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ABSTRACT
Motivation: The transcriptional regulation of a gene depends on the
binding of cis-regulatory elements on its promoter to some trans-
cription factors and the expression levels of the transcription factors.
Most existing approaches to studying transcriptional regulation model
these dependencies separately, i.e., either from promoters to gene
expression or from the expression levels of transcription factors to the
expression levels of genes. Little effort has been devoted to a single
model for integrating both dependencies.
Results: We propose a novel method to model gene expression
using both promoter sequences and the expression levels of putative
regulators. The proposed method, called bi-dimensional regres-
sion tree (BDTree), extends a multivariate regression tree approach
by applying it simultaneously to both genes and conditions of an
expression matrix. The method produces hypotheses about the
condition-specific binding motifs and regulators for each gene. As a
side-product, the method also partitions the expression matrix into
small submatrices in a way similar to bi-clustering. We propose and
compare several splitting functions for building the tree. When applied
to two microarray data sets of the yeast Saccharomyces cerevi-
siae, BDTree successfully identifies most motifs and regulators that
are known to regulate the biological processes underlying the data
sets. Comparing to an existing algorithm, BDTree provides a higher
prediction accuracy in cross-validations.
Availability: The software is available upon request from the authors.
Contact: jruan@cse.wustl.edu, zhang@cse.wustl.edu
Supplementary Information: http://cic.cs.wustl.edu/bdtree/

1 INTRODUCTION
The complex function of a living cell is controlled by regulating
the expression of specific genes at several levels. One of the most
important and best understood regulation mechanisms is at the tran-
scriptional level, where the expression of a gene is mediated by the
binding of transcription factors (TFs) to specific DNA sequences in
the promoter region of the gene. Two basic assumptions are often
made when studying transcriptional regulation: first, the expression
of a gene is determined by the binding sites of specific TFs on its
promoter; second, the expression of a gene is a function of the con-
centration of specific TFs around its promoter. Based on the two
assumptions, two distinct classes of approaches have been proposed
in studying transcriptional regulation.

The first class of approaches attempted to build quantitative or
qualitative models to associate gene expression levels with putative
binding motifs on their promoter sequences (Fig. 1 boxes A and�
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Fig. 1. Relationships between our method and previous methods. The bot-
tom right matrix represents gene expression levels. The bottom left matrix
represents motif occurances on promoter sequences. The top matrix is the
expression levels of regulators. Box A, the expression levels of multiple
genes under a single condition are modeled by the motifs on their promo-
ters (e.g., Bussemaker et al., 2001). Box B, the expression levels of multiple
genes under multiple conditions are modeled by the motifs on their promo-
ters (Phuong et al., 2004). Box C, the expression levels of a single gene under
multiple conditions are modeled by the expression levels of putative regula-
tors (Soinov et al., 2003). Box D, the expression levels of multiple genes
under multiple conditions are modeled by the expression levels of putative
regulators (Segal et al., 2003). Box E, the expression levels of multiple genes
under multiple conditions are modeled by the motifs on their promoters and
the expression levels of putative regulators (Middendorf et al., 2004 and our
method).

B). Several approaches of this type have been proposed within the
classification and regression framework. Bussemaker et al. (2001)
and others (Keles et al., 2002; Conlon et al., 2003) modeled the
expression levels of genes as a linear regression of putative bin-
ding motifs, and applied feature selection techniques to find the
most significant motifs. Hu et al. (2000) and ourselves (Ruan and
Zhang, 2004) used decision trees to find motif combinations that
best separate two sets of genes. Beer and Tavazoie (2004) built pro-
babilistic graphical models, e.g., Bayesian networks, to explain gene
expression patterns from motifs. Phuong et al. (2004) applied mul-
tivariate regression trees to model the transcriptional regulation of
gene expression over several time points simultaneously.

The second class of approaches have been proposed to model
gene expression levels from the expression levels of other genes, i.e.,
TFs and other regulators (Fig. 1 boxes C and D). For example, Soi-
nov et al. (2003) used decision tree to identify possible regulators for
several cell-cycle genes individually. Segal et al. (2003) proposed a
more sophisticated procedure suitable for whole-genome analysis.
The method first clusters genes according to their expression pat-
terns, and then builds a regression tree for each cluster to represent
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their common regulation program. The procedure then iteratively
refines the clusters and the trees.

Middendorf et al. (2004) recently introduced a method that com-
bines the previous two classes of approaches. Their method models
gene expression levels from both putative binding motifs on promo-
ter sequences and the expression levels of putative regulators (Fig. 1
box E). Here we propose a method that also falls into this category.
Although our method has the same schematic representation as their
method, the underling modeling rationales are very different, which
we will compare in detail in Section 4.

