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Abstract. We consider an optimization version of the image segmenta-
tion problem, in which we are given a grid graph with weights on the grid
cells. We are interested in finding the maximum weight subgraph such
that the subgraph can be decomposed into two ”star-shaped” images.
We show that this problem can be reduced to the problem of finding a
maximum-weight closed set in an appropriately defined directed graph
which is well known to have efficient algorithms which run very fast in
practice. We also show that finding a maximum-weight subgraph that is
decomposable into m star-shaped objects is NP-hard for some m > 2.

1 Introduction

An area of work that has recently attracted extensive attention in the pattern
recognition and computer vision communities is image segmentation. In this area
of work, we are given an image and are interested in developing algorithms that
are able to identify certain objects in the image. One important application of
image segmentation is medical imaging in which we are interested in developing
algorithms that can identify tumors, plan surgeries, measure tissue volumes, and
identify other health related issues. There are many other applications of image
segmentation including facial recognition and brake light detection.

Image Segmentation as an Optimization Problem. In an attempt to find a “good”
segmentation, the problem is often cast as an optimization problem, see for
example [1, 9, 10, 3, 4, 8, 6]. This often involves constructing a weighted grid graph
where the grid cells in the graph correspond to the pixels in the input image.
The weights are assigned in a way that captures the likelihood of a particular
pixel being in the object of interest, and then we attempt find some subset of
the grid that optimizes an objective function subject to some constraints. In this
context, a subset of the grid cells is often called a region. These constraints often
times incorporate information about the shape of the region we wish to identify.

⋆ This material is based upon work supported by the National Science Foundation un-
der Grant No. CCF-0830402 and Grant No. CCF-0844765 as well as by the National
Institute of Health under Grant No. R01-EB004640.



In many applications, the object that we wish to segment will have some
geometric structure, and thus we may be interested in finding an object that
satisfies some geometric constraints. There have been several results which show
that it is possible to develop algorithms which exploit some geometric structure
and can find an optimal region efficiently. Examples of such objects include
x-monotone regions, based monotone regions, rectilinear convex regions, and
star-shaped regions [3, 8, 7].

Regions that can be Decomposed into Regions with “Simple” Structure. In a
recent paper, Chun et al. [6] consider the maximum-weight region problem with
a twist on the constraints of previous work. They are interested in finding a
maximum-weight region that may not have simple geometric structure, but can
be decomposed into objects with simple geometric structure. We say that a subset
of the grid cells can be decomposed into m objects of a particular structure if and
only if there exists a coloring of the grid cells using m colors such that each of
the objects induced by the grid cells of each of the color classes have the desired
structure. Chun et al. give an efficient algorithm for computing the maximum-
weight region that is decomposable into base monotone regions corresponding
to some given k axis parallel base lines, and they give an efficient algorithm for
computing the maximum-weight region that can be decomposed into two digital
star-shaped regions with respect to two given “center” grid cells.

Digital Geometry Tools. One main challenge when dealing with objects in digi-
tal geometry is that many standard geometric objects and definitions from Eu-
clidean geometry do not have “trivial” counterparts in the digital setting. For
example, it is a non-trivial task to define line segments between grid cells in
the digital setting such that the line segments (1) satisfy some standard axioms
of Euclidean line segments and (2) “look comparable” to their corresponding
Euclidean line segments. Digital line segments that satisfy (1) are called con-
sistent digital line segments. An interesting question that was recently settled
is determining whether or not there exist consistent digital line segments which
are similar to their Euclidean counterparts. Chun et al. [7] showed that there
exists consistent digital rays (digital line segments which share a common end-
point) which satisfy all of the given properties and have asymptotically optimal
Hausdorff distance with their Euclidean counterparts. They left the following as
an open problem: determine if there are consistent digital line segments (line
segments with distinct endpoints) with a similar guarantee on the Hausdorff dis-
tance. This open problem was recently settled in the affirmative in a result due
to Christ et al. [5].

