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We examine a situation in which a decision-maker executes a sequence of resource allocation decisions
over time, but the availability of the indivisible resources at future epochs is uncertain due to actions
of competitors. We cast this problem as a specialized type of stochastic knapsack problem in which the
uncertainty of item (resource) availability is induced by competitors concurrently filling their own re-
spective knapsacks. Utilizing a multi-period bounded multiple-choice knapsack framework, we introduce
a general discrete stochastic optimization model that allows a nonlinear objective function, cardinality
constraints, and a knapsack capacity constraint. Utilizing a set of greedy selection rules and agent-based
modeling to simulate the competitors' actions, we solve the problem with a stochastic ruler approach
that incorporates beam search to determine item selection of the types specified by the solution rep-
resentation. We illustrate the computational effectiveness of our approach on instances motivated by a
sports league draft as well as generic problem instances based on the knapsack literature.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

We consider a sequential decision-making problem in which a
decision-maker (DM) and a collection of competitors take turns (ac-
cording to a prespecified order) allocating indivisible resources. Due
to the actions of its competitors, the DM faces uncertainty regarding
the availability of resources at future decision epochs, thereby pos-
sibly impacting the decision at the current epoch. Instances of this
problem arise in applications in which participants make one-at-a-
time allocation decisions which affect the future choices of the other
competitors. Such a situation arises in sports league drafts [4,13], po-
litical cabinet appointments [6], and the distribution of assets from
an estate [28].

In a professional sports league draft, competing franchises se-
quentially select athletes from a common pool in order to upgrade
their respective rosters. Once an athlete is selected by a franchise,
this player is no longer eligible for selection in the remainder of
the draft process. To apportion cabinet ministries among constituent
political parties, parliamentary democracies have used sequential
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appointment of various posts [5]. The selection ordering of the po-
litical parties is typically based on a characteristic such as party size
so that the larger political parties have the opportunity to select pre-
ferred ministry positions (and perhaps more positions overall). Sim-
ilarly, the distribution of an estate may be administered by having
heirs select, in a sequence based on age, the specific items to fulfill
their inheritance. We generalize the application-specific considera-
tions (constraints, objective, etc.) of resource allocation subject to
sequential competition by casting this problem as a specialized type
of stochastic knapsack problem in which the uncertainty of item
(resource) availability is induced by competitors concurrently filling
their own respective knapsacks.

The notion of sequential selection under competition-induced
uncertainty characterizes a sequential game. A sequential game (also
called a stochastic game or a Markov game) is a decision process
with multiple participants in which each participant makes a de-
cision at discrete points of time called decision epochs [16]. In a
general sequential game, the participants simultaneously deter-
mine their decisions at each epoch; these actions are not revealed
to the group until the end of the epoch after all participants have
executed their actions. In our treatment, we consider a special
case in which the participants execute their selections sequen-
tially according to a priority ordering (previously established by a
bidding process or some other mechanism external to the actual
selection process) so that each participant is aware of all previous
selections.
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Sequential games conceptually generalize Markov decision pro-
cesses [24] and game theory [14], and consequently suffer the similar
fate of general intractability as the number of participants and pos-
sible actions increase. To solve our specialized stochastic knapsack
problem, we present a discrete stochastic optimization approach uti-
lizing thestochastic ruler algorithm [30,1] and an agent-based simu-
lation of the competitors' actions [3] to overcome the computational
challenges. This paper makes a contribution with respect to heuris-
tic methodology by presenting the first metaheuristic hybridizing
a stochastic ruler algorithm, beam search, and agent-based mod-
eling within a simulation–optimization framework. This stochastic
optimization approach is also the first to explicitly consider the
competition-induced uncertainty in a resource allocation problem
with sequential competition.

The remainder of this paper is outlined as follows. In Section 2,
we present a stochastic knapsack formulation of our problem and we
provide details of our solution approach. We provide computational
experience in Section 3 to demonstrate our approach. We summarize
the paper in Section 4 with concluding remarks and a discussion of
future work.

2. Discrete stochastic optimization model

As a classical combinatorial optimization problem with applica-
tion in many disciplines, the knapsack problem and its variants are
the subject of extensive research literature [20,17]. The objective of
a knapsack problem is to select items from a given set in order to
maximize the total reward subject to constraints on knapsack ca-
pacity dimensions. The generalized multiple-choice knapsack problem
further partitions the set of candidate items into classes and enforces
constraints on the number of items which can be selected from each
item class [17]. Of particular relevance is the bounded multiple-choice
knapsack problem, a special case of the generalized multiple-choice
knapsack problem which places upper and lower bounds on the
number of items which can be selected from each item class. In this
paper, we consider amulti-period boundedmultiple-choice knapsack
problem in which a decision-maker must make selections at deci-
sion epochs over time and the availability of items at future epochs is
uncertain due to the actions of competitors who sequentially make
selections to fill their own respective knapsacks. For brevity, we will
refer to this problem as the knapsack problem with sequential com-
petition (KPSC).

With regard to the consideration of uncertainty, the research lit-
erature contains work on two distinct stochastic knapsack problems
(SKP), the “dynamic” and the “static” versions. In a dynamic SKP,
items stochastically arrive over time and must be accepted or re-
jected upon arrival without knowledge of the items that will be
available for consideration in the future [26,9,18]. The KPSC differs
fundamentally from the dynamic SKP. In contrast to the dynamic
SKP, the KPSC assumes that the DM has full knowledge of the set of
items available for selection and all items are available at the initial
decision epoch.

Henig [15], Carraway et al. [7], and Morton and Wood [22] ad-
dress static integer SKP formulations in which the reward of each
item is an independent normal random variable, the item weights
are deterministic, and the objective is to maximize the probability
of meeting a total return threshold. Morton and Wood [22] also con-
sider a Monte Carlo approximation procedure to solve static SKPs
with general distributions on the random rewards. It is possible to
formulate the KPSC as a special case of a static multi-period SKP
with random rewards in which the likelihood of an item being un-
available at a decision epoch is reflected in the probability of a zero
reward. Solving such a formulation, however, requires the ability to
evaluate an exponential number of scenarios (and the correspond-
ing probabilities of these scenarios). In this paper, we present an

alternative formulation that facilitates the application of a
simulation-based heuristic approach.

The KPSC uniquely combines the features of uncertainty and
multiple-choice constraints in a multi-period setting. To formally
present the KPSC,we introduce some notation. Let M= {1, . . . ,M} be
the set of participants, where participant 1 denotes the decision-
maker. For convenience, let C=M\{1} be the set of the DM's com-
petitors. DefineK as the set of distinct item types andLk as the set
of items of type k ∈K. For k ∈K and l ∈Lk, denote the lth item of
type k as ikl. The individual reward associated with ikl from the per-
spective of participant m ∈M is rmkl . For each k ∈K, we order the
items ik1, ik2, . . . , ik|Lk| such that r1k1� r1k2� · · · � r1k|Lk|. The capacity
of participant m's knapsack is given by the scalar bm, and item ikl
consumes akl units of the knapsack capacity if selected. In addition,
there are upper and lower bounds on the allowed number of items
of type k in participant m's knapsack, umk and �

m
k , respectively.

Within the context of a sports draft, the distinct item types cor-
respond to the various player positions or skills. Sports teams are
composed of specific player positions that demand specific skill sets
or player types. For instance, a baseball team is made up of pitchers,
outfielders, shortstops, etc; American football teams require quarter-
backs, offensive linemen, wide receivers, etc. With few exceptions,
the player skills required to play one position do not translate well
to other positions. Because sports teams are constantly trying to fill
vacancies in their rosters (due to player retirements, free agent de-
partures, injuries, etc.), each team tends to enter the draft with a
specific set of positions for which it would like to acquire players in
the draft. The upper and lower bounds on the number ofplayers of
position k to be selected by team m, umk , and �

m
k , represent team m's

preferences. The salary demands of a selected player may also be an
important factor, especially in sports leagues (such as Major League
Baseball) which do not level the playing field between small- and
large-market franchises by enforcing a league-wide salary cap [19].
We express financial considerations by assuming that each team m
has a fiscal budget of bm units and the selection of player ikl requires
an expenditure of akl units.