Our method, called bi-dimensional regression tree or BDTree for
short, is an extension to the multivariate regression tree approach of
Segal (1992) and Phuong et al. (2004). Breiman et al. (1984) first
introduced the univariate regression tree approach to recursively par-
tition instances into groups, where the instances in each group have
similar attribute values and responses. Segal (1992) extended the
method to handle multiple responses, so that the instances in each
group have a similar pattern of responses across multiple conditi-
ons. The basic idea of our method, as suggested by its name, is to
extend the multivariate regression tree approach to both dimensions
of the expression matrix (see Fig. 1). On one dimension, each gene
is treated as an instance, where the attributes are the binding motifs
on its promoter sequence, and the responses are its expression levels
across the conditions. Genes are partitioned so that those in the same
subset have common binding motifs and similar expression patterns
across the conditions. On the other dimension, each condition is
treated as an instance, where the attributes are the expression levels
of candidate regulators under the condition, and the responses are
the expression levels of genes under that condition. Conditions are
partitioned so that the expression levels of a gene under each subset
of conditions are similar.

The way of partitioning genes and conditions in BDTree is ana-
logous to bi-clustering (Cheng and Church, 2000). However, the
partitioning in BDTree is supervised by some intrinsic attributes of
the genes and conditions, i.e., the binding motifs on gene promo-
ters and the expression levels of regulators under the conditions.
In contrast, in bi-clustering, the partitioning is unconstrained by
those attributes. As a result, the model learned by BDTree is both
exploratory and predictive. It suggests a set of testable hypotheses
of condition-specific binding motifs and regulators for the genes in
each cluster, and can also be used to predict the expression levels of
unseen genes under unseen conditions, given appropriate attributes
of the genes and conditions.

The rest of the paper is organized as follows. The next section first
introduces the univariate regression tree and its multivariate exten-
sion, and then describes the bi-dimensional multivariate regression
tree approach. Section 3 presents some experimental results from
applying the method to the yeast cell-cycle and stress response
data. In the last section we discuss the differences and relationships
between BDTree and several related methods.

2 ALGORITHM

2.1 Univariate regression trees
Here we give a brief overview of the univariate regression tree
method and refer the reader to Breiman et al. (1984) for details. Sup-
pose that there are 
 attributes �� , ��� , ����� , ��� and a response � .
The values of the attributes and responses are observed for � instan-
ces: ������� ��� �! �" , where �#��$%��&'�(� � ����� � &)� �* , for +,$ ��� ����� � � . Here

the responses are real values. We restrict all attributes to be real
values for convenience of the discussion, although the method can
handle categorical or mixed values. In the context of transcriptional
regulation, each gene is an instance, the attributes are motifs, and
the response is the gene expression level under a single condition
(Fig. 1, box A).

In the classic CART (Classification Analysis and Regression
Tree) program of Breiman et al. (1984), a greedy search algorithm
is used to construct a binary regression tree. The basic algorithm is
as follows.

1. Initially there is only the root node containing all instances.

2. If the current node has not met the stopping criterion, examine
every possible binary split of the instances within the node
based on each attribute ��� , +�$ �-� ����� � 
 , such that the attri-
bute values for all the instances in one subset are smaller than
those in the other subset.

3. Choose the best split to maximize an objective function, and
create two child nodes for the current node.

4. Repeat step 2 and 3 for each child node.

To build a regression tree, three rules need to be specified: a split-
ting rule that defines the best split, a stopping rule that determines
when the splitting should terminate, and a third rule to prune cer-
tain branches of the tree after the tree is built. Here we only discuss
the splitting rule, while the other two will be discussed after we
introduce the BDTree method.

The goal of a split is to produce child nodes as homogeneous as
possible with respect to the responses. A frequently used criterion is
the least-square rule which aims at minimizing the sum-of-squares
of responses within each node. Let . denote a node of the tree and/10 denote the number of instances in . . That is, . contains a subset
of the indices � �-� ����� � �2" . The within-node sum-of-squares is given
by 343 ��.* 4$65 ��7 0 � � �18:9�  � � (1)

where 9� $;5 ��7 0
� �/ 0 . The gain of a split that partitions . into two

child nodes .*� and .<� is given by= ��. � . � � . �  >$ 343 ��.* 8 343 ��. �  8 3>3 ��. �  ?� (2)

The best split is determined by an attribute � � and a threshold@
such that

= ��. � . � � . �  is maximized and that the value of � � for
every instance in .*� is less than

@
while that for every instance in.<� is no less than

@
. To find the best split, all possible thresholds

for each attribute are tested, and the split with the highest gain is
chosen.