Our Contribution. Given a vertex-weighted grid graph, we consider the problem
of finding a region that can be decomposed into two star-shaped regions. Stated
more formally, we are given an n × n grid graph G (let N := n · n denote the
total number of grid cells in the grid). For each grid cell g in the graph, we
have a corresponding weight w(g) ∈ R. Given a subset of the grid cells V ′, we
define the weight of V ′ to be w(V ′) :=

∑
v∈V ′ w(v), and we call V ′ a region.



We are interested in finding a maximum weight region that can be decomposed
into two “star-shaped” regions. Recall that a region can be decomposed into two
star-shaped regions if we can color each of the grid cells in the region one of
two colors such that the grid cells of each color class are a star-shaped region. A
region R in the grid is star-shaped if there is a grid cell c ∈ R such that for any
grid cell r ∈ R, every grid cell in the digital ray dig(c, r) is in R (where dig(c, r)
is as defined in [5]). We say that a region R is star-shaped with respect to a grid
cell c′ if for every r ∈ R we have dig(c′, r) ⊆ R. Note that the only difference
between the definitions is that in the second definition we are specifying which
grid cell must be the “center” and in the first definition we allow any grid cell
in the region to be the “center”. See Figure 1 for an illustration of a region that
can be decomposed into two star-shaped regions and a region that cannot be
decomposed into two star-shaped regions.

(a) (b)

Fig. 1. (a) The shaded region is decomposable into star-shaped regions with respect
to the cells with the black dots in them. (b) This shaded region is not decomposable
into two star-shaped regions.

A dynamic programming algorithm was given for this problem by Chun et
al. [6] with running time O(N3) where N is the total number of grid cells in the
grid graph. Our main contribution is to prove the following theorem.

Theorem 1. Given a weighted two-dimensional N := n × n grid graph and
two grid cells c1 and c2, the problem of finding the maximum-weight region that
can be decomposed into a star-shaped region with respect to c1 and a star-shaped
region with respect to c2 is equivalent to computing a maximum-weight closed set
in an appropriately defined graph with O(N) vertices and O(N) edges.

Due to its similarities with the maximum-flow problem, a maximum-weight
closed set of a directed graph can be computed efficiently [12, 11]. The worst
case running time of our algorithm is O(N2 log N), and in practice the running
time is very fast and is easily implemented whereas the Chun et al. algorithm
is mainly of theoretical significance. Another strength of our technique is that
it could easily be extended to 3D if one were able to compute consistent digital
line segments in 3D (which is currently an open problem).



We also show that the problem of finding a region that is decomposable into
m star-shaped regions is NP-hard when the location of the m centers is not given.
The reduction is from planar vertex cover and involves embedding an instance of
planar vertex cover into an appropriately defined grid graph. The analysis takes
advantage of the properties of consistent digital line segments.

Organization of the Paper. In Section 2, we show that the problem of finding the
maximum weight region in a grid graph that can be decomposed into star-shaped
regions with respect to two given centers is equivalent to computing a maximum
weight closed set in an appropriately defined directed graph. In Section 3, we
give the results of experiments of our algorithm. In Section 4, we show that the
problem of finding a region that is decomposable into m star-shaped regions is
NP-hard when the location of the m centers is not given.

2 The Algorithm

Our key contribution is to show that finding the maximum-weight region in a
grid that can be decomposed into two star-shaped regions is equivalent to finding
a maximum-weight closed set in an appropriately defined directed graph. Given
a weighted, directed graph D = (V, E), a closed set is a subset of the vertices
C ⊆ V such that if u ∈ C and (u, v) ∈ E then v ∈ C. Intuitively, if C is a closed
set then there is no edge from a vertex in C to a vertex in V \ C. The weight
of a closed set C is simply the sum of the weights of the vertices in C. It is well
known that a maximum weight closed set can be computed in polynomial time
[12, 11].