The stochastic nature of the KPSC is due to the DM's lack of
knowledge regarding the future selections of its competitors and
the corresponding uncertainty about the availability of items at fu-
ture decision epochs. Let T be the finite number of decision epochs
at which the participants execute item selections for their respec-
tive knapsacks. At each decision epoch t ∈ {1, . . . , T}, the DM and
competitors sequentially select items, in a prespecified order, to
insert into their respective knapsacks. Without loss of generality,
we assume that the DM makes the first selection at each decision
epoch. We assume that the number and order of competitors mak-
ing a selection at each decision epoch t is known, but these pa-
rameters may vary across decision epochs. Denote the ordered set
of competitors making a selection at decision epoch t as Rt ⊆M.
For t ∈ {1, 2, . . . , T} and d ∈ {1, 2, . . . , |Rt|}, we denote the selection
of item ikl (for some k ∈ K and l ∈ Lk) by the dth competitor
in the sequence at decision epoch t as ytd = ikl. As each competi-
tor's actions are typically not known a priori by the DM (or the
other competitors) with certainty, ytd is a discrete random variable
whose distribution is dependent on the stochastic process, �̃td =
{y11, y12, . . . , y1|R1|, y21, y22, . . . , y2|R2|, . . . , yt1, yt2, . . . , yt,d−1}, describing
all of the item selections prior to the dth selection at decision epoch
t. Note that yt1 corresponds to the DM's selection at decision epoch
t, for t = 1, . . . , T. Furthermore, we denote a realization of �̃td as �td.

Determining an optimal selection strategy is difficult due to the
large number of possible action choices and scenarios facing the DM.
To help overcome this complexity, rather than specifying the par-
ticular item to select at each decision epoch, we define the vector
x= (x1, . . . , xT ) to be the DM's selection policy, where xt ∈K specifies
the item type that the DM selects at decision epoch t. Setting xt=k ∈
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K does not specify the selection of a specific item, ikl for some l ∈
Lk, but rather only outlines a strategy of selecting an item of type k
at decision epoch t; the actual item of type k the DM selects at deci-
sion epoch t will depend on the observed realization of �̃t1. Given a
realized selection sequence, �t1, and the DM's current item type spec-
ification, xt , the function g(�t1, xt) identifies the DM's item selection,
ixt ,�, at epoch t. The evolution of the selection process depends on x;

specifically �̃t1 is a function of g(�̃11, x1), g(�̃21, x2), . . . , g(�̃t−1,1, xt−1).
We notate the entire stochastic process encompassing all decision
epochs as �̃T (x) and correspondingly let �T (x) be a realization of an
entire selection process, i.e., all

∑T
t=1|Rt| total selections.

We define v1(i) to be a deterministic, real-valued function which
computes the value of the vector of items, i, inserted in the DM's
knapsack. The only assumption that we enforce on the form of v1 is
that it is non-increasing with increasing l ∈Lk. That is, if l<n (and
therefore r1kl� r1kn), then v1(i1, i2, . . . , ikl, . . . , iT )�v1(i1, i2, . . . , ikn, . . . , iT ).
We define A(k,�td) as the set of items of type k available at the dth
selection of epoch t in realization �td. At the onset of the problem, we
assume that all items are available to the DM and the competitors;
item unavailability in the future is due to the item being previously
selected by a participant. We formally state the KPSC as

max E�̃[v1(g(�̃T (x)))]
(1)

s.t.
T∑

t=1
I{xt=k}�u1k ∀k ∈K, (2)

T∑
t=1

I{xt=k}��
1
k ∀k ∈K, (3)

T∑
t=1

axt ,h(g(�t1,xt))�b1 ∀�T (x), (4)

g(�t1, xt) ∈A(xt ,�t1), t = 1, . . . , T, ∀�T (x). (5)

In (1), we define the objective function for our discrete stochas-
tic optimization problem, where g(�̃T (x)) is the vector correspond-
ing to (g(�̃11, x1), g(�̃21, x2), . . . , g(�̃T1, xT )). The general formulation of
(1) allows for the maximization of expected value as well as the
maximization of the probability of exceeding a specified threshold
value. We enforce the cardinality restrictions on the selection policy
via constraints (2) and (3); we express these restrictions solely as a
function of x and therefore can assure their satisfaction without con-
sideration of �̃T (x). Constraint (4) enforces the capacity limitation of
the knapsack, where h is a function which returns an item's index,
i.e., h(ikl)= l ∈Lk. Constraint (5) only allows the selection of avail-
able items. To guarantee the feasibility of a selection policy x with
respect to (4) and (5) for all possible realizations of �̃T (x), we as-
sume that there is a sufficient supply of items of each type that will
fit into the knapsack. The existence of a sufficient number of items
with zero or negative reward and zero consumption of knapsack ca-
pacity guarantees feasibility. For the applications and instances that
we consider, the practical implications of thismodeling assumption
are negligible.

2.1. Modeling competitor behavior

Capturing the nature of the uncertainty in item availability is a
critical aspect in the modeling and solution of the KPSC. We hypoth-
esize that each competitor m ∈ M considers its reward structure
{rmkl : k ∈K, l ∈ Lk} and the knapsack constraints (bm, umk , and �

m
k

∀k ∈K) to devise a selection policy, �m, that prescribes a selection
for every possible scenario. We assume that the DM has no informa-
tion regarding the reward structure of the competitors, but possesses
full knowledge of each competitor's knapsack capacity parameters.
The DM's lack of information regarding {rmkl : ∀m ∈ C, ∀k ∈K, ∀l ∈
Lk} induces uncertainty regarding �m for m ∈ C. That is, the DM

is uncertain about each competitor's item valuation and inferred se-
lection policy.

In our application to professional sports drafts, competing fran-
chises select players that they believe will maximize their chances
of winning (or maximize their revenue). The DM typically is aware
of its competitors' rosters and therefore knows the needs of its com-
petitors, but does not possess perfect knowledge of the competitors'
player valuations. In addition, each franchise's budget tends to be
common knowledge to all teams. We note that even if all partici-
pants possess perfect knowledge of each others' reward structures,
anticipating competitors' selection strategies is a difficult problem
when there is more than two teams [4].

A “top-down” approach to modeling this uncertainty relies on the
construction of estimates of conditional probability mass functions,
ptd(i|h)=P(ytd= i|�td=h), describing the behavior of the competitors.
We characterize the evolution of the selection process up to the dth
selection during decision epoch t as a product of these conditional
mass functions:

P(�td = {y11 = j1, y12 = j2, . . . , yt,d−1 = jt×(d−1)})
= p11(j1|{}) · p12(j2|{j1}) · p13(j3|{j1, j2})
. . . pt,d−1(jt×(d−1)|{j1, . . . , jt×(d−2)}).

The dependence of the uncertainty in the competitors' future se-
lections on the past selections greatly complicates the decision-
making problem. The construction of these probability mass
functions quickly becomes an obstacle as the number of possible sce-
narios over which they are defined combinatorially explodes, requir-
ing increasing amounts of data to reliably estimate these parameters
or forcing parameter estimation to rely upon subjective impressions.

As an alternative to explicitly defining probability mass functions
in a “top-down” modeling approach, we propose the use of agent-
based modeling (ABM) to directly simulate the selection policies of
each competitor in a “bottom-up” modeling approach. ABM is an ar-
tificial intelligence paradigm that incorporates autonomous agents
to simulate complex systems that arise in a variety of applications
[29,8]. In particular, for problems in which uncertainty is caused by
the actions of various constituents, agent-based simulation provides
the advantage of allowing direct imitation of behaviors which may
be hard to replicate solely through probability mass functions over
the range of aggregate outcomes. In addition, ABM allows the flexible
testing of the effect of varying the assumptions of individual agent
behavior on the emergent aggregate trends. Admittedly, a disadvan-
tage of ABM is the potential sensitivity to modeling assumptions on
individual agent behavior and the difficulty in validating these as-
sumptions by means other than empirical testing.