2.2 Multivariate regression trees
It is not uncommon to encounter domains where the responses are
observed under multiple conditions, that is, the response of an
instance is also a vector: A � $B� � ��� � ���C� �D� �FE  , where / is the num-
ber of conditions and

� � G is the response of the + th instance under theH
th condition. For example, in DNA microarrays, gene expression

levels are typically recorded for several time points or experimental
conditions.

A naive solution for this situation is to build a regression tree
for each condition separately. However, it is difficult to combine
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multiple trees. Segal (1992) introduced a multivariate regression
tree method to construct a single tree to model multiple responses
simultaneously. He generalized the within-node sum-of-squares in
Equation (1) as follows:343 � ��.� 4$65 �(7 0 ��A�� 8JIAK MLON � ��A�� 8JIAK QP � (3)

where A#� is the vector of responses for the + th instance, L is the
model covariance matrix of A � , and IA is the average of A � within
node . . With

343 ��.� defined, the gain function remains the same
as Equation (2) and the recursive algorithm proceeds to split the
instances as in the case with a single response.

Phuong et al. (2004) applied the multivariate regression tree
method to gene expression data by treating genes as instances,
where the numbers of occurrences of motifs in promoters are the
attribute values, and the expression levels at different conditions are
the multivariate responses (Fig. 1, box B). As noted by Segal (1992)
and Phuong et al. (2004), the multivariate regression tree method is
intermediary between classification and clustering. The responses of
different instances can be written as a matrix RS$T� � � G  , where + is
the index of an instance and

H
is the index of a condition. The multi-

variate regression tree partitions the matrix into sub-matrices, where
each sub-matrix contains all the columns (conditions) but only some
rows (genes) of the original matrix. Therefore, clustering is achie-
ved directly when instances with similar pattern of responses are
grouped together.

2.3 Bi-dimensional multivariate regression trees
Now consider a multivariate response situation where each condi-
tion can also be described by a set of attributes, UV� � �C��� � UOW , just
as the instances can be described by attributes �X� � ����� � ��� . In this
case, the response matrix RY$Z� � � G  can be transposed, and the
regression problem can be defined for the conditions. Each con-
dition is now treated as an instance. The observations for the

H
th

condition can be written as ��[\G � A'G< , where [\G�$B��]>G^� � ����� � ]>G�W< 
and A G $_� � �`G � �C��� �D� E�G  , with / being the number of conditions
and a the number of attributes of a condition. A regression tree can
then be learned to model the condition data. For clarity, we call the
conditions column instances and the instances row instances, since
they correspond to the columns and rows of the response matrix,
respectively. Accordingly, we call �X� � ����� � ��� row attributes, andUb� � ����� � UOW column attributes.

In the case of gene expression analysis, the column attributes that
can be used to describe each condition are the expression levels of
a set of candidate regulators under that condition (Fig. 1, boxes C
and D). Therefore, a regression tree built from the column instances
explains the expression levels of genes under different conditions
with the expression levels of selected regulators. The motivating
assumption is that the expression level of a gene depends on the
expression levels of its regulators.

The goal of our method is to model the responses using both
row attributes and column attributes, i.e., to find the row attributes
and column attributes that can explain the responses. In the regres-
sion tree framework, this corresponds to recursively partitioning the
response matrix horizontally according to row attributes and ver-
tically according to column attributes. The objective is to make
the sub-matrices in child nodes as homogeneous as possible with
respect to responses.

Formally, the input to the algorithm includes a response matrixRc$d� � � G� , the associated row attribute matrix ef$g���#�! , and
column attribute matrix hi$j��[ G  , where � � $k��& ��� � ����� � & � �  
is the set of attributes for the + th row, +l$ �-� �C��� � � , and [ G $��]m�`G � ����� � ]nW!G- is the set of attributes for the

H
th column,

H $��� ����� � / . For example, the three matrices in Fig. 1 representing
motif scores, gene expression levels and regulator expression levels
correspond to e , R and h , respectively. Each split divides the
response matrix R vertically or horizontally. As a result, each node
of the regression tree contains a submatrix of R and the associated
row and column attributes.