We now will give a high level overview of the directed graph D that we
construct, and some intuition as to why finding a maximum weight closed set in
this graph is equivalent to a maximum weight region that can be decomposed
into two star-shaped regions in G. There are two “sections” of vertices in D, and
each each grid cell in G has exactly one vertex in each of these sections. The
vertices in a closed set from the first section will determine what grid cells are
in the first star in G, and the vertices in a closed set from the second section
will determine what grid cells are in the second star in G. There are three sets
of edges that we add to D. The first set of edges will have both endpoints in the
first section of vertices, and their purpose is to ensure that the vertices chosen
in the first section correspond with a star-shaped region with respect to c1 in
G. The second set of edges will have both endpoints in the second section of
vertices, and their purpose is to ensure that the vertices in the second section
correspond with a star-shaped region with respect to c2 in G. The final set of
edges will have one endpoint in the first section and the other endpoint in the
second section, and their purpose is to ensure that the two resulting stars in
G can be decomposed into two star-shaped regions. We assign weights to the
vertices in D in a way so that the weight of a closed set in D is equal to the
weight of the corresponding region (minus a constant) and vice versa.



Definitions. Given a digital ray dig(c, g) in G, we define the ray order of the
grid cells in dig(c, g) to be the natural ordering of the grid cells where c is first
in the ordering and g is the last in the ordering.

We will now define two stars over all of the grid cells in G, one with respect
to c1 and the other with respect to c2. These stars will be rooted trees over the
grid cells in G with c1 and c2 being the root of the stars respectively. Intuitively,
each path from the root to a leaf represents the grid cells in a digital ray that is
in the star. Let B be the set of “boundary” grid cells of G (i.e. a grid cell that
has less than four neighbors in G). Fix some b ∈ B, and consider the grid cells in
the digital ray dig(c1, b) in ray order. We can define a parent/child relationship
between these grid cells using this ordering as such: c1 is the parent of the second
grid cell in the ray, the second grid cell is the parent of the third grid cell, etc.
We assign this relationship for dig(c1, b) for each b ∈ B. We call this star S1,
and we define the star S2 with respect to c2 similarly. It is easy to see that S1

and S2 are spanning trees of G by following the properties of consistent digital
rays and line segments given in [7, 5].

Construction of the Directed Graph. We will now describe how we construct our
weighted, directed graph D. Intuitively, there will be a “section” of the graph for
S1 and a “section” of the graph for S2. For each grid cell in G, there is a vertex
in each such “section”. Let V1 denote the vertices in the section for S1, and let
us define V2 similarly for S2. For a grid cell g, let v1

g denote its corresponding
vertex in V1 and let v2

g denote its corresponding vertex in V2.
We will now define three edge sets E1, E2, and E3. E1 will consist of edges

corresponding with the parent/child relationships from S1 and will have both
endpoints in V1, E2 will consist of edges corresponding with the parent/child
relationships from S2 and will have both endpoints in V2, and E3 will consist of
edges with their tail in V1 and their head in V2. Let us now define the edge set
E1. Recall that we can view S1 as a rooted tree where c1 is the root and each
of the rays define the parent/children relationship in the tree. Suppose g and g′

are two grid cells such that g is the parent of g′ in S1. Then we add the directed
edge (v1

g′ , v1

g) to E1. Let us define D1 to be the directed graph with vertex set V1

and edge set E1. Note that D1 is a rooted tree where the root is v1

c1
and all the

edges are pointing “towards” the root. The edge set E2 is defined similarly on
V2, except there is one key difference. We think of S2 as being a tree similarly to
how we did with S1, but we reverse the direction of the edges. Thus the directed
graph D2 = (V2, E2) is a rooted tree, but the edges in the graph orient away
from the root. This completes the definition of the edge sets E1 and E2. Now let
us define the edge set E3. For each grid cell g, we add the directed edge (v1

g , v2

g)
to E3. This completes the construction of the edge sets E1, E2, and E3.

Our directed graph D has vertex set V := V1 ∪ V2 and edge set E := E1 ∪
E2 ∪E3. We assign weights on the vertices as follows. The weight of each vertex
v1

g ∈ V1 is set to be w(g). The weight of each vertex v2

g ∈ V2 is set to be −w(g).
This completes the construction of the graph.

