for centrally symmetric convex
polygons. (A polygon is centrally symmetric with respect to the origin if whenever it contains
point p it also contains −p.) A key idea of theirs is to focus on the level curves corresponding to
the wedges at the vertices of P . The interaction of these level curves can be complex, but they
show that is sufficient to work within a region where the interaction is much more controlled. It
is only for centrally symmetric convex polygons that they establish such nice properties of the
interaction. The notion of level curves is also central to our work, but the main point of departure
is the simplicity of the new way in which we handle the level curve interactions.

Restricted Strip Cover We improve upon the O(log log log n) approximation of [3] and give
the first constant factor approximation (a ratio of 5) for RSC. The work of [3] starts off with the
observation that if all the sensors have unit duration then it is possible to compute a schedule
whose duration is equal to the load of the instance. The case of non-uniform duration is handled
by reduction to several instances of the uniform duration case. The tool used for this is a technique
called grouping where several sensors of small duration are combined to form one sensor of large
duration. The question of how the groups are to be formed is addressed in a clever way, but
the reduction entails a non-constant loss in the load and hence the O(log log log n) approximation
factor.

We take a different and conceptually simpler approach here. Our algorithm is greedy and
schedules sensors one by one. The scheduling rule manages to ensure that we do not have more
than 5 sensors overlapping any particular point at one time. Hence we obtain a schedule whose
duration is at least a fifth of the load. One idea that the scheduling rule uses is that if there are two
sensors s and s′ such that R(s) is strictly contained in R(s′), we schedule s′ before we schedule s.
Another idea is to consider the duration of the sensors in an indirect way – for the next sensor to be
scheduled, the durations of the unscheduled sensors is irrelevant but only their ranges; however the
durations of the already scheduled sensors does play a crucial rule. Since our algorithm is greedy it
has a simple implementation with a reasonable running time. We have not attempted to optimize
the factor of 5 that our analysis guarantees.

Planar Sensor Cover We give a constant factor approximation for the planar sensor cover prob-
lem, where the range of each sensor is a translate of a convex polygon, improving upon the previous
best logarithmic factor. Essentially, we show that we can obtain a constant factor approximation
by invoking several instances of the RSC, one for each vertex of the convex polygon, which we solve
using our 5-approximation. Our greedy algorithm for RSC turns out to be exactly what is needed
to generalize the result of Theorem 1 to the case of non-uniform durations.

Organization of the Paper In Section 2, we recall crucial tools from previous work on the
problem of decomposing multiple coverings. In Section 3, we prove Theorem 1. In Section 4, we
present our constant factor approximation for RSC and obtain as a consequence the results on
planar sensor cover.

4

2 Decomposing Coverings: Preliminaries

It is convenient to prove Theorem 1 in its dual form as done in [14, 1]. Suppose we are given a
polygon P . Fix O, the centroid of P , as the origin in the plane. For a planar set T and a point x
in the plane, let T (x) denote the translate of T with centroid x. Let P̄ be the reflection through O
of the polygon P . For points p and x in the plane, p ∈ P (x) if and only if x ∈ P̄ (p).

Because of this transformation, it is sufficient for us to show that there exists a constant α ≥ 1
so that for any k ≥ 1 and any collection Q of points in the plane, it is possible to assign each point
in Q a color from {1, 2, . . . , k

α
}, so that any translate of P̄ with |P̄ ∩Q| ≥ k contains a point colored

i, for each 1 ≤ i ≤ k
α
.

Polygons to Wedges Denote the vertices of P̄ to be p0, p1, p2, . . . , pµ−1 in counterclockwise
order. Addition and subtraction of indices of these vertices will be taken modulo µ throughout the
paper. The set of indices between index i and index j in counterclockwise order are denoted [i, j].
We now transform the problem further, so that instead of dealing with translates of P̄ , we can deal
with translates of the µ wedges corresponding to the vertices of P̄ [9, 14, 1].

Let c be equal to half the minimum distance between two points on non-consecutive edges of
P̄ . We lay a square grid of side c on the plane; any translate of P̄ intersects β ∈ O(1) grid cells,
and each grid cell intersects at most two sides of a translate; moreover, if a grid cell does intersect
two sides of a translate, then these sides must be adjacent in P̄ .

For a subset (region) R of the plane and for a subset X of points, denote loadX(R) to be the
number of points in X that lie in R. We call this value the load of region R with respect to X.
Since each translate P̄ (u) intersects at most β grid cells, P̄ (u) must contain load at least k/β within
some grid cell if its load with respect to Q is at least k. We can therefore make the points of Q
within such a grid cell “responsible” for P̄ (u).

Since each grid cell intersects at most two edges of P̄ (u), it must be that the intersection of a
grid cell with P̄ (u) is the same as the intersection of the grid cell with a wedge whose boundaries are
parallel to two adjacent edges of P̄ (u). If one boundary of the wedge is parallel to the edge pi−1pi

of P̄ and the other is parallel with pipi+1 of P̄ , then we call the wedge an i-wedge. For a point q
in the plane, we denote Wi(q) to be the i-wedge with apex q. See Figure 1 for an illustration.

0 1

2 x1

W2(x2)

W1(x1)

x3

W0(x3)x2

(a) (b)

Figure 1: (a) Suppose this triangle is our polygon with vertices indexed accordingly. (b) A 0-wedge,
1-wedge, and 2-wedge with respect to the polygon.