To implement our agent-based simulation, we assume that the
DM possesses a forecast on the aggregate behavior of the set of its
competitors, C. We assume that this aggregate forecast describes
each item's reward with a measure of central tendency, r̄kl, and a
measure of dispersion, �kl, for a probability distribution. This forecast
information, F= {r̄kl, �kl : ∀k ∈K,∀l ∈Lk}, forms the basis for the
DM's beliefs on how the selection process will evolve. We utilize
F to generate the DM's estimates of each individual competitor's
reward structure, i.e., {r̂mkl : ∀m ∈ C, ∀k ∈ K,∀l ∈ Lk}, that will
subsequently factor into the DM's forecasted competitor selections.

To generate the DM's forecasted selec-tions, we model each com-
petitor m as an agent that selects items according to a set of decision
criteria that considers the item weights ({akl : ∀k ∈K, ∀l ∈Lk}), es-
timated item valuations ({r̂mkl : ∀k ∈K, ∀l ∈Lk}) and the knapsack
constraints (bm, umk , and �

m
k ∀k ∈K). In general, the decision criteria

are based on rules that reflect the competitors' selection rationale.
Agent-based modeling allows the flexibility to tailor decision rules
for a particular application, e.g., if the DM is aware of tendencies of
a competitor, this knowledge can be incorporated.
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Algorithm 1 outlines the implementation of our agent-based sim-
ulation to forecast the evolution of the selection process. Algorithm 1
relies on the SELECT procedure, which contains the application-
specific logic for applying decision criteria to simulate the choices
of the competitors. In this paper, we consider greedy decision rules
based on various criterion to simulate competitor behavior; we
provide the specific definitions of SELECT for each of our applications
later in this paper.

Algorithm 1. Agent-based simulation of competition.

Input: A partial realization of the selection process, �td, up to the
dth selection of epoch t.
Output: A simulated realization of the entire selection process, �T .
Initialization:
�T ← �td.
for �= t, . . . , T do
for s= d, . . . , |R�| do
if s= 1 then
Call SELECT to set y�s = ix� ,l ∈A(x�,��s) for some l ∈Lx� .
A(x�,��,s+1)←A(x�,��s)\{y�s}
else
Call SELECT to set y�s = ikl ∈A(k,�ts) for some k ∈K, l ∈Lk.
A(k,��,s+1)←A(k,�ts)\{y�s}
end if
�T ← �T ∪ {y�s}.
end for
Set d= 1.
end for

Using the logic for simulating competitor behavior to determine
the availability of items, we can evaluate the DM's selection pol-
icy vector x. To evaluate x, we repeatedly simulate the selection
process. In each replication, we execute the DM's selection policy
x= (x1, . . . , xT ) by selecting an available item of type xt at each deci-
sion epoch t. Therefore, a critical step is appropriately translating xt ,
the item type specified for decision epoch t, into a specific item se-
lection of type xt , i.e., we need a suitable definition of g(�t1, xt). To ac-
curately evaluate x, ideally g(�t1, xt) would identify the item of type
xt for t=1, . . . , T, so that collectively g(�T (x)) maximizes v1(g(�T (x))).
Determining g(�t1, xt) is difficult, however, as the appropriate item
choice depends on the DM's item valuations, the competitors' item
valuations, and the competitors' selection policies. In the evalua-
tion of various candidate items of type xt for g(�t1, xt), we borrow
concepts from beam search to bound the computational expense of
evaluating the effectiveness of x.

Beam search is a heuristic approach that adapts the exact branch-
and-bound method by maintaining only the most promising nodes
and permanently pruning the rest to cap the computational effort
required to search vast enumeration trees. Because its use of a tree
structure naturally lends itself to addressing combinatorial problems
which consider sequences of decisions, beam search applications
include a variety of scheduling problems and sequencing problems
in both deterministic [27] and stochastic [11] settings.

Our approach can be viewed as a �-depth beam search of the
enumeration tree of candidate solutions corresponding to x. Beam
search pairs a breadth-first search of this enumeration tree with a
pruning mechanism governed by a combination of local and global
evaluations of x. A pair of parameters, � and �, called the filter width
and beam width, control the extent that we search the enumeration
tree via the appropriately defined local and global evaluations, re-
spectively. Via � and �, we systematically build upon a small number
of partial solutions in parallel in search of a good complete solution.

Algorithm 2 outlines the implementation of our beam search to
evaluate the value of a DM's selection policy. Algorithm 2 begins by
calling the LOCAL procedure to identify the best � candidate items for

x1 with respect to the local evaluation. In general, the local evalua-
tion evaluates candidate items according to a myopic criterion such
as item reward, item weight, etc. We provide application-specific
definitions of the LOCAL procedure later in the paper when we de-
scribe our applications. Each of the � items identified by the LOCAL
procedure is assigned to a partial solution, creating � candidate so-
lutions. For each of these � partial solutions, we execute a global
evaluation by simulating the remainder of the selection process us-
ing Algorithm 1. Based on the completed realizations of these � so-
lutions, we select the best � solutions with respect to v1(·). Starting
with these � solutions for the next iteration, we repeat the process
�− 1 more times, i.e., we probe the enumeration tree to a depth of
� epochs resulting in consideration of �+ (�− 1)�� candidate solu-
tions for x. For example if �= 2, for the � active solutions after the
first iteration, we fix the corresponding realization of �̃21 up to the
DM's next selection. For each of these � solutions, we then identify
� item candidates for x2. We simulate the remainder of the selection
process for each of these �� solutions to identify the best � solutions
with respect to v1(·).

Algorithm 2. Beam search for evaluating DM's selection policy.

Input: A selection ordering for a pool of competitors, M, and a
selection policy, x, for the DM.
Output: An estimate of v1(g(�̃T (x))).
Initialization:
Initialize �1

11 = {} as an empty realization.
Let check= 1.

for �= 1 . . .� do
if �>1 then
Set check=∞.

end if
for b= 1, . . . ,min(check,�) do
Call LOCAL to identify set of � candidate items
ix� l1 , . . . , ix�l� ∈A(x�,�

b
�1).

for a= 1 . . .� do
�ba

�2 ← �b
�1 ∪ {ix�la }.

Simulate the remainder of �ba
�2 using Algorithm 1to obtain �ba

T .
Compute the value of DM's selections in �ba

T , v1(g(�ba
T (x))).

end for
end for
Identify the realizations �1

T , . . . ,�
�
T with � largest values of

v1(g(�ba
T (x))) for b= 1, . . . ,min(check,�) and a= 1, . . . ,�.

for j= 1, . . . ,� do
�j

�+1,1 ← �j
T\�

j
�+1,2

end for
end for
From � completed scenarios, set estimate of v1(g(�̃T (x))) =
maxj=1,. . .,�{v1(g(�j

T (x)))}.

2.2. Stochastic ruler approach

The stochastic ruler method is a stochastic search algorithm that
replaces the maximization of the original objective function in (1),
and instead seeks to minimize

P{v1(g(�̃T (x)))�	(a, b)},

where 	(a, b) is a uniform random variable over the range (a, b) and
a and b are bounds on the range of observed values for v1(g(�̃T (x))).

To evaluate different selection policies for the DM, we implement
the best average estimate variant [2] of the stochastic ruler algorithm.
Algorithm 3 describes this procedure in the context of the KPSC. Let
C(x) be the number of times that the search algorithm visits x and
let V(x) be the cumulative value of x summed over all the visits to x.
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From the current selection policy at iteration 
, x
, the stochastic
ruler algorithm generates a candidate selection policy, z, fromN(x
),
the neighborhood consisting of the set of selection policies obtained
by applying a specified set of pertubation operators to x
. In this
paper, we randomly generate neighbors of a selection policy x =
(x1, x2, . . . , xT ) from a compound exchange neighborhood consisting
of two 1-exchanges. To describe the first 1-exchange, we define

U(x)=
⎧⎨
⎩k ∈K : u1k −

T∑
t=1

I{xt=k}>0

⎫⎬
⎭

and

O(x)=
⎧⎨
⎩k ∈K :

T∑
t=1

I{xt=k} − �
1
k >0

⎫⎬
⎭ .