To facilitate subsequent discussions, we define some symbols and
notations. Let o���. �Qp  denote a node of a tree, where . contains a
subset of the row indices � ��� ���C� � �q" , and

p
contains a subset of the

column indices � �-� �C��� � / " . When there is no confusion, we abbre-
viate o���. �Qp  as o or ��. �Dp  . Let / 0 and /sr denote the number of rows
and the number of columns of the response matrix in node o , respec-
tively. Let t P denote the response matrix in o . Let IA P0 � denote the
vector of average responses across all columns in o and IA P � r the vec-
tor of average responses across all rows in o . Furthermore let 9� P� �
denote the + th element of IA P0 � and 9� P� G the

H
th element of IA P � r . Let9� P denote the average response of all rows and columns in o . The

superscript o is dropped when there is no confusion.
A critical issue in our algorithm is to design a measure to reflect

the homogeneity of the response matrix on both dimensions. For
a node o���. �Mp  , a good candidate is the sum of squared residues
introduced by Cheng and Church (2000) for bi-clustering:343 � ��. �Qp  >$ 5��7 0�u GC7 r � � � G 8:9� � � 8:9� � Gnv 9�  � � (4)

where the superscript o on variables has been dropped. Equation (4)
can also be rewritten as:3>3 � ��. ��p  4$ / 0 /sr �!w � ��tq 8 w � � IA 0 �  8 w � � IA � r  D � (5)

where w � ��tq 4$Sx � G � � � G 8y9�  �Cz / 0 /sr is the sample variance of t ,w � � IA 0 �  {$Bx � � 9� � � 8|9�  ��z / 0 is the sample variance of the vectorIA 0 � , and w � � IA � r  4$ x G � 9� � G�8}9�  � z / r is the sample variance of the
vector IA � r . It can be seen that

343 � ��. �Dp  is minimal if the variance
of the matrix can be explained by the variance of the row avera-
ges and the variance of the column averages. The expected value of343 � ��. �Dp  is a function of /�0 and / r :~ � 343 � ��. �Qp  D 4$�� /�0�/ r 8 /10 8 / r  M� � ��tq � (6)

where � � ��tq is the population variance of the responses. A proof
of Equation (6) by the central limit theorem is provided on the
Supplementary website http://cic.cs.wustl.edu/bdtree/.

With
343 � ��. ��p  defined, the gain of a split can be calculated the

same as in Equation (2). Note that when a row split is taken, the
average responses across columns are not affected, and vice versa
for column splits. Therefore, when the response matrix is split hori-
zontally, with . � and . � rows in each child node, respectively, the
gain can be computed by:= � 0 ��. � .*� � .<�� 4$ /sr � / 0D� w � � IA �� r  ?v / 0Q� w � � IA �� r  8 / 0 w � � IA � r  D � (7)

where IA � � r , +�$ �-���
, is the

��� /sr vector of average responses
across all rows in child node o���.^� �Dp  . Similarly, when the response
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matrix is split vertically, with
p � and

p � columns in each child node,
respectively, the gain can be computed by:= � r � p-�Dp � �Dp �  4$ /10 � / r � w � � IA �0 �  �v / r � w � � IA �0 �  8 / r w � � IA 0 �  D � (8)

with IA �0 � similarly defined.
Given Equations (7) and (8) for calculating gains, the algorithm

tests all possible splits on rows and columns, and select the one with
the highest gain. Therefore, the algorithm automatically determi-
nes whether the split should be done on rows or columns. However,
when the shape of the initial response matrix R is skewed, the
gain function prefers the split on the longer side. For example, if�k� / (which is normally the case in gene expression data), the
gain function prefers to split on columns to produce even narrower
submatrices. This is because the expected gain for a split on one
dimension is proportional to the length of the other dimension (see
the Supplementary website for a proof):� ~ � = � 0 ��. � .*� � .<�C D 4� /sr � � ��t2 ?�~ � = � r � p<�Dp � �Dp �  D 4� /10 � � ��tq ?� (9)

To scale down this systematic bias, we define and calculate the
following adjusted gains instead:� = �^�0 ��. � . � � . �  4$ = � 0 ��. � . � � . �  z / r �= �^�r � p<��p � ��p �� >$ = � r � p<�Dp � �Qp �C z / 0 � (10)

A problem with the homogeneity measure by
343 �

is that the pro-
duced clusters are often not tight. For example, the

343 �
measure of

a matrix is zero if all rows (or columns) differ only by some con-
stant values, i.e., A#� 8 A'Gb$;��� G<� , for all + , H , where A#� and A'G
are the + th and

H
th rows of t , respectively, and �l$�� �-� ����� ���  .