Because of these observations, Theorem 1 is established by applying the following theorem to
the points Y within each grid cell G.

5

Ci(2)

Figure 2: An example of a level curve Ci(r) for r = 2. Note that any i-wedge with apex on Ci(2)
(e.g. the dotted wedge) contains load at least 2.

Theorem 2. There exists a constant α′ ≥ 1 so that for any k ≥ 1 and any collection Y of points
in the plane, it is possible to assign each point in Y a color from {1, 2, . . . , k

α′ }, so that any i-wedge

that contains k or more points from Y contains a point colored j, for each 1 ≤ j ≤ k
α
.

We prove Theorem 2 in Section 3. We assume that the point set Y is in general position – a
line parallel to a side of P̄ contains at most one point in Y . It is straightforward to perturb the
input to the original problem so that this assumption holds for Y .

Level Curves We will now define a boundary for an i ∈ {0, 1, . . . µ− 1} and positive integer r.
This boundary has the property that any i-wedge placed on or “inside” the boundary has load at
least r, and any i-wedge placed “outside” the boundary has load less than r. That is, the number of
points in Wi(x)∩Y for any x inside the boundary or on the boundary is at least r and is less than r
for any x outside the boundary. This boundary is called a level curve [1] and extends the definition
of boundary points [8, 9]. Let Wj

i be the set of apices of all i-wedges W such that loadY (W) = j.

For each i = 0, 1, . . . µ− 1, let the level curve Ci(r) be the boundary of the region W≥r
i =

⋃
j≥rW

j
i

for each i = 0, 1, . . . µ− 1.
Note that Ci(r) is a monotone staircase polygonal path with edges that are parallel to the edges

of an i-wedge. See Figure 2. We have the following observations:

Observation 3. For any x ∈ Ci(r), r ≤ loadY (Wi(x)) ≤ r + 1.

Observation 4. Any i-wedge W such that loadY (W) ≥ r contains an i-wedge whose apex belongs
to Ci(r).

Observe that one of the two extreme edges of the level curve Ci(r) is a semi-infinite ray parallel
to edge pi−1pi. Let hi denote the first point along this ray such that for all points y on the ray that
lie after hi, Wi(y)∩ Y = Wi(hi)∩ Y . We call hi the head of Ci(r). (Because of non-degeneracy, the
head is simply the origin of the ray.) The other extreme edge of Ci(r) is parallel to edge pipi+1.
Let τi denote the first point along this ray such that for all points y on the ray that lie after τi,
Wi(y) ∩ Y = Wi(τi) ∩ Y . We call τi the tail of Ci(r). See Figure 3.

2.1 Simple Algorithm for One Level Curve

Observation 4 implies that is sufficient to prove Theorem 2 for the i-wedges with apex on Ci(k), for
each 0 ≤ i ≤ µ−1. In order to do this, we will need a procedure that takes as input one level curve
Ci(k), a positive integer t, and a subset Q ⊆ Y . The input to the procedure has the guarantee

6

Ci(r)τi

hi

Figure 3: Level curve Ci(r) with hi and τi denoted.

y

Ci(k)

Figure 4: An example of an interval I(y) (in bold). Note that the i-wedges with apex on Ci(k) that
contain y are the dotted wedges and all wedges with apex “in between” the apices of the dotted
wedges.

that for any i-wedge W with apex on Ci(k), we have |W ∩Q| ≥ 2t. The goal is to output a partial
coloring of the points of Q with colors {1, 2, . . . , t} so that any i-wedge W with apex on Ci(k) (a)
contains a point colored j, for 1 ≤ j ≤ t, and (b) contains at most 2t colored points.

It is known [1] that such a procedure exists. The reason is that for any q ∈ Q, the set I(q) =
{u ∈ Ci(k)|q ∈ Wi(u)} of apexes of i-wedges containing q is an “interval” of Ci(k). See Figure 4
for an illustration. We consider these intervals in an order such that if interval I properly contains
interval I ′, then we consider I before I ′. Considering intervals in such an order, we add an interval
into our working set if it covers a point of Ci(k) that is not covered by previous intervals in the
working set. Notice that after all intervals have been considered, the working set forms a cover
of Ci(k). Now, we repeatedly throw out intervals from the working set that are redundant – an
interval is redundant if throwing it out of the current working set does not affect coverage of Ci(k).

The final non-redundant working set covers Ci(k), but also has no more than two intervals
covering any point of Ci(k). We give the color 1 to the points in Q that give rise to the intervals
in our working set. We repeat this process t − 1 more times. It is easy to verify that the overall
procedure, which we call computeCover(i,Q, t), successfully achieves properties (a) and (b). We
have the following observation whose second claim easily follows from the manner in which we pick
our non-redundant working set.

Observation 5. The partial cover computed by computeCover(i,Q, t) has the property that any
i-wedge with apex on Ci(k) has at most 2t colored points. Furthermore, if q and q′ are points in Q
such that q ∈Wi(q

′) (that is, I(q) properly contains I(q′)), then q′ is colored only if q is colored.

7

4

3

1
0

2

Figure 5: An example of a set Ai. In this example, A0 = {2} since only the side of P̄ parallel with
p2p3 has the qualifying property.