By definition, U(x) is the set of item types which are eligible for
exchange into the solution policy and O(x) is the set of item types
eligible for exchange out of the solution policy. For a selection policy
x = (x1, x2, . . . , xT ), restricting the first 1-exchange move to take ad-
vantage of the slack in constraints (2) and (3) allows the exchange of
an item type j ∈ U(x) with xt ∈ O(x) for some 1� t�T, resulting in
x′ = (x1, . . . , xt−1, j, xt+1, . . . xT ) that is feasible with respect to the car-
dinality constraints in (2) and (3). To complete the compound move
and obtain the neighbor policy z, we exchange the positions of two
elements of x′ with probability q.

Recall that we ensure feasibility with respect to (4) and (5) for all
possible realizations of �̃T (x) by assuming |Lk| is sufficiently large
for all k ∈K so that a competitor m has a full array of item types
at every decision epoch; note that we can satisfy this requirement
by simply adding items with rmkl �0 and amkl = 0 if necessary. Thus,
we can construct an initial selection policy, x0, that is feasible with
respect to all constraints, and maintain this feasibility throughout
the local search.

Algorithm 3. Stochastic ruler algorithm.

Input: Data for a KPSC instance.
Output: A KPSC selection policy, x�.
Initialization:

Use forecast,F, to generate reward estimates, r̂mkl ∀m ∈M, k ∈
K, l ∈Lk.
Specify initial selection policy, x0, feasible with respect with
respect to (4) and (5).
Let V(x0)= 0 and C(x0)= 0. Let k= 0 and x� = x0.

for maxIter iterations do
Generate a neighbor policy z ∈ N(xk).
Let sampleCount = 1.
while sampleCount�M do

Compute an estimate of the value of the selection policy, �=
v1(g(�̃T (z))), via Algorithm 2.
V(z)← V(z)+ �.
C(z)← C(z)+ 1.
Generate a uniform random variable 	(a, b).
if �<	 then
Break while loop. Let xk+1 = xk.

end if
sampleCount← sampleCount + 1.

end while
if sampleCount =M + 1 then

Accept move to z; let xk+1 = z.
end if
k← k+ 1.

end if
Let x� = argmaxxV(x)/C(x).

3. Computational results

To demonstrate the potential of our algorithm, we perform com-
putational experiments on data sets with varying structure. The first
data set is based on the sports draft problem in Fry et al. [13].
We benchmark our results on instances of this data set, in which
the knapsack capacity constraint is non-binding and all participants
value players identically, against the deterministic dynamic pro-
gramming approximation of Fry et al. [13]. We also consider generic
data sets (with binding knapsack capacity constraints) by utilizing
the framework of Pisinger [23] to generate instances with two dif-
ferent assumptions on the reward structure. Except for slight differ-
ences in the implementation of the SELECT and LOCAL procedures to
account for the knapsack capacity constraints, we implement our al-
gorithm under the same conditions. To minimize the impact of selec-
tion order, we assume a serpentine selection order for the instances
of all data set types, i.e., the selection order of the competitors is re-
versed every other epoch. For the beam search of Algorithm 2, we
set �=1, �=2, and �=1. For the stochastic ruler of Algorithm 3, we
set M = 3, maxIter = 100× T, and q= 1.0.

To analyze the impact of the DM's forecast accuracy, we exam-
ine algorithm performance with varying levels of uncertainty in the
competitors' valuation of items. We consider four different levels of
uncertainty by varying �kl from 0 to 30 in increments of 10. In our
testing, we assume that F provides the mean, r̄kl, of a uniform ran-
dom variable with a range of �kl for all k ∈K, l ∈Lk.

As Algorithm3mentions, the DMuses the forecast,F, to generate
estimates of the competitors' valuations, r̂mkl for all m ∈M, k ∈K, l ∈
Lk. For purposes of creating a realization of an actual scenario, we
generate the true valuations of the competitors, rmkl for all m ∈M, k ∈
K, l ∈ Lk also by sampling from F. That is, for �kl >0, the DM's
estimates, {r̂mkl }, will generally vary from the true valuations, {rmkl },
but will be drawn from the same uniform distribution.

To obtain our computational results, we implement a rolling hori-
zon approach. We apply Algorithm 3 to determine the item type, x�

1,
that the DM should select at the current epoch. Then, we execute the
selection of the specific item, ix�

1,l
� (presumably stored during the al-

gorithm's implementation). Next, we “roll” the problem forward by
simulating an “actual” realization of the draft up to the DM's next
decision epoch by having each competitor m execute a selection (via
an appropriately defined SELECT procedure) according to its true val-
uations {rmkl }. Then, we re-apply our heuristic approach to obtain the
DM's next selection given this observed realization of the draft.

3.1. Sports league draft data set

We first consider KPSC instances explicitly motivated by a
sports league draft. A sports draft is a process in which franchises
comprising a sports league select, in a pre-determined order, eligi-
ble athletes to complement their existing rosters. The draft system
is utilized predominantly by North American professional sports
leagues to distribute athletes to franchises in the sports of base-
ball, football, basketball, and hockey. In general, a sports draft is
organized into several rounds (corresponding to KPSC decision
epochs) with the selection order of each round typically based on
each team's performance from the previous season. Barring special
circumstances such as trades and compensatory picks, each team
makes a single selection in each round.

Recall from Section 2 that we represent the different player po-
sitions via the set of different item types, K. Furthermore, the posi-
tional needs of each team m's roster is reflected through the lower
cardinality and upper cardinality requirements, �mk and umk . Prior to
the teams actually selecting players in a draft, teams determine val-
ues for each player based on the players' skills as measured through
physical and mental tests as well as players' past performances in
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the sport. Teams often value players differently due to inherent sub-
jectivity in scouts' evaluations as well as differences in the emphasis
that teams place on particular player traits. In terms of our model,
the value assigned to player l of position k by team m is rmkl .

Using the sports league draft data set from Fry et al. [13], we
evaluate our algorithm's performance against their benchmark re-
sults. Fry et al. [13] reduce a Markov decision process formulation of
a sports draft to a deterministic dynamic program (DP) in order to
attain tractability. The authors solve the deterministic DP through a
linear program to determine the DM's best draft strategy. While the
effects of uncertainty in draft forecasts are briefly considered by the
authors, these stochastic effects are not explicitly modeled.

Fry et al. [13] also examine common rules-of-thumb draft
strategies. Because of the overwhelming complexities involved in
draft-day decision making, sports teams often advocate simple
rules-of-thumb to execute draft strategies based on player valua-
tions and the positional needs of their team. As in Fry et al. [13], we
consider the following draft strategies:

I: Team drafts player ikl with the highest ordinal draft ranking, okl.1

II: Team drafts player ikl with largest rkl among positions which the
lower cardinality requirement has not been satisfied.

III: Team drafts player ikl with largest rkl among positions which
its lower cardinality requirement has not been satisfied unless
this player's draft ranking is more than 10 places below another
player ik′ l′ at a position k′ which the upper cardinality limit has
not been met, i.e., unless okl − ok′ l′ >10.

IV: Team drafts player ikl with largest rkl among positions which the
upper cardinality limit has not been met.

For the implementation of our algorithm on these instances, we
use these draft strategies to simulate competitor behavior via the
SELECT procedure as defined in Algorithm 4. We define SELECT pro-
cedure in Algorithm 4 so as to make an equitable comparison to
the approach in Fry et al. [13]. This SELECT procedure executes each
competitor's selection by randomly selecting one of the four draft
strategies, i.e., a competitor is equally likely to employ any of the
four draft strategies to guide its selection, while the DM selects the
player at the specified position xt with the largest reward.

Algorithm 4. SELECT procedure for simulating competitor selection
in Fry et al. [13] instances.