Consider a matrix ����m�
�
�
�
�
�

�
� � �� � � ���� , where each row is a gene and

the values are the log ratios of expression levels under different
conditions. The cluster does not seem to provide any biological
significance, despite a perfect score. To deal with this problem, we
define different sum-of-squares for rows and columns:���� ���
343K� 0 ��. �Mp  >$ 5�(7 0�u G^7 r � � � G{8:9� � G  � $ /10�/ r �!w � ��tq 8 w � � IA � r  D ?�343K� r ��. �Dp  >$ 5��7 0Du GC7 r � � � G 869� � �  � $ / 0 /1r �!w � ��tq 8 w � � IA 0 �  D ?�

(11)
The gain for a row or column split is defined correspondingly:� = � 0 ��. � .*� � .<�C >$ 343K� 0 ��. �Dp  8 343K� 0 ��.*� �Dp  8 343K� 0 ��.<� �Qp  ?�= � r � p-�Qp � �Dp �C >$ 343K� r ��. �Qp  8 343K� r ��. �Qp �? 8 3434� r ��. �Qp �C ?�

(12)343K� 0 or
343K� r is equivalent to the sum of

343
for each column

or row, respectively, according to Equation (1). This measurement
requires a good cluster to be coherent on at least one dimension
of the matrix. Furthermore, the different gain functions defined for
row and column splits enforce that a good row split must improve
the homogeneity along the columns, and a good column split must
improve the homogeneity along the rows. This enforcement is con-
sistent with biological intuitions. For example, when a motif is used
to separate two sets of genes, the genes within each set should
have similar expression levels under the same conditions, while the
expression levels under different conditions may be different.

Interestingly, the expected values of
= �

are the same as in Equa-
tion (9). Therefore, a systematic bias between

= 0 and
= r still exists,

and the adjusted gain can be defined similarly as in Equation (10).
Given the gain functions, the algorithm proceeds the same as in

the case of a single response described in Section 2.1, except the
second step:�<� � If the current node has not met the stopping criterion, examine

every possible binary split of the row instances or the column
instances within the node, based on each row attribute � � , +,$��� ����� � 
 , or column attribute UXG , H $ �-� ����� � a , respectively,
such that the attribute values for all the instances in one subset
are smaller than those in the other subset.

When analyzing gene expression data, the column attributes are
regulators, which may also appear in the list of genes in the rows.
The algorithm does not allow a regulator to be the splitting attribute
of a node that contains the regulator itself, since a gene’s expression
level can always be used to predict its own expression.

To prevent the tree from over-fitting the data, several parameters
are implemented to control the tree size, including the minimum
gain required to split a node, the minimum numbers of rows and
columns within a leaf node, and the maximum number of leaf nodes.
In addition, a post-pruning procedure can be performed with a sepa-
rate test set, where an internal node is converted to a leaf node if by
doing so the prediction accuracy on the test data does not decrease.

To predict a response, the corresponding row and column attri-
butes are compared to the threshold values at each tree node and a
branch is taken according to the result of the comparison at each
step. Starting from the root node, the algorithm will always end at a
terminal node o . The average value of the elements in t P is used as
the predicted value.

2.4 Cross-validation and functional analysis
The prediction accuracy of BDTree is estimated by cross-
validations. The procedure of cross-validation in BDTree is slightly
different from that in a one-dimensional method. Given a training
data set, we denote the set of row instances as . and column instan-
ces as

p
. To perform a ten-fold cross-validation, . and

p
are both

randomly divided into 10 subsets of roughly equal size, denoted
by .*� � �C��� � .*�!� and

p � � ����� �Dp �!� , respectively. Every time a subma-
trix containing nine subsets of the rows and nine subsets of the
columns, ��.��<.^�! � � p � p �� , is used for training, while three subma-
trices, .^� � � p � p �� , ��.��<.^�! ��p � , and .^� �}p � are used for testing,
for +>$ �-� �C��� ���C� . The mean squared errors or the correlation coef-
ficient between the predicted and actual values are calculated as a
measure of accuracy. In addition, accuracies can be calculated for
the three testing submatrices separately, corresponding to the pre-
diction accuracy for unseen rows, unseen columns, and unseen rows
plus unseen columns.

In the case of analyzing gene expression data, each leaf node of
the tree contains a subset of the genes and a subset of the conditions.
To determine the functional relevance of the splits, we calculate the
enrichment of gene ontology (GO) terms (Harris et al., 2004) within
each leaf node. When possible, we also group the experimental con-
ditions into categories, and calculate the enrichment of particular
categories within each leaf node. The significance of enrichment is
measured by an accumulative hyper-geometric test, and the 
 -values
are adjusted by Bonferroni corrections for multiple tests (Altman,
1991).
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When a tree is built, it automatically selects a set of attributes
from the row attributes and column attributes to explain the pattern
of responses. Intuitively, the gain of splitting a node with a certain
attribute can be used as a measure of the importance of the attribute.
However, the tree only selects the attribute with the highest gain at
each step, while ignoring all the others. Phuong et al. (2004) pro-
vides a better method to measure the importance of all attributes,
based on surrogate splits. We adopt the same idea, but rank row and
column attributes separately.