3 Decomposing Covers: Algorithm

To prove Theorem 2, we present an algorithm that produces the desired coloring. This is Algorithm
1, but we need to define a notion before it is fully specified.

Consider the natural linear ordering of the lines parallel to side pipi+1 of P̄ with the line through
vertices pi and pi+1 being smaller than the line through any of the other vertices of P̄ . For x, y ∈ ℜ2,
we define the partial order <i such that x <i y if the pipi+1 parallel line through x is less than the
pipi+1 parallel line through y.

For a vertex pi, let Ai denote the set of all indices j such that the intersection of P̄ with the
line parallel to pjpj+1 and through pi is only the point pi. See Figure 5 for an example.

Algorithm 1

1: Y ′ ← Y
2: for each i ∈ {0, 1, 2, . . . , µ− 1} do
3: L← min{loadY ′(Wz(x)) : x ∈ Cz(k) and z = i, i + 1, . . . , µ− 1}
4: for each c ∈ Ci(k) do
5: for each j ∈ Ai do
6: Let Xj(c) be the first L

2µ
points in Wi(c) ∩ Y ′ in decreasing order with respect to the

ordering <j .
7: X(c)← {Wi(c) ∩ Y ′} \⋃

j∈Ai
Xj(c)

8: Xi ←
⋃

c∈Ci(k) X(c)

9: Run computeCover(i, Xi,
L

64µ
).

10: Let Y ′ denote the unscheduled points.

Algorithm 1 calls computeCover(i,Xi, ti) for each 0 ≤ i ≤ µ−1. The set Xi in the i-th iteration
is an appropriately chosen subset of the points in Y not colored in iterations 0, 1, . . . , i− 1. At the
beginning of the i-th iteration, let L denote, as in the algorithm, the smallest number of uncolored
points in a j-wedge with apex on Cj(k), for i ≤ j ≤ µ− 1. The parameter ti is chosen to be L

64µ
,

and we have minc∈Ci(k) |Wi(c)∩Xi| ≥ L
2 (due to the manner in which Xi is chosen in the algorithm,

see Observation 8 below). After the call to computeCover(i,Xi,
L

64µ
), any i-wedge with apex on

Ci(k) contains points colored 1, 2, . . . , L/64µ. Thus, the algorithm produces a coloring as required
in Theorem 2, provided L ∈ Ω(k). This is established by the following key Lemma. It states that
L, which equals k before the 0-th iteration, drops by a factor of at most 5µ with each iteration.

Lemma 6. Suppose at the beginning of iteration i, all j-wedges with apex on Cj(k) have load at
least L from points in Y ′ for j ≥ i, where L is larger than some absolute constant. (Note that Y ′

always denotes the uncolored points in the algorithm.) After the i-th iteration of the algorithm, any
j-wedge Wj(x), for j > i, and with apex x on Cj(k) has load at least L

5µ
from points in Y ′.

8

Proof. There are two main cases to consider:

• pi and pj are antipodal vertices of P̄ – that is, there are parallel lines through pi and pj with
the convex polygon sandwiched between them.

• pi and pj are not antipodal vertices of P .

We use the following terminology for iteration i: for two distinct points q and q′, if Wi(q) ⊆
Wi(q

′), we say that q dominates q′. Notice that if q and q′ are both unscheduled before iteration
i, then q′ is scheduled in iteration i only if q is already scheduled. (This is Observation 5.) For
the rest of this proof, let Y ′ denote the points that are not scheduled just before iteration i, let Xi

denote set of candidate points that are eligible to be scheduled in iteration i (as constructed in the
algorithm), and let Yi denote the points that are actually scheduled in iteration i.

The analysis will rely heavily upon the following two observations.

Observation 7. For any z ∈ Ci(k), we have that loadYi
(Wi(z)) ≤ L

32µ
.

Observation 8. For any z ∈ Ci(k), loadXi
(Wi(z)) ≥ L

2 .

Observation 7 is a consequence of Observation 5. To see Observation 8, note that for each
c ∈ Ci(k), loadXi

(Wi(c)) ≥ loadX(c)(Wi(c)) ≥ L− µ · L
2µ

= L
2 .

Case 1: pi and pj are not antipodal vertices of P .
Let Wj(x) be as in the statement of the Lemma. The argument is trivial if Wj(x) ∩ Ci(k) = ∅.

So let us assume that Wj(x) ∩ Ci(k) 6= ∅. There are two cases – in the first, we encounter pj

after pi and before the vertices antipodal to pi when walking counter-clockwise around P̄ , and in
the second, we encounter pj after the vertices antipodal to pi and before pi. We will focus on
the first case, since the other is symmetric. Let z be the intersection point of the boundary of
Wj(x) and Ci(k). If Wj(x) does not contain in its interior the tail τi of the level curve Ci(k), then
Wj(x) ∩ Yi ⊆ Wi(z) ∩ Yi, and so loadYi

(Wj(x)) ≤ loadYi
(Wi(z)) ≤ L

32µ
. It follows that the load of

unscheduled points in Wj(x) after iteration i is at least

L− L

32µ
>

L

5µ
.