Input: A partial realization of the selection process, �td, up to the
dth selection of epoch t.
Output: An item for the dth selection of epoch t.
if d= 1 then

Return item ixt ,l = argmaxl∈Lxt
{rxt ,l}.

else
Randomly select a strategy from the set {I, II, III, IV}.
Return item ikl according to the selected strategy.

end if

For these instances, Algorithm 5 defines the local evaluation pro-
cedure utilized by Algorithm 2. At decision epoch t, Algorithm 5 al-
lows the DM to evaluate various items of the specified type xt by
considering both the individual item reward, r1xt ,l, as well as the or-
dinal draft ranking, oxt ,l, which is effectively a projection of how the
draft process will evolve. As the “best” choice of an item of type xt

1 Such rankings may be specific to each team or may be generic for all
opponents. As discussed in Fry et al. [13], there are scores of “draft experts” that
compile rankings of all players that are eligible for a sports draft, and who then
attempt to predict draft selections for each team. Here we use the same draft
ranking system as in Fry et al. [13] drawn from one such third-party “draft expert.”

Table 1
Upper and lower cardinal requirements and number of available items for each item
type k ∈K in the instances from Fry et al. [13].

k 1 2 3 4 5 6

um
k 2 4 4 2 2 2

�
m
k 1 2 2 1 1 1
Lk 45 92 115 48 32 32

at decision epoch t may not be the item with the largest r1xt ,l (due to
the uncertainty in how competitors will select items in the future),
the logic of Algorithm 5 identifies a set of � items that have large
reward values and/or are anticipated to be selected soon.

Algorithm 5. LOCAL procedure for Fry et al. [13] instances.

Input: A set of available items, A(k,�t1)
Output: A set of items ikl1 , . . . , ikl� ∈A(k,�t1)
Initialization:

Let L′k = {l ∈Lk : ikl ∈A(k,�t1)}.
Let u′ = u1k −

∑t−1
s=1I{xs=k}.

for a= 1 . . .� do
if (amod2)�0 or u′�1 then

ikla ← ikl′ such that l′ = argmaxl∈L′k {r
1
kl}.

else
Let L′′k = {l ∈L′k : ikl corresponds to an item with one of the
u′ largest rkl values }
ikla ← ikl′ such that l′ = argmaxl∈L′′k {okl}.

end if
L′k ←L′k\ikla .
u′ ← u′ − 1.

end for

For the sports league instances, we set |M| = 10, |K| = 6, T = 16,
bm = 16 ∀m ∈M, and akl = 1 ∀k ∈K, ∀l ∈Lk. Table 1 supplies the
upper and lower cardinality requirements for each position. For each
player selected to fulfill a lower cardinality requirement of position
k, the contribution to the DM's overall value function is 1× r1kl while
each player selected beyond the lower cardinality requirement for
position k contributes 0.6× r1kl. This valuation serves to differentiate
between players that are expected to be major contributors to the
team in terms of playing time versus those that will serve as backups
or limited-use players.

Fry et al. [13] test their deterministic dynamic programming ap-
proximation approach using varying levels of information regarding
the DM's knowledge of its competitor's selection strategies. In the
na�̈ve case, the authors assume that the DM has no knowledge of its
competitor's selection strategies and simply assumes that they will
select according to strategy III. In the imperfect information case, Fry
et al. [13] assume that the DM does not know the strategy of indi-
vidual competitors, but possesses some knowledge of the distribu-
tion of strategies implemented by the competitors in aggregate. In
the perfect information case, they assume that the DM knows the se-
lection strategy of each individual competitor. As Table 2 presents,
the approach of Fry et al. [13] is likely to outperform the myopic
draft strategies, especially as the accuracy of information about the
competitor's draft strategies improves. We note that in these five in-
stances, we assume that the forecast,F={r̄kl, �kl : ∀k ∈K,∀l ∈Lk},
is defined such that r̄kl= r1kl and �kl=0∀k ∈K,∀l ∈Lk. That is, each
team values the players the same as the DM, and the DM is aware
of this.

Table 2 compares the results from Fry et al. [13] to the results from
our stochastic ruler algorithm under varying amounts of information
availability. Note that results for our stochastic ruler algorithm dis-
play average solution values and standard deviations over 10 runs.
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Table 2
The stochastic ruler offers improvement over alternative heuristics on the five instances from Fry et al. [13].

DM selection approach Instance

1 2 3 4 5

I 2108.5 2112.6 2165.9 2075.3 2132.4
II 2135.9 2135.9 2175.1 2129.3 2158.7
III 2129.8 2124.4 2172.5 2119.4 2146.2
IV 2027.1 2046.8 2068.9 2027.9 2009.5
Fry et al. [13]—na�̈ve 2148.2 2164.5 2170.4 2158.0 2157.6
Fry et al. [13]—imperfect 2173.4 2184.8 2176.7 2162.0 2171.7
Stochastic ruler 2175.9 (4.7) 2189.5 (4.5) 2210.3 (8.7) 2189 (7.2) 2185.4 (5.0)
Fry et al. [13]—perfect 2187.4 2195.9 2240.5 2184.5 2192.1
stochastic ruler—perfect 2252.2 (29.4) 2275 (2.3) 2280.6 (7.6) 2289.0 (3.9) 2285.1 (7.7)

SR % improve. Fry et al. [13]–na�̈ve % 1.3 1.1 1.8 1.4 1.3
SR % improve. Fry et al. [13]–imperfect % 0.1 0.2 1.5 1.2 0.6
SR—perfect % improve. Fry et al. [13]—perfect % 3.0 3.6 1.8 4.8 4.2

Comparing the performance of the stochastic ruler to the na�̈ve ver-
sion of Fry et al.'s deterministic approach, we observe the benefit
of using agent-based modeling to simulate competitor behavior ver-
sus simply assuming all competitors follow a single fixed strategy.
In the imperfect case, the stochastic ruler algorithm achieves an av-
erage solution value that exceeds the value from the deterministic
approach of Fry et al. [13]. Comparing the stochastic ruler algorithm
to the deterministic approach of [13] when both algorithms have
perfect information regarding the competitors' selection strategies
shows that the stochastic ruler algorithm does a better job of taking
advantage of the improved information. All differences are signifi-
cant at the 99% confidence level except for the difference between
the stochastic ruler and Fry et al. [13]-imperfect on instance I, which
is significant at the 90% confidence level. The stochastic ruler al-
gorithm also generates solutions quite quickly for this sports draft
problem. The time required to make the first selection never ex-
ceeds 58CPUs, and the time to make all T selections averages 2.
7CPUmin.

3.2. Generalized data sets

To demonstrate the flexibility of our approach and specifically the
agent-based modeling component, we consider a pair of generalized
data sets. These data sets ostensibly represent instances of sports
drafts inwhich a budgetary constraint is represented by the knapsack
capacity. We utilize the framework of Pisinger [23] to create data sets
with two different reward structures. In the generalized data sets,
the DM does not have perfect information regarding its competitors'
reward structures (unlike the data set from Fry et al. [13] in which
all participants share the same valuations).

To model the selections of the competitors in the presence of a
binding knapsack capacity constraint, we consider a set of decision
rules based on the criterion from various greedy algorithms for the
multidimensional 0–1 knapsack problem [12]. The first step in simu-
lating ytd, the selection of competitor m at the dth selection in epoch
t, is to identify a subset of item types, Km

td ⊆ K, for considera-
tion. We hypothesize that the criterion for identifying appealing item
types for item selection may consider the cardinality constraints on
these types. We introduce a random element in the construction of
Km

td ⊆K by defining two binary random variables, Z� and Zm, that
shape the rationale of the competitor's selection. If Z� = 1, the com-
petitor focuses on item types for which the lower bound require-
ment has not been satisfied; otherwise, the competitor considers all
item types for which the upper bound limit has not been met. If the
competitor indeed focuses on item types for which the lower bound
requirement has not been satisfied, the indicator Zm ∈ [0, Z�] further
refines whether or not item selection should consider the number of

items of type k that still need to be selected. Competitor m chooses
item ikl ∈A(k,�td) for k ∈Km

td in the dth selection of epoch t that
maximizes its utility function, �m

kl . In Appendix A, we provide de-
tailed specifications for Km

td and �m
kl as well as the definitions of the

SELECT and LOCAL procedures that utilize them.