We now describe a function T which will take as input a subset of vertices in
D and outputs a subset of grid cells in G. Fix any subset V ′ ⊆ V of D. For any



vertex v1

g ∈ V ′ ∩ V1, the corresponding grid cell g is in T (V ′). For any vertex
v2

g ∈ V2 \V ′, the corresponding grid cell g is in T (V ′). In other words, a grid cell
g is in T (V ′) if v1

g is in V ′ or if v2

g is not in V ′. If v1

g is not in V ′ and v2

g is in
V ′, then g is not in T (V ′). We will prove in Lemma 1 that if V ′ is a closed set
of D then T (V ′) can be decomposed into two star shaped objects whose weight
is the same as the weight of V ′ (minus a constant).

We now define a transformation T ′ which takes as input a subset of grid
cells that be decomposed into two star-shaped regions with respect to c1 and
c2 and returns a set of vertices in D. The transformation is the inverse of T .
Fix R to be any subset of grid cells that can be decomposed into a star-shaped
region with respect to c1 and a star-shaped region with respect to c2. Fix such
a decomposition, and color the grid cells in the first star red and the cells in the
second star blue. Let us call the red grid cells R1 and the blue grid cells R2. For
each red cell r ∈ R1 we have that v1

r ∈ T ′(R) and v2

r ∈ T ′(R). For each blue cell
b ∈ R2 we have v1

b 6∈ T ′(R) and v2

b 6∈ T ′(R). For all uncolored cells g we have
v1

g 6∈ T ′(R) and v2

g ∈ T ′(R). This concludes the definition of the transformation
T ′(R), and in Lemma 2 we will prove that T ′(R) is a closed set in D and has
weight equal to R (minus a constant).

Note that we have T ′(T (C)) = C for every closed set C and T (T ′(R)) = R
for every decomposable region R. Thus proving Lemma 1 and Lemma 2 will
complete the proof that the maximum-weight region in G that is decomposable
into two star-shaped regions can be computed by finding a maximum-weight
closed set in D.

Lemma 1. Fix any closed set C of D. Then T (C) ⊆ S1∪S2 can be decomposed
into two star-shaped regions and has weight equal to C (minus a constant).

Proof. We first show that T (C) can be decomposed into two star-shaped regions.
Let C1 be C ∩ V1, and abusing notation let T (C1) ⊆ T (C) be the grid cells
g such that v1

g ∈ C1. We will argue that T (C1) is a star-shaped object with
respect to c1 (the center of star S1). This will be true as long as for any grid cell
g ∈ T (C1) we have that the digital ray dig(c1, g) ⊆ T (C1). We can show this is
true by considering the construction of D. There is an edge in D from v1

g to the
vertex corresponding to the grid cell immediately before g in dig(c1, g) (recall
the definition of the ray ordering of the grid cells in a digital ray). Since C is a
closed set, it follows that this vertex must also be in the closed set. It follows
from a simple inductive argument that for any grid cell c ∈ dig(c1, g), the vertex
v1

c must be in C. By the definition of T , it must be that c is in T (C). This then
implies that if g ∈ T (C1) then dig(c1, g) ⊆ T (C1). We thus have that T (C1) is
star-shaped with respect to c1.

Now let C2 be C ∩ V2, and abusing notation let T (C2) ⊆ T (C) be the grid
cells g such that v2

g /∈ C2.. We will now show that T (C2) is a star shaped object
with respect to c2. We remind the reader that by the definition of T , vertices in
V2 \ C2 correspond with the grid cells in S2 that are in T (C2). Again, to show
that T (C2) is star shaped with respect to c2, we must show that for any grid cell
g ∈ T (C2), we have dig(c2, g) ⊆ T (C2). Suppose for the sake of contradiction



that g ∈ T (C2) but there is a grid cell g′ ∈ dig(c2, g) that is not in T (C2).
Since g′ is not in T (C2), we have v2

g′ ∈ C2. According to the construction of
D, there must be an edge from this vertex to the vertex corresponding to the
grid cell immediately after g′ in dig(c2, g). Since C is a closed set, we must have
that this vertex is in C2. An inductive argument follows that all of the vertices
corresponding to grid cells after g′ in dig(c2, g) must be in C2. This of course
implies that g 6∈ T (C2), a contradiction. We thus have that T (C2) is star-shaped
with respect to c2.