Let us therefore assume that Wj(x) does contain in its interior the tail τi of Ci(k). See Figure
6. Let a denote the point where the boundaries of the wedges Wi(z) and Wi(τi) intersect. If
loadXi

(Wi(a)) ≥ L
16µ

, then since loadYi
(Wi(a)) ≤ loadYi

(Wi(τi)) ≤ L
32µ

, there are unscheduled
points in Wi(a) after iteration i. Since any point in Wi(a) dominates points in Wj(x)∩ Yi that are
not contained in Wi(z) ∪Wi(τi), we conclude that Wj(x) ∩ Yi ⊆ (Wi(z) ∪Wi(τi)) ∩ Yi. Thus,

loadYi
(Wj(x)) ≤ loadYi

(Wi(z)) + loadYi
(Wi(τi)) ≤

L

16µ
.

Therefore there must be at least L− L
16µ

> L
5µ

unscheduled points left in Wj(x).

Let us therefore consider the case where loadXi
(Wi(a)) < L

16µ
. This means that loadXi

(Wi(τi)\
Wi(a)) > L

2 − L
16µ

> L
3 . Again, loadYi

(Wi(τi) \Wi(a)) ≤ loadYi
(Wi(τi)) ≤ L

32µ
, and this means the

load of the points in Wi(τi) \Wi(a) that are unscheduled after iteration i is at least L
3 − L

32µ
> L

5µ
.

But Wi(τi)\Wi(a) ⊆Wj(x), and this means that the load of the unscheduled points in Wj(x) after
iteration i is at least L

5µ
.

9

a τi

z

Wi(τi)

Wj(x)

Ci(k)x

Wi(z)

Figure 6: Illustration for the nonantipodal case.

Case 2: pi and pj are antipodal vertices of P .
Again, the argument is trivial if Wj(x) ∩ Ci(k) = ∅. So let us assume that Wj(x) ∩ Ci(k) 6= ∅.

Since loadY ′(Wj(x)) ≥ L, if loadXi
(Wj(x)) ≤ L

2 then Wj(x) will clearly have load at least L
5µ

after

iteration i. So assume that loadXi
(Wj(x)) > L

2 .
Consider the line parallel with pi−1pi through x and the line parallel with pipi+1 through x.

Note these lines are parallel with the boundaries of an i-wedge. Let Ht(x) denote the halfplane
consisting of all points y such that y ≤t x. Let W 1

j (x) = Hi−1(x) ∩Hi(x) ∩Wj(x). Let W 2
j (x) =

(Hi(x)∩Wj(x))\W 1
j (x). Let W 3

j (x) = (Hi−1(x)∩Wj(x))\W 1
j (x). See Figure 7 and Figure 8 for an

illustration. Note that W 1
j (x),W 2

j (x), and W 3
j (x) form a partition of Wj(x). Also note that W 1

j (x)

cannot be empty but W 2
j (x) or W 3

j (x) could be empty. Since these three sets form a partition of

Wj(x) and loadXi
(Wj(x)) > L

2 , it must be that one of the three sets has load at least L
6 from Xi.

We first handle the case when loadXi
(W 1

j (x)) ≥ L
6 and then conclude the proof with the case when

loadXi
(W 2

j (x)) ≥ L
6 . The case when loadXi

(W 3
j (x)) ≥ L

6 has a symmetric proof with the W 2
j (x)

case.

i-wedge j-wedge

W
1

j (x)

x W
3

j (x)

W
2

j (x)

(a) (b)

Figure 7: If we are working with the corresponding i-wedge and j-wedge (part (a)), then we obtain
the corresponding W 1

j (x), W 2
j (x), and W 3

j (x) (part (b)).

i-wedge j-wedge

W
1

j (x)

x

(a) (b)

Figure 8: If we are working with the corresponding i-wedge and j-wedge (part (a)), then W 1
j (x) =

Wj(x) and W 2
j (x) = W 3

j (x) = ∅ (part (b)).

Case 2(a): loadXi
(W 1

j (x)) ≥ L
6 .

Consider any point z ∈W 1
j (x)∩Ci(k). Let az denote the “leftmost” point where the boundaries

of W 1
j (x) and Wi(z) intersect, and let bz denote the “rightmost” point where the boundaries of

10

az

bz

x

Wi(z)

z

Rz

W 1

j (x)

Figure 9: Illustration for Case 2(a): the region Rz. Note that although this figure is drawn with
respect to a scenario as in Figure 7, the analysis still holds for the scenario as in Figure 8 (i.e. when
the boundaries of an i-wedge are not parallel with the boundaries of W 1

j (x)).

x

z1

z′az′

bz′ z2

Wi(z
′)

W 1

j (x)

Figure 10: Illustration for Case 2(a): the constructed point z′.

W 1
j (x) and Wi(z) intersect. Let Rz be the quadrilateral with vertices az, x, bz, and z. That is,

Rz = W 1
j (x) ∩Wi(z). Suppose that loadXi

(Rz) ≥ L
5µ

+ L
32µ

. Again, since loadYi
(Wi(z)) ≤ L

32µ
, and

all points in Rz are in Wi(z), Rz contains (unscheduled) load at least L
5µ

after iteration i. Since

Rz ⊆W 1
j (x), W 1

j (x) contains (unscheduled) load at least L
5µ

after iteration i, and we are done. See
Figure 9 for an illustration.