3.2.1. Uniform data set
Utilizing the structure of the weakly correlated instances in

Pisinger [23], we consider a set of uniformly generated KPSC data
sets. We randomly generate integer reward values, r̄kl, from the
interval [1, 100], for all k ∈ K, l ∈ Lk. We randomly generate
the corresponding capacity consumption, akl, from the interval
[r̄kl − 10, r̄kl + 10], for all k ∈ K, l ∈ Lk. We assume |K| = 10,
|Lk| = 100 for all k ∈K, and |M| = 30. Integer cardinality bounds
are randomly generated such that umk ∈ [1, 5] and �

m
k ∈ [1,umk ] for all

m ∈M, k ∈K. To calibrate the length of the selection process with
the number of available items, we set T =maxm∈M{

∑
k∈K�

m
k }. We

also set bm = 
r̄T� for all m ∈ M, where r̄ is the average r̄kl value
over k ∈K,l ∈Lk.

For each of the four levels of forecast uncertainty, we randomly
generate five instances corresponding to different realizations of
competitors' true valuations, rmkl , and the strategies that they imple-
ment at each selection. Note that the instances with no variability,
�kl=0 for all k ∈K, l ∈Lk, still have a random element because the
selection strategy implemented by a competitor at each selection is
determined by randomly generating Z� ∈ [0, 1] and Zm ∈ [0, Z�].

Randomly selecting one of the participants to serve as the DM, we
implement the stochastic ruler algorithm five times on each instance
and present the average and standard deviation of these five runs.
To benchmark the performance, we implement four combinations of
the greedy heuristics defined by the criteria given by (6) and (7) in
Appendix A. The first three greedy approaches fix the values Z� and
Zm in various combinations. The fourth greedy approach assumes
that Z� and Zm are randomly generated in the respective ranges, i.e.,
the DM determines a selection strategy in the same manner as the
competitors.

Tables 3–6 demonstrate the performance of our algorithm at
varying levels of forecast uncertainty. For each instance, we denote
the best average solution in boldface font. The average solution ob-
tained by the stochastic ruler approaches dominates the alternatives
for all instances. The column titled % Improve provides the percent
improvement provided by the stochastic ruler over the next best al-
ternative. In addition, the stochastic ruler approach is consistent as
reflected by the relatively low �p value, which is the pooled esti-
mate of variability [21] over the entire set of 25 runs at each level of
forecast accuracy. Furthermore, Tables 3–6 show that the stochastic
ruler approach is increasingly more effective relative to the greedy
approaches as forecast accuracy wanes.
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Table 3
Five instances of uniformly generated data set with �kl = 0 ∀k ∈K, l ∈Lk .

Random-I instance Stochastic ruler (Z� , Zm) Randomized Improve

 � (1,1) (1,0) (0,0)  �

1 1061.6 7.2 1030.0 1039.0 1039.0 1041.4 5.5 2.1
2 1058.8 8.6 1040.0 1040.0 1040.0 1041.4 2.7 1.8
3 1062.2 5.6 1038.0 1051.0 1051.0 1054.0 3.7 1.1
4 1057.4 4.8 1046.0 1038.0 1038.0 1035.2 4.1 1.8
5 1053.2 6.8 1047.0 1050.0 1050.0 1044.4 7.3 0.3

̄ 1058.6 1040.2 1043.6 1043.6 1043.3 1.4
�p 6.7 6.9 6.3 6.3 4.9

Table 4
Five instances of uniformly generated data set with �kl = 10 ∀k ∈K, l ∈Lk .

Random-II instance Stochastic ruler (Z� , Zm) Randomized % Improve

 � (1,1) (1,0) (0,0)  �

1 1079.2 3.8 1049.0 1042.0 1042.0 1034.4 9.8 2.8
2 1078.4 15.0 1024.0 1023.0 1023.0 1023.2 1.6 5.0
3 1071.8 8.8 1024.0 1048.0 1048.0 1046.4 8.8 2.2
4 1083.0 6.5 1043.0 1040.0 1040.0 1039.0 11.0 3.7
5 1080.2 10.3 1030.0 1057.0 1057.0 1044.8 10.9 2.1

̄ 1078.5 1034.0 1042.0 1042.0 1037.6 3.4
�p 9.6 11.4 12.5 12.5 9.1

Table 5
Five instances of uniformly generated data set with �kl = 20 ∀k ∈K, l ∈Lk .

Random-III instance Stochastic ruler (Z� , Zm) Randomized % Improve

 � (1,1) (1,0) (0,0)  �

1 1097.2 13.4 1002.0 1021.0 1021.0 1026.2 8.7 6.9
2 1107.6 5.5 1049.0 1039.0 1039.0 1034.4 12.9 5.3
3 1118.2 6.1 1013.0 1020.0 1020.0 1023.4 12.6 8.8
4 1108.4 8.1 1025.0 1062.0 1062.0 1070.4 12.3 4.2
5 1114.8 6.6 1029.0 1041.0 1041.0 1030.4 9.3 6.6

̄ 1109.2 1023.6 1036.6 1036.6 1037.0 6.5
�p 8.4 17.7 17.2 17.2 11.3

Table 6
Five instances of uniformly generated data set with �kl = 30 ∀k ∈K, l ∈Lk .

Random-IV instance Stochastic ruler (Z� , Zm) Randomized % Improve

 � (1,1) (1,0) (0,0)  �

1 1132.6 6.3 1013.0 1043.0 1043.0 1025.2 10.0 7.9
2 1131.4 10.3 1040.0 1051.0 1051.0 1061.0 20.3 8.1
3 1124.2 23.2 1051.0 1038.0 1038.0 1033.2 8.6 7.7
4 1124.8 11.5 1048.0 1056.0 1056.0 1049.2 11.9 6.1
5 1127.0 7.5 1034.0 1057.0 1057.0 1028.8 10.1 6.2

̄ 1128.0 1037.2 1049.0 1049.0 1039.5 7.0
�p 13.2 15.1 8.3 8.3 12.9

As previously mentioned, the solution values presented in
Tables 3–6 correspond to solutions obtained in a rolling horizon
fashion. The time to determine the DM's first selection takes the
longest as the stochastic ruler must search over a solution policy
vector of full length T. However, the time to make the first selection
never exceeds 10CPUmin for the uniformly generated data set, and
the time to make all T selections averages 23.8CPUmin. Thus, over
40 percent of the computation time is spent determining the first
decision. The amount of time to determine subsequent decisions
decreases quickly as the length of the solution policy decreases.

3.2.2. Heterogeneous item type data set
In the second set of instances, we consider |K| = 6, |M| = 10,

and T = 16. In contrast to the data set in Section 3.2.1, we vary,
by item type, the distribution from whence we generate r̄kl for all
k ∈K, l ∈ Lk. Table 7 describes the beta distribution parameters
from whence we generate the r̄kl values for the respective k ∈K.
Upon generating the r̄kl values, we set akl = (r̄kl/10) + 5 + �, where
� ∈ [−5, 5]. We set bm = 300 for all m ∈ M. Table 8 contains the
upper and lower cardinality requirements as well as the number of
available items of each type k ∈K.
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For each of the four levels of forecast uncertainty, we randomly
generate 10 instances corresponding to different realizations of
competitors' true valuations, rmkl , and the strategies that they imple-
ment at each selection. As in our first set of instances, we randomly
select one of the participants to serve as the DM, and we imple-
ment the stochastic ruler algorithm five times on each instance. We
benchmark the performance by comparing the stochastic ruler solu-
tion values to the same set of greedy heuristics used in Section 3.2.1.