3 RESULTS

3.1 Data sets
To demonstrate the strength of our method in identifying real motifs
and regulators, we tested it on two microarray sets for S. cerevisiae.
The cell-cycle data set consists of the expression levels of 800 genes
measured under 77 different time points in cell cycles from several
experiments (Spellman et al., 1998). The stress response data set
includes gene expression data collected under 173 different stress
conditions. As in Middendorf et al. (2004), we selected 1411 genes
from the stress data set, which includes 469 highly variant genes and
1250 genes that are part of the 17 clusters identified by Gasch et al.
(2000). We downloaded the background normalized log ratios of all
genes from SGD (Dwight et al., 2004).

We used the set of 466 candidate regulators complied by Segal
et al. (2003) as column attributes. These include both TFs and signa-
ling molecules that may have transcriptional impact. We combined
three types of row attributes: a set of 356 motifs from Pilpel et al.
(2001), binding data of 204 TFs measured under various environ-
mental conditions (Harbison et al., 2004), and 615 over-represented�

-mers ( ��� � �¡  ) discovered by a steganalysis-based motif fin-
ding algorithm called WordSpy developed in our lab (Wang et al.,
2005). The set of motifs from Pilpel et al. includes known motifs
and putative motifs identified computationally from common func-
tional categories. We used RSA tools (van Helden, 2003) to retrieve
up to 500bp of intergenic sequences upstream of each gene start
codon as its promoter, and searched both strands for the appea-
rance of motifs and

�
-mers. The program ScanACE (Roth et al.,

1998) was used to scan each promoter, and the highest score for
each motif was recorded as its attribute value. For each

�
-mer, its

number of occurrences in a promoter sequence is used as its score.
All data including gene expression and attributes are available on
the Supplementary website.

3.2 Simulation study of gain functions
We have shown in Section 2.3 that for both SS2 and SS3, the theore-
tically expected gain resulted from a random split is correlated with
the size of the dimension that is unsplit. Here, we use simulation to
show that this is also true in practice.

We first considered the case where gene expression levels are
identically and independently distributed (i.i.d.). We randomly
shuffled the yeast cell-cycle gene expression matrix, which is
then split into two sub-matrices by randomly dividing its rows or
columns into two sets. The relative sizes of the two sub-matrices
vary from 1:9 to 5:5. Fig. 2(a) shows the average gains of 1000 ran-
dom splits on rows or columns, calculated using SS2. As shown,
the average gains agree with the theoretical results almost perfectly,
regardless the relative sizes of the two sub-matrices. The gains of
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Fig. 2. Simulated gains. (a) Unadjusted gains on an i.i.d. matrix; (b) Adju-
sted gains on a real matrix. P is the relative sizes of the two sub-matrices
after splitting.

column splits are much larger than those of row splits, which justi-
fies the adjustment of gains by Equation (10). Next, we repeated the
experiments on the real yeast cell-cycle expression matrix, to which
the i.i.d. assumption does not hold. The average gains are close to
the theoretical values, although the agreement is not as well as in
the i.i.d. case. As shown in Fig. 2(b), the adjusted gains resulted
from row splits or column splits have similar means and standard
deviations. The results using SS3 or the stress response data set are
similar.

3.3 Model accuracy
To evaluate the performance of our method, we applied it to
the yeast stress response dataset, and conducted ten-fold cross-
validations. We calculated the correlation coefficients between the
predicted and actual values as a measure of accuracy.

In the first set of experiments, we analyzed the effect of the choi-
ces of parameters. We have shown by simulation that the adjustment
of gains is necessary to eliminate the systematic bias between row
and column splits. In fact, the model built with adjusted gains has
a higher cross-validation accuracy than that with unadjusted gains
(0.54 vs. 0.43). We also found that the tree based on

343K�
has better

accuracy than that based on
343 �

(0.54 vs. 0.45). In addition, the
prediction accuracy for unseen genes (0.56) is slightly higher than
for unseen conditions (0.52) or unseen genes plus unseen conditions
(0.51).

Next, We compared the accuracy of BDTree to the
�

-nearest
neighbor (KNN) method. With the KNN method, the expression
level of a gene at a certain condition was predicted by the average
expression level of the

�
nearest genes under the

�
nearest conditi-

ons (best
� $ �<� in our experiment), where the distance between

genes or conditions was defined by the Euclidean distance of their
normalized attribute vectors. We chose KNN as a base level clas-
sifier because it is relatively easy to implement a bi-dimensional
counterpart of our algorithm. The cross-validation accuracy of
BDTree (0.54) is much higher than that of the KNN method (0.37).
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Table 1. confusion matrix

Predicted by BDTree Predicted by Geneclass
Down Baseline Up Down Baseline Up

Down 15.2% 7.1% 2.9% 16.5% 8.9% 1.5%
TRUE Baseline 7.0% 34.5% 9.2% 9.3% 32.4% 6.3%