So we now assume that loadXi
(Rz) ≤ L

5µ
+ L

32µ
for each z ∈W 1

j (x)∩Ci(k). Since loadXi
(Wi(z)) ≥

L
2 , we must have loadXi

(Wi(az) ∪Wi(bz)) ≥ L
2 − (L

5µ
+ L

32µ
) > L

8 . Let z1 be the “leftmost” point

on Ci(k) ∩W 1
j (x), and let z2 be the “rightmost” point on Ci(k) ∩W 1

j (x). Notice that az1 is just

z1 itself, and so loadXi
(Wi(az1)) ≥ L

2 . Similarly, loadXi
(Wi(bz2)) ≥ L

2 . Let z′ be the last point on
Ci(k), while walking from z1 to z2, such that loadXi

(Wi(az′)) ≥ L
16 . Thus

loadXi
(Wi(bz′)) ≥ loadXi

(Wi(az′) ∪Wi(bz′))−
L

16
≥ L

16
.

See Figure 10 for an illustration.
Now consider any point z′′ ∈ W 1

j (x) \Wi(z
′). It must be that Wi(z

′′) either contains Wi(az′)

or contains Wi(bz′) which both have load in Xi of at least L
16 . Suppose that Wi(z

′′) contains
Wi(az′); the other case is similar. The points in Wi(az′) dominate z′′ and we will not schedule z′′

in iteration i until we have scheduled all points in Wi(az′)∩Xi. But since loadYi
(Wi(az′)) ≤ L

32µ
<

L
16 ≤ loadXi

(Wi(az′)), this means we will not schedule z′′.
It follows that W 1

j (x) ∩ Yi ⊆Wi(z
′) ∩ Yi, and thus loadYi

(W 1
j (x)) ≤ loadYi

(Wi(z
′)) ≤ L

32µ
. And

so the load of unscheduled points in W 1
j (x) after iteration i is at least L− L

32µ
≥ L

5µ
.

11

Case 2(b): loadXi
(W 2

j (x)) ≥ L
6 .

If W 2
j (x) ∩ Ci(k) = ∅, then the lemma trivially holds. So for now on, we will assume W 2

j (x) ∩
Ci(k) 6= ∅. Let z ∈ Ci(k) be a point such that Wi(z)∩W 2

j (x) 6= ∅. Note that both W 2
j (x) and Wi(z)

have a boundary parallel with the side pi−1pi. There are only two types of intersections between
these two wedges:

1. z ∈ W 2
j (x), the boundary of W 2

j (x) parallel with the side pj−1pj intersects both boundaries

of Wi(z), and the boundary of W 2
j (x) parallel with the side pi−1pi does not intersect with

Wi(z).

2. x ∈ Wi(z), the boundary of Wi(z) parallel with the side pipi+1 intersects both boundaries
of W 2

j (x), and the boundary of Wi(z) parallel with the side pi−1pi does not intersect with

W 2
j (x).

See Figure 11 for an illustration.

z
Wi(z)

W 2

j (x)

x x
Wi(z)

z

W 2

j (x)

(a) (b)

Figure 11: Illustration for case 2(b): (a) A type 1 intersection. (b) A type 2 intersection.

Let {v1, v2, v3, . . .} denote the points in Xi∩W 2
j (x) in decreasing order according to the partial

order <i. Let ℓ = max{t|vt ∈ Yi}. If ℓ ≤ L
10 then loadY ′(Wj(x)) ≥ L

6 − L
10 > L

5µ
after iteration i, so

assume that ℓ > L
10 .

Since vℓ ∈ Xi there is a u ∈ Ci(k) so that vℓ ∈ X(u) in iteration i of the algorithm. Suppose that
the intersection between Wi(u) and W 2

j (x) is a type 1 intersection. Let Tvℓ
= Wi(u) \ Hj−1(vℓ).

Note that since W 2
j (x) 6= ∅, it must be that j − 1 ∈ Ai. Combining this with the fact that

vℓ ∈ X(u), we know that Xj−1(u) ⊂ Tvℓ
⊂ Wi(u). (See Algorithm 1 for the notation.) Thus there

are at least |Xj−1(u)| = L
2µ

points from Y ′ in Tvℓ
. Since, loadYi

(Wi(u)) ≤ L
32µ

, there must be at

least L
2µ
− L

32µ
> L

5µ
unscheduled points left in Tvℓ

after iteration i. Since we are dealing with a

type 1 intersection, Tvℓ
⊂W 2

j (x), and thus W 2
j (x) will contain at least L

5µ
unscheduled points after

iteration i and the lemma holds. See Figure 12 for an illustration.
Now suppose that the intersection between Wi(u) and W 2

j (x) is a type 2 intersection. Consider

the region T ′
vℓ

= W 2
j (x) \Hi(vℓ). Since we are assuming ℓ > L

10 , it must be that loadY ′(T ′
vℓ

) ≥ L
10 .

Since we are dealing with a type 2 intersection, it must be that T ′
vℓ
⊂Wi(u). Since loadYi

(Wi(u)) ≤
L

32µ
, we have that loadYi

(T ′
vℓ

) ≤ L
32µ

and thus there will be at least L
10 − L

32µ
> L

5µ
unscheduled

points left in T ′
vℓ

after iteration i. Since T ′
vℓ
⊆ W 2

j (x), there must be (unscheduled) load at least
L
5µ

in W 2
j (x) after iteration i. See Figure 12 for an illustration.