Table 7
Distribution for generating r̄kl for heterogeneous item type data set.

k Beta distribution parameters

Shape 1 Shape 2 Lower bound Upper bound

1 0.95 1.3 10 360
2 0.65 2.0 20 350
3 1.10 1.4 10 220
4 1.40 2.6 0 180
5 1.10 1.4 75 160
6 1.2 2.0 75 165

Table 8
Upper and lower cardinal requirements and number of available items for each item
type k ∈K in the heterogeneous item type data set.

k 1 2 3 4 5 6

um
k 4 6 8 3 3 3

�
m
k 1 2 2 1 1 1
Lk 50 100 120 50 40 40

Table 9
Heterogeneous item type data set with �kl = 0 ∀k ∈K, l ∈Lk .

Hetero-I instance Stochastic ruler (Z� , Zm) Randomized % Improve

 � (1,1) (1,0) (0,0)  �

1 1874.88 16.85 1851.30 1851.30 1638.10 1839.62 66.34 1.3
2 1834.40 20.80 1853.00 1853.00 1598.90 1833.18 25.81 −1.0
3 1872.84 20.35 1862.60 1847.50 1653.30 1875.80 38.71 −0.2
4 1845.00 20.18 1847.60 1847.60 1606.10 1847.60 52.82 −0.1
5 1851.28 26.74 1845.60 1845.60 1595.90 1785.56 65.70 0.3
6 1882.64 13.36 1867.00 1867.00 1680.10 1859.20 7.74 0.8
7 1873.12 5.51 1842.80 1842.80 1671.50 1859.92 15.05 1.6
8 1851.88 24.62 1808.50 1808.50 1601.20 1746.56 19.96 2.4
9 1882.44 5.15 1866.60 1866.60 1678.90 1856.44 14.83 0.8
10 1877.48 30.15 1878.40 1878.40 1607.30 1834.60 52.82 −0.0

̄ 1864.60 1852.34 1850.83 1633.13 1833.85 0.7
�p 18.06 19.11 18.80 35.25 39.11

Table 10
Heterogeneous item type data set with �kl = 10 ∀k ∈K, l ∈Lk .

Hetero-II instance Stochastic ruler (Z� , Zm) Randomized % Improve

 � (1,1) (1,0) (0,0)  �

1 1894.88 15.63 1862.30 1862.30 1685.30 1780.86 50.18 1.7
2 1873.84 7.84 1836.20 1836.20 1637.90 1822.56 38.01 2.0
3 1914.24 10.44 1839.00 1872.70 1645.60 1854.74 37.90 2.2
4 1936.44 7.87 1947.00 1947.00 1702.30 1881.20 18.56 −0.5
5 1860.96 5.96 1863.80 1863.80 1623.00 1825.58 33.04 −0.2
6 1873.16 18.40 1866.80 1866.80 1600.70 1782.68 63.91 0.3
7 1892.12 27.69 1844.20 1891.80 1700.10 1838.24 31.34 0.0
8 1903.24 7.83 1882.20 1875.60 1658.50 1868.88 15.60 0.6
9 1891.68 12.82 1922.20 1922.20 1676.80 1909.70 13.44 −1.6
10 1886.24 22.58 1833.10 1833.30 1596.90 1804.08 36.72 2.9

̄ 1892.68 1869.68 1877.17 1652.71 1836.85 0.8
�p 15.34 38.06 35.36 38.52 36.98

Tables 9–12 demonstrate the performance of our algorithm on-
this data set at the varying levels of forecast uncertainty. For each
instance, we denote the best average solution in boldface font. In
Table 9, where the DM has no uncertainty regarding the competitors'
item valuations, the stochastic ruler's performance is very close to
that of the greedy strategies characterized by (Z�, Zm)=(1, 1) or (1, 0).
However, even in this case, the stochastic ruler solution averaged
over all 10 instances is superior to the next best alternative. In addi-
tion, the stochastic ruler approach consistently finds good solutions,
as evidenced by the relatively low �p value. The combination of good
average solutions and consistent performance across instances sug-
gests that the stochastic ruler is much more robust than the greedy
alternatives. Similar to the experiments on the uniformly generated
data set, Tables 9–12 show that the stochastic ruler approach is in-
creasingly more effective relative to the greedy approaches as fore-
cast accuracy decreases. We note that the percentage improvement
is not as large as in the uniformly generated data set as the vari-
ability introduced (as a percentage of the r̄kl values) is smaller in
the heterogeneous data set. Noting that the average item reward in
the heterogeneous item type data set is about three times as large
as the average item reward in the uniformly generated data set, the
results for Random-II and Hetero-IV are most comparable in terms
of percent variability. The similarity in the stochastic ruler's overall
percent improvement in these two cases (Tables 4 and 12) suggest
the robustness of the stochastic ruler algorithm.

As with our previous results, the solution values presented in
Tables 9–12 are obtained in a rolling horizon fashion. The time re-
quired to make the first selection never exceeds 54CPUs for the het-
erogeneous item type data set, and the time to make all T selections
averages 3.4CPUmin.
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Table 11
Heterogeneous item type data set with �kl = 20 ∀k ∈K, l ∈Lk .

Hetero-III instance Stochastic ruler (Z� , Zm) Randomized % Improve

 � (1,1) (1,0) (0,0)  �

1 1925.36 14.14 1844.40 1844.40 1661.30 1786.08 39.35 4.4
2 1915.56 8.59 1844.00 1889.60 1644.00 1754.50 95.39 1.4
3 1933.52 20.26 1861.40 1911.60 1665.70 1825.44 51.57 1.1
4 1865.56 14.82 1794.80 1794.80 1668.60 1818.08 14.37 3.9
5 1904.72 24.86 1896.00 1896.00 1633.30 1863.18 22.21 0.5
6 1903.44 11.36 1871.00 1873.40 1663.10 1830.94 32.39 1.6
7 1952.12 9.23 1901.40 1901.40 1664.10 1837.16 57.20 2.7
8 1905.24 15.29 1869.00 1869.00 1658.70 1855.28 32.67 1.9
9 1921.20 17.52 1864.90 1864.90 1654.40 1812.48 89.46 3.0
10 1907.98 28.00 1803.10 1803.10 1618.10 1787.44 45.38 5.8

̄ 1913.47 1855 1864.82 1653.13 1817.06 2.6
�p . 17.50 34.92 39.91 16.40 54.27

Table 12
Heterogeneous item type data set with �kl = 30 ∀k ∈K, l ∈Lk .

Hetero-IV instance Stochastic ruler (Z� , Zm) Randomized % Improve

 � (1,1) (1,0) (0,0)  �

1 1969.88 14.10 1794.40 1794.40 1644.80 1792.84 7.73 9.8
2 1930.80 17.46 1897.40 1897.40 1661.30 1820.78 77.71 1.8
3 1925.92 4.41 1851.90 1851.90 1597.40 1742.94 63.56 4.0
4 1893.36 30.02 1787.30 1807.90 1659.70 1766.16 70.96 4.7
5 1941.96 16.62 1852.40 1852.40 1628.90 1847.24 71.14 4.8
6 1973.68 14.80 1919.60 1919.60 1678.40 1899.76 35.36 2.8
7 1891.40 6.05 1806.80 1806.80 1567.50 1804.74 34.55 4.7
8 1933.20 2.58 1846.50 1846.50 1636.00 1775.82 70.21 4.7
9 1915.32 14.72 1841.80 1841.80 1646.80 1784.56 75.55 4.0
10 1942.60 16.43 1912.60 1912.60 1653.90 1892.44 16.59 1.6

̄ 1927.86 1853.8 1861.38 1639.23 1819.89 3.6
�p . 19.84 47.95 51.27 30.90 59.20

4. Conclusions and future work

We present a hybrid metaheuristic for addressing a multi-period
stochastic knapsack problem in which the availability of items in
future epochs is uncertain due to the presence of competitors. Rep-
resenting a solution as a vector identifying the item type to select
at each upcoming decision epoch (rather than a specific item) re-
duces the dimension of the solution space that is computationally
intractable via a direct, na�̈ve state space representation [13]. This
solution representation facilitates the development of an efficient
search heuristic. For a given item-type solution vector, we utilize
beam search principles to evaluate item candidates of the specified
types. The beam search in turn relies upon an agent-based model
that incorporates application-specific decision rules to simulate the
actions of competitors, which are unknown to the decision-maker.
Using the solution evaluations provided by the beam search algo-
rithm, a stochastic ruler algorithm governs the local search pro-
cess which generates neighbor solutions with a compound exchange
neighborhood. We demonstrate the effectiveness of our approach on
instances of three different types of data sets. Our approach compares
favorably to greedy heuristics, particularly as the decision-maker's
knowledge of the competitors' item valuations deteriorates.