Up 2.4% 8.4% 13.2% 2.8% 9.9% 12.0%

Second, we considered the case where BDTree is grown using
row attributes only. This is equivalent to the method of Phuong
et al. (2004) in spirit. Since the expression matrix is only partitio-
ned horizontally, the method is unable to predict expression levels
under unseen conditions. Therefore, we conducted cross-validations
only on unseen genes. The correlation coefficient obtained by this
method is similar to our full model where both row and column attri-
butes are used (0.57 vs. 0.56), which means that our method did not
lose any information in row attributes even though column attributes
are used together.

Finally, we compared our method to the Geneclass method (Mid-
dendorf et al., 2004), which is similar to ours in that it can also
predict gene expression levels using both regulators and binding
motifs. One problem when comparing to their results, however, is
that their method is only applicable to pre-discretized expression
levels, while our method can be applied to real expression values.
Therefore, we discretized the expression data into three levels (up,
down and baseline) as in their method, and obtained a confusion
matrix for our predictions as shown in Table 1. It turned out that the
two methods have similar prediction accuracies (63% for ours vs.
61% for theirs) using discretization. On the other hand, their method
has used a technique called boosting, which greatly improves pre-
diction accuracy, but reduces interpretability of models. Besides
not requiring discretization, our method also has several additional
advantages that will be discussed in Section 4.

3.4 Biological interpretation and functional analysis
Fig. 3 shows the regression tree learned from the yeast stress
response data and the gene expression matrix reorganized according
to the tree. The interpretation of the tree is straightforward. Each
oval represents a row attribute (prefixed by ”h.”) for horizontal split-
ting, or column attribute (prefixed by ”v.”) for vertical splitting. The
edge labels represent the thresholds used for splitting. Each gray
box is a leaf node, where the first label is the ID of the node, and the
second label is the average gene expression for the sub-matrix cor-
responding to the node. Note that two subtrees are collapsed to save
space (shown as N373 and N785). Each path from the root node to
a leaf node forms a rule, which represents a biological hypothesis
about the logic relationships among the expression levels of target
genes, presence of binding motifs, and the expression levels of puta-
tive regulators. For example, node N1267 shows that the expression
of genes with both mRRPE and PAC motifs are highly repressed if
the expression of Tpk1 and Kin82 are both induced.

In order to better interpret and understand these rules, we cal-
culated the enrichment of GO functional categories for the genes
within each leaf node. We also grouped the 173 experimental con-
ditions into 19 categories, and identified the significantly enriched
categories for each leaf node. Together, this describes the functional

roles of a set of genes, their regulators and motifs, and the condi-
tions under which they are activated or deactivated. The complete
results of the analysis can be viewed interactively on the Supple-
mentary website by clicking on the tree nodes. Overall, among the
50 leaf nodes, 45 have enriched conditions and 42 have enriched GO
categories with corrected 
 -values ¢ 0.05 (see Section 2.4).

On the top levels, the matrix is horizontally partitioned into five
blocks by row attributes (binding motifs or binding factors). The
first block, corresponding to leaf nodes from N1084 to N1267,
contains 245 genes whose promoters all have mRRPE motifs. It
is known that mRRPE is important in regulating rRNA transcrip-
tion and processing, a process that is repressed under many stress
conditions (Pilpel et al., 2001; Gasch et al., 2000). Indeed, GO
analysis showed that 74 of these genes participate in rRNA proces-
sing (
6¢ 8e-65). Furthermore, 94 genes having both mRRPE and
PAC motifs (nodes N1252 and N1267) are more drastically repres-
sed than the genes having mRRPE only, which agrees with the fact
that the two motifs work cooperatively (Sudarsanam et al., 2002).
Comparing the GO annotation of the genes having both motifs and
the genes having mRRPE only, the former are much more enriched
in nucleolus (63/94 vs. 32/151, 
T¢ 8e-13), and ribosome bioge-
nesis and assembly (60/94 vs. 36/151, 
£¢ 5e-10). On the other
hand, the genes having only mRRPE motifs are more enriched in
cytoplasm (95/151 vs. 22/94, 
%¢ 1e-9), and protein biosynthesis
(38/151 vs. 6/94, 
V¢ 9e-5). This suggests that the genes regulated
by both mRRPE and PAC have regulatory roles in ribosome bio-
synthesis, while the genes regulated by mRRPE alone are involved
in protein synthesis. Interestingly, the genes having two or more
copies of tttctt are down-regulated (N1219), while the genes having
two or more copies of ttttct are up-regulated (N1214). Unlike other
leaves in this block, N1219 is enriched in polysaccharide metabo-
lism/glycan metabolism (
�¢ 0.003). This suggests that, although
tttctt and ttttct are similar to each other, they may be binding motifs
of different TFs (Cliften et al., 2003).