12

x

Wi(u)

W 2

j (x)

u

vℓ

u

W 2

j (x)

vℓ

Wi(u)
x

(a) (b)

Figure 12: Illustration for case 2(b): (a) An illustration of Tvℓ
. (b) An illustration of T ′

vℓ
.

4 Restricted Strip Cover

We now describe our algorithm for the RSC which takes an instance consisting of sensors S and
universe U = {1, 2, . . . ,m} and returns a schedule S of the sensors. We assume without loss of
generality that m ≤ 2n. For a sensor s ∈ S, we denote the range of s to be R(s) = {ℓ(s), ℓ(s) +
1, . . . , r(s)} where ℓ(s), r(s) ∈ U . We will later show that the schedule produced by the algorithm
has duration at least L/5, where L is the load. The reader may wish to consult Section 1 for
additional notation used in the context of RSC. The algorithm starts with the empty schedule
where no sensor is assigned, and assigns a start time to one sensor in each iteration. We will also
denote the current schedule of the algorithm at any stage of its execution by S. We sometimes
refer to the elements of U as coordinates. We think of these coordinates lying on a horizontal line
and use the natural notion of a coordinate being to the left or right of another coordinate.

With respect to a schedule S, we say the sensor s dominates coordinate x to the right if s extends
as far to the right as possible (maximizes r(s)) among all sensors that have not been assigned and are
live at x. In the event of a tie, we take the sensor that extends as far to the left as possible. Further
ties are broken arbitrarily. The sensor that dominates coordinate x to the left is defined similarly.
Recall that for any x ∈ U , we denote M(S, x) = max{j : ∀j′ ≤ j,∃s ∈ S, s covers x at time j′} to
be the duration of x in the schedule S, and the duration of the schedule is M(S) = minxM(S, x).
For ease of description, define M(S, 0) = M(S,m + 1) =∞.

Algorithm 2
1: t← 0
2: S ← ∅
3: while TRUE do
4: t← M(S) + 1
5: Let i be the first uncovered coordinate at time t and let j be max {x ∈ U | all coordinates

in the interval [i, x] are uncovered at time t}.
6: Let s′ be the sensor that dominates i to the right. If s′ does not exist, go to step 9.
7: If s′ is not live at j, t(s′)← t and S ← S ∪ {s′}.
8: If s′ is live at j, let s′′ be the sensor that dominates j to the left. If M(S, i−1) ≥ M(S, j +1),

t(s′)← t and S ← S ∪ {s′}. Otherwise, t(s′′)← t and S ← S ∪ {s′′}.
9: Return S.

The algorithm for RSC is Algorithm 2. Let us denote by tf the duration of the final schedule
produced by the algorithm. At termination, there is a point x ∈ U so that M(S, x) = tf and there
is no unassigned sensor that is live at x.

13

Running Time We will iterate through the while loop at most n times because we schedule a
sensor in each iteration of the while loop. Each iteration of the while is readily implemented in
O(m + n) = O(n) time. Thus the algorithm runs in O(n2) time. It may be possible to improve the
running time by using data structures such as segment trees.

4.1 Approximation Ratio

For an instance S of RSC, let OPT denote the duration of an optimal solution for S. We have the
following theorem which we will prove in the remainder of this section.

Theorem 9. Given any instance S of Restricted Strip Cover, our algorithm returns a schedule S
such that M(S) ≥ OPT/5.

Lemma 10. Given some instance of Restricted Strip Cover S, let S be the schedule returned by
our algorithm. Let u, v ∈ S be any two, distinct sensors. If R(u) is strictly contained in R(v), then
u is scheduled after v and in fact t(u) ≥ t(v) + d(v).

Proof. Suppose that u and v are two unscheduled sensors such that R(u) is strictly contained in
R(v). Sensors are only scheduled when they dominate some coordinate to the left or to the right.
Suppose we want to find the sensor that dominates some coordinate i ∈ [ℓ(u), r(u)]. We will consider
both u and v, but will always prefer v to u from the definition of domination. Therefore, we will
schedule v before u and will not consider another sensor to dominate a coordinate in [ℓ(u), r(u)]
until after time t(v) + d(v).

For x ∈ U and t > 0, we define coverage(x, t) to be the number of sensors that cover x at time
t in the schedule output by our algorithm.

We need the following observation.

Lemma 11. If coverage(x, t) ≤ c for each x ∈ U and t > 0, then the duration tf of the schedule
we output is at least L/c.

Proof. At termination, there is a point x ∈ U so that M(S, x) = tf and there is no unassigned
sensor that is live at x. Thus, ctf ≥ L(x) ≥ L, and so tf ≥ L/c.

We will now show that coverage(x, t) ≤ 5 for each x ∈ U and t > 0. Theorem 9 then follows
immediately from this and Lemma 11.

In each iteration the algorithm schedules (assigns) a sensor s which is either s′ or s′′. Let us call
the corresponding interval [i, j] the interval for which s is scheduled. (Please refer to the algorithm
for what i and j stand for.) If s = s′, we call s a right going sensor to remember that it was chosen
to dominate i to the right. In this case, i was not covered at time t(s) before s was scheduled, but
i was covered at time t(s) after s was scheduled. We say that s = s′ closes i at time t(s). Similarly,
if s = s′′ we call s a left going sensor and say that it closes j at time t(s).