We will now argue that T (C) can be decomposed into two star-shaped re-
gions. To prove this, we will color every grid cell either red or blue so that the red
grid cells are a star-shaped region with respect to c1 and the blue grid cells are a
star-shaped region with respect to c2. We will prove this by showing that T (C1)
and T (C2) are disjoint, and thus we can color the grid cells in T (C1) red and
the grid cells in T (C2) blue to get the desired coloring. This is easy to see from
the definition of the edge set E3. Let g be some grid cell in T (C1). By definition,
this implies that v1

g ∈ T (C1). The edge (v1

g , v2

g) is in E3, and since C is a closed
set it must be that v2

g ∈ C. This then implies that for any g ∈ T (C1), we have
g /∈ T (C2). Now let g be some grid cell in T (C2). By definition we have v2

g /∈ C2.
Since the edge (v1

g , v2

g) is in E3, it must be that v1

g /∈ C1 because that would
contradict the fact that C is a closed set. Therefore g 6∈ C1. This completes the
proof that T (C1) and T (C2) are disjoint and therefore they can be decomposed
into two star-shaped regions.

This concludes the proof that T (C) can be decomposed into two star-shaped
regions, and we will now prove that C and T (C) have the same weight (minus
a constant). First let w1 be the sum of the weights of the vertices in C1, and let
w2 be the sum of the weights of the vertices in C2. The weight of the closed set
is exactly w1 + w2. The corresponding grid cell for each vertex in C1 is also in
T (C), and moreover has the exact same weight. So the sum of the weights of the
grid cells in S1 ∩ T (C) is w1. Recall that the vertices in C2 correspond to the
exact set of grid cells that are not in T (C), and thus the weight of the grid cells
in S2 ∩ T (C) is w(S2) + w2 (we remind the reader that the weight of a vertex
in C2 is the negative of the weight of its corresponding grid cell). Therefore, the
weight of the grid cells in T (C) is w1 + w2 + w(S2). Since w1 + w2 is the weight
of C, we conclude that the weight of C is equal to the weight of the grid cells in
T (C) minus w(S2). This concludes the proof of the lemma. ⊓⊔

We now state a similar lemma for T ′. These two lemmas combined complete
the proof of correctness of the algorithm. The proof of the lemma is quite similar
to the proof of Lemma 1 and has been removed from this version of the paper
due to lack of space.

Lemma 2. Fix any subset R of grid cells in G that can be decomposed into two
star shaped objects. Then T ′(R) is a closed set in D and has weight equal to R
(minus a constant).



3 Experiments

Our algorithm was implemented in ISO C++ on a standard PC with a 2.40GHz
Intel R CoreTM2 Duo processor and 2 GB memory, running 32-bit Windows
system. The max flow library [2] was utilized as the optimization tool. To simplify
our algorithm, the weight of the pixels can be computed using low-level image
features.

The running time of our algorithm was evaluated on images of ten differ-
ent sizes as shown in Figure 2. The sizes of the images range from 100x100 to
700x700. The listed running time for each size of image is the average of 10 runs.
We found most of the time was spent on construction of the directed graph.
However, the current code is not fully optimized and there is much room for
further improvement such as using a pyramid-based strategy to improve the
segmentation speed. Figure 2 gives the running time for the execution of our
algorithm on 10 different sized images. For each image, the running time is the
average of 10 runs. To the best of our knowledge, this is the first time that an
algorithm of applied interest has been given for this problem.

Fig. 2. Chart displaying the average running times of the algorithm for various sized
images. The x-axis the number of pixels in the image and the y-axis is the running
time of the algorithm in seconds.

We show the results for two images which serve as examples of images con-
taining objects that can be decomposed into two star-shaped regions. In Figure
3, we segment two horses as an illustration of an object that does not have sim-
ple structure in itself but can be decomposed into a two star-shaped regions. In
Figure 4, we segment a human brain using the black and red dots as the centers
of the star shaped objects.