To the knowledge of the authors, this is the first treatment of a
multi-period bounded multiple-choice knapsack problem in which
there is uncertainty of item availability induced by competitors.
The problem formulation and our proposed solution approach are
flexible enough to be applied to a variety of resource allocation prob-
lems under sequence-based competition. Future work includes ex-
ploring the use of our solution framework on related problems by
considering different objective function and constraint formulations.
In addition, we believe that there is potential for adaptive learning

techniques to be integrated into the solution approach, particularly
for the decision-maker to better anticipate the actions of the com-
petitors.

Appendix A.

In this appendix, we describe the constructs necessary for defini-
tion of the SELECT and LOCAL procedures for the generalized data sets
of Section 3.2. Specifically, we outline the method for determining
Km

td, the subset of item types considered by competitor m at the
dth selection of epoch t, and we define the functional form of the
opponents' utility functions, �m

kl .
Let Nm

td be the number of selection opportunities for competitor
m from the dth selection in epoch t to the end of the entire selection
process. Let imtd be the vector of items selected by competitor m up to
the dth selection in epoch t. Define ck(imtd) as a function providing the
number of items of type k that competitor m has selected up to the
dth selection in epoch t. While various functional forms are possible,
we compose the subsetKm

td as the set of item types k′ ∈K such that

k′ = argmax
k∈K

{(
Z� ∨ I{

Nm
td=

∑
j∈K(�mj −cj(imtd))

}
)
I{�mk >ck(imtd)}

+Zm(�mk − ck(i
m
td))
+ − I{ck(imtd)=umk }

}
. (6)

The first summand of (6) will be one if the competitor has not
selected the minimum number of type k items and it has been de-
termined that the competitor will select an item type for which the
lower bound has not been met (either because Z�=1 or because the
competitor must select such an item type in order to achieve feasi-
bility with respect to the lower cardinality requirement). The second
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summand will be positive only if the competitor has not selected the
minimum number of type k items and it has been determined that
the competitor is focusing on the degree to which the lower bound
has not been achieved. The third summand will be one for item type
k if the competitor has reached the upper bound on the number of
items of type k.

Before stating the criterion for determining competitor m's se-
lection from Km

td, we define some additional parameters. Let bm(imtd)
be the remaining capacity of competitor m's knapsack at the dth
selection in epoch t. Let Smtd be the number of selections until com-
petitor m's next selection after its current selection, ytd. We esti-
mate competitor m's opportunity cost of an item selection through
the construction of G(k,�td), the set of items of type k estimated
to be selected before competitor m's next selection (and therefore
unavailable to competitor m at future epochs). The method for con-
structing G(k,�td) ∀k ∈K must be simple and easily computed as
this procedure is implemented to forecast each competitor's selec-
tion. We construct G(k,�td) ∀k ∈K by considering items to be se-
lected before competitor m's next selection in decreasing order of
r̂mkl . As r̂mkl is static, this list of values only has to be sorted once in
a pre-processing step before the selection process begins. Further-
more, an item is only considered a candidate for potential selection
if it would fit into competitor m's knapsack. We also assume that
competitors will first consider their lower cardinality bounds. After
these requirements are fulfilled, the competitors will then consider
items with large reward values at positions which have not met their
upper cardinality bounds. Algorithm 6 outlines this procedure.

Algorithm 6. Heuristic for constructing G(k,�td)∀k ∈K.
Input: A partial realization of the selection process, �td, up to the
dth selection of epoch t.
Output: G(k,�td) ∀k ∈ K, collectively representing the items
expected to be selected before competitor m's next selection.
Initialization:
Let G(k,�td)= ∅ ∀k ∈K.
Let L={ik1l1 , ik2 l2 , . . .} ∀ikjlj ∈A(kj,�td) for some kj ∈K, ordered
such that r̂mkjlj � r̂mkj+1 lj+1 .

Let j= 1.
while

∑
k∈K|G(k,�td)|<Smtd do

if akjlj �bm(imtd) then
if |G(kj,�td)|<

∑
p∈M,p�m[�

p
kj
− ckj (i

p
td)] then

G(kj,�td)← G(kj,�td) ∪ {ikjlj }.
else
if

∑
k∈K|G(k,�td)| +

∑
k∈K

∑
p∈M,p�m[�

p
k − ck(i

p
td)]<Smtd and∑

p∈M,p�m[u
p
k − ck(i

p
td)]>0 then

G(kj,�td)← G(kj,�td) ∪ {ikjlj }.
end if

end if
end if
j← j+ 1.

end while

After constructing Km
td to limit the item types considered, we

determine the specific item selection of competitor m at the dth
selection in epoch t by modifying the greedy knapsack heuristics of
Dobson [10] and Rinnooy Kan et al. [25] to account for the uncertain
and dynamic nature of the KPSC. We assume that competitor m
selects item ikl ∈A(k,�td) for k ∈Km

td that maximizes �m
kl , where

�m
kl = I{akl � bm(imtd)}

⎡
⎢⎣

r̂mkl − max
n∈A(k,�td)\G(k,�td)

r̂mkn

(akl/bm(imtd))+ (1/Nm
td)+ (1/(umk − ck(imtd)))

⎤
⎥⎦ . (7)

In (7), I{akl � bm(imtd)} prevents the selection of an item which does
not obey the knapsack capacity constraint. The numerator of the

fraction in (7) calculates the opportunity cost of bypassing the selec-
tion of item ikl. The denominator of the fraction in (7) is a weighted
average of (i) the percentage of remaining item capacity that item
ikl would consume, (ii) the inverse ratio of the remaining number
of selections, and (iii) the inverse ratio of the remaining number of
type k items that the competitor can still feasibly select. Algorithm
7 summarizes the SELECT procedure which we utilize to simulate
competitors' selections.

Algorithm 7. SELECT procedure for simulating competitor selection.
Input: A partial realization of the selection process, �td, up to the
dth selection of epoch t.
Output: An item for the dth selection of epoch t.
Initialization:
Randomly generate Z� ∈ [0, 1] and Zm ∈ [0, Z�].
Let Km

td = {k′ ∈K : k′ satisfies (6) }.
Return ikl ∈A(k,�td) for k ∈Km

td that maximizes �kl as
defined by (7).

To assist the beam search in Algorithm 2 evaluate alternatives for
DM's selection of an item of type xt at decision epoch t, we outline
the LOCAL procedure with Algorithm 8. As the “best” choice of an item
of type xt at decision epoch t may not be the item with the largest
r1xt ,l, Algorithm 8 allows the consideration of items (that can be fea-
sibly inserted into the knapsack) by considering both the individual
item reward and the marginal item reward per unit consumption of
remaining knapsack capacity.

Algorithm 8. LOCAL procedure for generalized data sets.
Input: A set of available items, A(k,�t1)
Output: A set of items ikl1 , . . . , ikl� ∈A(k,�t1)
Initialization:

Let L′k = {l ∈Lk : ∀ikl ∈A(k,�t1)}.
Let b1t = b1 −∑t−1

s=1axs ,h(g(�s1,xs)) be the remaining capacity of
DM's knapsack.

for a= 1 . . .� do
if (amod2)�0 then

ikla ← ikl′ such that akl′�b1t and l′ = argmaxl∈L′k {r
1
kl}.

else
ikla ← ikl′ such that akl′�b1t and l′ = argmaxl∈L′k {r

1
kl/(akl/b

1
t )}.

end if
L′k ←L′k\ikla .

end for
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