Lemma 12. For any x ∈ U and t > 0, coverage(x, t) ≤ 5.

Proof. Fix an x ∈ U and t > 0. If no sensor in the output schedule covers (x, t), then coverage(x, t)
is 0. Let us therefore suppose that some sensor covers (x, t), and let s0 denote the first scheduled
sensor that covers (x, t). Let us classify any other sensor s that covers (x, t) into exactly one of the
following four types: (1) s closes some i < x and is left going; (2) s closes some i < x and is right

14

Figure 13: There are 3 sensors covering (x, t). The first scheduled sensor to cover (x, t) is s0. The
next sensor to cover (x, t) is a type 2 sensor s1. Finally, (x, t) is covered by a type 4 sensor s2.

going; (3) s closes some i > x and is left going; (4) s closes some i > x and is right going. We show
that there are at most two sensors of types 1 and 2 put together. A symmetric argument shows
that there are at most two sensors of types 3 and 4 put together.

Suppose that at some point the algorithm adds a sensor l of type 1. We claim that after l is
added no more sensors of types 1 or 2 are added. Suppose l closed i < x at time t(l). Consider
some sensor l′ that is live at x and that closes some i′ < x when it is later added by the algorithm.
Since l was chosen because it dominated i to the left, we can conclude that ℓ(l′) ≥ ℓ(l). (If this
were not the case, then l′ would necessarily be live at i and would have been preferred to l.)
Observe that the interval [ℓ(l), x] is covered by l for all times between t(l) and t(l)+ d(l)− 1. Since
i′ ∈ [ℓ(l′), x] ⊆ [ℓ(l), x], we must have t(l′) > t(l) + d(l) − 1 ≥ t. Thus l′ will not cover x at time
t. We conclude that once we schedule a sensor of type 1, we do not schedule any more sensors of
types 1 or 2.

We will therefore consider the case where the first sensor of type 1 or 2 is a type 2 sensor which
we denote r1. We need the following claim.

Claim 13. Let v be a sensor scheduled after r1 such that (a) v is live at x, (b) t(v) ≤ t, and
(c) v closes some z < x at time t(v). Let [x′, y′] be the interval for which v is scheduled. Then
y′ + 1 = ℓ(r1).

We prove the claim after completing the rest of the proof of the lemma. If the next sensor of
type 1 or 2 that we schedule after r1 is a type 1 sensor, we do not schedule any more sensors of
types 1 and 2. So let us assume that the next sensor of types 1 or 2 that we schedule after r1 is
a type 2 sensor r2. Since t ≥ t(r2) ≥ t(r1), and r2 closes some i′ < x at time t(r2), we must have
i′ < ℓ(r1), and thus ℓ(r2) < ℓ(r1). Now assume for the sake of a contradiction that there is some
sensor r3 of type 1 or 2 that is scheduled after r2. Reasoning as above, the interval [x′′, y′′] that it
is scheduled for has y′′ < ℓ(r2). Thus y′′ + 1 ≤ ℓ(r2) < ℓ(r1), a contradiction to Claim 13.

Thus we have completed the proof of the lemma and we now prove Claim 13.

15

Proof of Claim 13. First, we clarify to the reader that in the statement of the claim condition
(a) does not require v to cover (x, t), but only requires v to be live at x. Let v1, . . . , vk be the sensors
satisfying the hypothesis of the claim, ordered in the sequence in which they were chosen by the
algorithm. Let [xj , yj] be the interval for which vj is scheduled. Since t(r1) ≤ t(vj) ≤ t and vj

closes some point strictly less than x, we must have yj < ℓ(r1). We have argued that yj ≤ ℓ(r1)−1,
and we want to show yj = ℓ(r1)− 1. Suppose for the sake of contradiction that yj < ℓ(r1) − 1 for
some j, and consider the first j for which this happens.

When vj was being scheduled, yj + 1 is covered at time t(vj) by a sensor w. Clearly, it must be
that yj + 1 = ℓ(w). So we have ℓ(vj) < ℓ(w) < ℓ(r1).

If w was scheduled before r1, then r(w) < i′ < x where i′ is the point that r1 closes. Thus R(vj)
properly contains R(w) but vj is scheduled after w, a contradiction to Lemma 10.