4 NP-Completeness

In this section, we consider the decision version of the problem. In this problem,
we would like to know if there is a region in the grid that can be decomposed



(a) (b)

Fig. 3. Horse Segmentation: (a) results using only one center, and (b) result using two
centers

(a) (b) (c)

Fig. 4. Brain Segmentation: (a) original image, (b) the centers, and (c) the result of
the algorithm

into m star-shaped regions whose weight is at least K for some K > 0. We show
that the problem is NP-complete when we must choose where in the grid to place
the m centers. The reduction is from vertex cover in planar graphs. The main
idea is to take an instance of planar vertex cover and find a “grid embedding”
of the graph of “high enough” resolution. We use the grid embedding to assign
weights to the grid cells, and then show that there exists a region that can be
decomposed into m star-shaped regions whose weight is at least K if and only
if there is a vertex cover in the planar graph of size at most m. The details have
been omitted from this version due to lack of space.
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A Proof of Lemma 2

We first will show that T ′(R) is a closed set in D. We know R can be decomposed
into a star-shaped region with respect to c1 and a star-shaped object with respect
to c2. Fix such a decomposition, and color the grid cells in the first star red and
the second star blue. Let us call the red grid cells R1 and the blue grid cells R2.
Recall the definition of T ′. For each red cell r ∈ R1 we have that v1

r ∈ T ′(R)
and v2

r ∈ T ′(R). For each blue cell b ∈ R2 we have v1

b 6∈ T ′(R) and v2

b 6∈ T ′(R).
For all uncolored cells g we have v1

g 6∈ T ′(R) and v2

g ∈ T ′(R).
We handle E1, E2, and E3 separately. We will first show that for any v1

r ∈
T ′(R) ∩ V1, if the edge (v1

r , v1

r′) is in E1 then v1

r′ ∈ T ′(R). Recall that each
vertex in V1 has only one outgoing edge to another vertex in V1 (except for v1

c1

which has no outgoing edges). Fix some r ∈ R1 such that r 6= c1, and let p
be the parent of r in S1. Then by the construction of D, we have that (v1

r , v1

p)
is the only outgoing edge from v1

r . Therefore if T ′(R) is a closed set in D, it
must be that v1

p ∈ T ′(R) which implies that it must be the case that p ∈ R1.
Since R1 is a star-shaped region with respect to c1 and r ∈ R1, it must be that



dig(c1, r) ⊆ R1. Since p is the parent of r in S1, it must be that p ∈ dig(c1, r)
and therefore p ∈ R1. This of course implies that v1

p ∈ T ′(R).
Now we will show that for any v2

g ∈ T ′(R) ∩ V2, if the edge (v2

g , v2

g′) is in E2

then v2

g′ ∈ T ′(R). Fix some v2

g ∈ T ′(R) ∩ V2. This implies that g is either a red

grid cell or an uncolored grid cell. Suppose that v2

g has an outgoing edge to v2

g′ in

D. For the sake of contradiction, assume that v2

g′ 6∈ T ′(R) and thus g′ ∈ R2. Since
R2 is star-shaped with respect to c2, it must be that dig(c2, g

′) ⊆ R2. By the
construction of D, it must be that g′ is a child of g, and thus g ∈ dig(c2, g

′). But
this implies that g ∈ R2 which contradicts the assumption that v2

g ∈ T ′(R)∩V2.
Therefore it must be the case that v2

g′ ∈ T ′(R).

Now we will handle deal with edges in E3. For any v1

g ∈ T ′(R)∩ V1, we have
that the edge (v1

g , v2

g) is in E3, and thus we need to show that v2

g ∈ T ′(R). Since
v1

g ∈ T ′(R) ∩ V1, we know that g is a red grid cell. By the definition of T ′, we
have that v2

g ∈ T ′(R). This completely the proof that T ′(R) is a closed set of D.
We will now argue that the weight of T ′(R) is the same as the weight of R

(minus a constant). Let w1 be the sum of the weights of the red grid cells, let
w2 be sum of the weights of the blue grid cells, and let w3 be the sum of the
weights of every grid cell in G. Clearly the weight of R is w1 + w2. The sum of
the weights of the vertices in T ′(R)∩V1 is also w1. The sum of the weights of the
vertices in T ′(R)∩V2 is −w3+w2. This is because T ′(R)∩V2 = {v2

g|gis not blue}
and the weight of a vertex v2

g ∈ V2 is −w(g). Therefore the weight of T ′(R) is
w1 + −w3 + w2 = w(R) − w3. This completes the proof of the lemma since w3

is a constant. ⊓⊔

B NP-Completeness

Grid Embedding of a Planar Graph. A grid embedding of a planar graph with
n vertices is a weighted grid graph with poly(n) grid cells. Each vertex v in the
planar graph will have a corresponding grid cell g(v) in the grid embedding. Each
edge {u, v} in the planar graph will be represented by the digital line segment
dig(g(u), g(v)) in the grid embedding. All grid cells that are not in dig(g(u), g(v))
for any vertices u and v in the planar graph will recieve a weight of −∞ (this is
to ensure that any maximum weight region in the grid embedding will not use
any such grid cells). The weights assigned to the remaining grid cells will depend
on the problem and will be defined later.

We will now show how to compute the size of the grid embedding and deter-
mine g(v) for each vertex v in the planar graph. First, fix any planar embedding of
the planar graph where (1) the edges are straight and pairwise non-intersecting,
(2) no two edges in the graph are parallel, and (3) the embedding has constant
aspect ratio. We will begin by defining an n × n grid graph where each vertex
will belong to one of the cells of the grid. The grid cell in the graph that will
correspond with a vertex v will depend on the x and y coordinates of v rela-
tive to the other vertices. If v is the ith vertex when ordering the vertices by
increasing x-coordinate and v is the jth vertex when ordering the vertices by
increasing y-coordinate, then the grid cell that corresponds with v will be grid



cell in column i and row j. It easy to see that each row and each column in the
grid graph will contain exactly one vertex.

In order for the grid graph to satisfy some key properties that we desire, we
need to increase the ”resolution” of the grid graph. We do this by replacing each
of the current grid cells with an c · n2 × c · n2 grid graph for a large enough
constant c. If a grid cell contained a vertex v before increasing the resolution, we
set g(v) to be one of the grid cells in this c ·n2× c ·n2 grid. We choose g(v) to be
a grid cell that is in the ”innermost” n× n grid region. We pick g(v) arbitrarily
chose one of these n2 grid cells so long as the digital line segment dig(g(v), g(u))
is not a subset of dig(g(x), g(y)) for any four distinct vertices u, v, x, and y in the
planar graph. Note that the grid graph is now c ·n3×c ·n3. We have now defined
g(v) for each vertex v, and therefore the digital line segment dig(g(u), g(v)) is
well-defined for each edge {u, v}. As indicated earlier, we now assign a weight
of −∞ to all grid cells that are not in dig(g(u), g(v)) for any vertices u and v in
the planar graph. This completes the general definition of the grid embedding of
a planar graph. The weights assigned the the remaining grid cells are problem
specific and will be defined later.

B.1 NP-Completeness when Placing m Centers

We now show that the problem of determining if there exists a region that is
decomposable into m star-shaped regions with weight at least K is NP-complete
when the location of the m centers is not given. The reduction will be from the
planar vertex cover problem. In this problem, we are given a planar graph G′

and an integer m′, and we would like to determine if there is a subset of the
vertices of size at most m′ such that each edge in the graph is adjacent to one
of the m′ vertices. Given an instance of the planar vertex cover problem, we
will construct an instance of the maximum weight decomposable region problem
such that if there is a vertex cover of G′ of size m′ then we can find a region
of weight at least K that can be decomposed into m star-shaped regions in the
maximum weight decomposable region problem.