If w was scheduled after r1, then w must be live at x, for otherwise R(vj) properly contains
R(w) and we derive a contradiction as above. Also, we must have r(w) < r(r1) for otherwise R(w)
properly contains R(r1) and we reach a contradiction. Since r(w) < r(r1), w closes some i < ℓ(r1).
Thus w is scheduled after r1, t(w) ≤ t(vj) ≤ t, w is live at x, and w closes some point strictly to
the left of x. Thus w = vj′ for some j′ < j. If j = 1, we have reached a contradiction. We therefore
assume j > 1. We observe that w cannot be a left going sensor, because vj is also live at the point
i that w closes, and would have been preferred to w otherwise since ℓ(vj) < ℓ(w). Since j′ < j, we
have yj′ + 1 = ℓ(r1). Thus M(S, yj′ + 1) ≥ t at the time w = vj′ is being scheduled. Since w is
right going, we must have M(S, xj′ − 1) ≥ M(S, yj′ + 1) ≥ t at the time w is being scheduled. Let s
denote the sensor that covers xj′ − 1 at times t(w), t(w) + 1, . . . , t when w is being scheduled. We
have r(s) = xj′ − 1 < xj′ < x ≤ r(vj). Now vj closes some point i′′ ∈ [xj, yj] at time t(vj), and
since t ≥ t(vj) ≥ t(w), i′′ cannot be in R(s). Since i′′ ≤ yj = ℓ(w) − 1 ≤ xj′ − 1 = r(s), it must
be that i′′ < ℓ(s). So ℓ(vj) ≤ i′′ < ℓ(s) and we have already argued that r(vj) > r(s). So R(vj)
properly contains R(s) but vj is scheduled after s, a contradiction to Lemma 10.

The following observation about our algorithm for RSC is evident from the analysis.

Observation 14. Suppose that we stop our algorithm once the duration of the schedule becomes
greater than equal to t. Then the total load of all the scheduled sensors that are live at some point
x of the universe is at most 5(t + dmax), where dmax is the maximum duration of any input sensor.

4.2 Implication for Planar Sensor Cover

Here we generalize Theorem 1 to show that given an instance of the planar sensor cover problem, we
can compute a schedule whose duration is within a constant factor of the load. The proof proceeds
along similar lines, and we only need an analog in the non-uniform duration case of the procedure
computeCover() in Section 2.1. Now our algorithm for RSC furnishes just such an analog, with
Lemma 10 and Observation 14 being the equivalent of Observation 5. The rest of the proof follows
from a careful but fairly mechanical modification to the proof of Theorem 1. We conclude with a
statement of our constant factor approximation for planar sensor cover:

Theorem 15. For any given convex polygon, there is a polynomial time algorithm for the planar
sensor cover problem (with ranges being translates of the convex polygon) that computes a schedule
whose duration is within a constant factor of the load of the instance.

16

Acknowledgment

The work on this paper was partially supported by NSF CAREER award CCR 0237431.

References

[1] G. Aloupis, J. Cardinal, S. Collette, S. Langerman, D. Orden, and P. Ramos, “Decompo-
sition of multiple coverings into more parts,” in SODA ’09: Proceedings of the Nineteenth
Annual ACM -SIAM Symposium on Discrete Algorithms. Philadelphia, PA, USA: Society for
Industrial and Applied Mathematics, 2009, pp. 302–310.

[2] G. Aloupis, J. Cardinal, S. Collette, S. Langerman, and S. Smorodinsky, “Coloring geometric
range spaces,” Discrete Comput. Geom., vol. 41, no. 2, pp. 348–362, 2009.

[3] A. L. Buchsbaum, A. Efrat, S. Jain, S. Venkatasubramanian, and K. Yi, “Restricted strip
covering and the sensor cover problem,” in SODA ’07: Proceedings of the eighteenth annual
ACM-SIAM symposium on Discrete algorithms. Philadelphia, PA, USA: Society for Industrial
and Applied Mathematics, 2007, pp. 1056–1063.

[4] A. L. Buchsbaum, H. J. Karloff, C. Kenyon, N. Reingold, and M. Thorup, “Opt versus load
in dynamic storage allocation,” SIAM J. Comput., vol. 33, no. 3, pp. 632–646, 2004.

[5] U. Feige, M. M. Halldórsson, G. Kortsarz, and A. Srinivasan, “Approximating the domatic
number,” SIAM J. Comput., vol. 32, no. 1, pp. 172–195, 2003.

[6] J. Gergov, “Algorithms for compile-time memory optimization,” in SODA ’99: Proceedings
of the tenth annual ACM-SIAM symposium on Discrete algorithms. Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics, 1999, pp. 907–908.

[7] P. Mani and J. Pach, “Decomposition problems for multiple coverings with unit balls,”
Manuscript, 1986.

[8] J. Pach, “Covering the plane with convex polygons,” Discrete & Computational Geometry,
vol. 1, pp. 73–81, 1986.

[9] J. Pach and G. Tóth, “Decomposition of multiple coverings into many parts,” Comput. Geom.,
vol. 42, no. 2, pp. 127–133, 2009.

[10] D. Pálvölgyi, “Indecomposable coverings with concave polygons,” Discrete and Computational
Geometry, 2009.

[11] D. Pálvölgyi and G. Tóth, “Convex polygons are cover-decomposable,” Discrete and Compu-
tational Geometry, 2008.

[12] S. Pandit, S. Pemmaraju, and K. Varadarajan, “Approximation algorithms for domatic parti-
tions of unit disk graphs,” To appear in APPROX, 2009.

[13] S. V. Pemmaraju and I. A. Pirwani, “Energy conservation via domatic partitions,” in MobiHoc
’06: Proceedings of the 7th ACM international symposium on Mobile ad hoc networking and
computing. New York, NY, USA: ACM, 2006, pp. 143–154.

17

[14] G. Tardos and G. Tóth, “Multiple coverings of the plane with triangles,” Discrete & Compu-
tational Geometry, vol. 38, no. 2, pp. 443–450, 2007.

18