We begin the reduction by computing the grid embedding of G′, and then
we assign weights to the grid cells that have not yet received a weight. Fix an
edge {u, v} in G′, and consider the digital line segment dig(g(u), g(v)). Note that
by the construction of the graph, there are Ω(n2) grid cells in dig(g(u), g(v)).
Consider the natural ordering of the grid cells in dig(g(u), g(v)) where g(u) is
the first grid cell in the ordering and g(v) is the last vertex in the ordering. We
assign a weight of 1 to the grid cell in dig(g(u), g(v)) that is in position n in the
ordering. All other grid cells in dig(g(u), g(v)) are assigned a weight of 0. If a
grid cell is assigned a weight of 1 then we call it a good cell, and if it has been
assigned a weight of −∞ we call it a bad cell. We now set m := m′ and we set
K to be the number of edges in G′. This concludes the reduction. Note that the
digital line segment dig(g(u), g(v)) for each edge {u, v} will contain exactly one
good cell. This follows from the fact that the maximum Hausdorff distance of a
digital line segment to it’s Euclidean counterpart is at most O(log n).



Observe that an algorithm for finding a region with large weight will want
to compute a region that contains as many of the good grid cells as possible
without containing any bad cell. For a grid cell c, let G(c) denote the subset of
good grid cells such that for each g ∈ G(c), the digital line segment dig(c, g) does
not contain a bad grid cell. Note that |G(c)| is exactly the number of good grid
cells a star-shaped object with respect to c can contain while not containing any
bad grid cell. Consider G(g(v)) for each v in G′. If u is a neighbor of v in G′, then
it follows by the construction of the graph that the good cell from dig(g(u), g(v))
is in G(g(v)). Now consider a good grid cell c∗ that is in dig(g(x), g(y)) such
that x 6= v, y 6= v, and {x, y} is an edge in G′. In order for c∗ to be in G(g(v)),
the digital line segment dig(g(v), c∗) must not contain any bad grid cells. This
would imply that every grid cell in dig(g(v), c∗) must be in dig(g(a), g(b)) where
{a, b} is an edge in G′. But due to the construction of the graph, we know that
there are Ω(n2) grid cells in dig(g(v), c∗), and we know that G′ is planar and
thus is has O(n) edges. This implies that for some edge {a′, b′} in G′, the digital
ray dig(g(a′), g(b′)) contains Ω(n) grid cells from dig(g(v), c∗). But this cannot
happen due to the construction of the graph and the fact that the maximum
Hausdorff distance of a digital line segment to it’s Euclidean counterpart is
at most O(log n). Therefore it must be that there is at least one bad cell in
dig(g(v), c∗), and thus we have c∗ 6∈ G(g(v)).

We will now show that there is a vertex cover in G′ of size at most m′

if and only if there is a region in the grid graph of weight at least K which is
decomposable into m star-shaped regions. First note that we can assume without
loss of generality that the possible locations for the m centers must be a grid cell
g(v) for some vertex v in G′. Clearly we do not want to place the center at a bad
cell. Suppose we place a center at a grid cell c that is neither good nor bad, and
is not at g(v) for some vertex v. It necessarily must be at some grid cell that is in
dig(g(u), g(v)) for some vertices u and v in G′. Then we have either G(c) ⊆ G(u)
or G(c) ⊆ G(v) (or both). This again follows from the construction of the grid
graph and fact that the maximum Hausdorff distance between the digital line
segment dig(g(u), g(v)) and the line segment {u, v} in the planar embedding of
G′ is O(log n). Therefore we can “slide” this center from c to one of g(u) or g(v)
and allow us to ”reach” at least as many good cells as we could by placing a
center at c. From now on, we will assume that the centers can only be chosen
from the cells g(v) for some v in G′.

Now note that in order to find a region of weight K, we must include all of
the good cells in the grid (because there are exactly K of them with weight 1
each). Therefore, the problem reduces to determining if we can place m centers,
where each center is at g(v) for some vertex v in G′ such that we can “cover”
all of the K good cells using the rays with weight 0. Clearly this can happen if
and only if there is a vertex cover in G′ of size m′.