The other four blocks also provide some biological insights. The
second block contains 105 genes regulated by Fhl1 (leaf nodes from
N1026 to N1064). Among them, 97 are structural constituent of
ribosome (
�¢ 3e-144). This is consistent with the recent results that
Fhl1 (together with Ifh1) plays a central role in ribosome protein
gene regulation (Wade et al., 2004). The third block contains leaf
nodes from N579 to N1015. The main binding motif in this block,
agggg, is the consensus sequence of the stress response element
(STRE), which induces a large number of stress-responsive genes
(Gasch et al., 2000). The most enriched GO category is generation
of precursor metabolites and energy (60/401, 
�¢ 3e-26). The genes
having three or more copies of STRE motifs (node N986) show
higher inductivity than those having less copies, and are enriched
in energy reserve metabolism (
:¢ 1e-9), or specifically, trehalose
metabolism, which is an important determinant of stress resistance
in yeast (Winderickx et al., 1996). This suggests that the TF bound
to STRE may have a preference for repetitive motifs. The fourth
block (N526, N539 and N550) has 76 genes that are regulated by
ctcactg, which is the consensus sequence of PAC. Like the genes
in N1267, this set of genes are also enriched in ribosome biogene-
sis and assembly (
¤¢ 1e-10), although the degree of enrichment
lower than in N1267 (20/76 vs. 60/94, 
S¢ 1e-6). Lastly, the fifth
block is enriched with genes for Nitrogen compound metabolism
(
;¢ 7e-21). Note that to the right of this block, the genes are
separated into many small subsets, each of which is regulated by
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h.mRRPE

h.Fhl1_ypd

< 14.34

v.Tpk1

>= 14.34

h.agggg

< 2.64

v.Ppt1

>= 2.64

h.ctcatcg

< 1.0

v.Usv1

>= 1.0

v.Usv1

< 1.0

v.Kre35

>= 1.0

N6
(0.05)

< 3.15

N373
(-0.05)

>= 3.15

v.Hap4

< -0.84

N550
(-0.04)

>= -0.84

N526
(-0.88)

< 2.0

N539
(-1.67)

>= 2.0

v.Tpk1

< 1.1

h.PAC

>= 1.1

h.PAC

< 0.0

N634
(0.28)

>= 0.0

v.Cad1

< 15.06

N631
(0.21)

>= 15.06

N579
(-0.68)

< -0.4

N606
(-0.16)

>= -0.4

h.agggg

< 15.06

N1015
(-0.91)

>= 15.06

N785
(0.96)

< 3.0

N986
(1.74)

>= 3.0

v.Yfl052w

< -1.29

v.Kre35

>= -1.29

N1026
(-1.39)

< 1.1

N1027
(-2.44)

>= 1.1

v.Ppt1

< -0.12

N1064
(0.34)

>= -0.12

N1048
(-0.87)

< -0.81

N1057
(-0.22)

>= -0.81

v.Yvh1

< 1.68

h.PAC

>= 1.68

v.Sgd1

< 0.16

N1172
(0.32)

>= 0.16

N1084
(-0.92)

< -0.81

N1099
(-0.24)

>= -0.81

h.mRRPE

< 15.34

v.Kin82

>= 15.34

h.tttctt

< 16.15

v.Snf3

>= 16.15

h.ttttct

< 2.0

N1219
(-1.22)

>= 2.0

N1209
(-0.99)

< 2.0

N1214
(0.98)

>= 2.0

N1233
(-0.87)

< 0.82

N1238
(-1.75)

>= 0.82

N1252
(-1.42)

< 1.54

N1267
(-2.41)

>= 1.54

Fig. 3. Model built by BDTree for the yeast stress-responsive genes and the partition of the expression matrix. Node labels prefixed by “h.” (“v.”) are row
(column) attributes. Row attributes whose names start with a upper-case letter followed by lower-case letters are from binding data. Row attributes with
all lower-case leters names are ¥ -mers from wordspy. The remaining row attributes are from the motif set of Pilpel et al.. The bottom-left and upper-right
submatrices correspond to leaf nodes N6 and 1267, respectively. This figure can be viewed with a higher resolution on the Supplementary website.

a different motif. GO analysis revealed that each subset of genes is
responsible for the metabolism of different substrates. For exam-
ple, there are nodes enriched with asparagine catabolism (N392
on the Supplementary website, 
¦¢ 3e-8), aldehyde metabolism
(N375, 
J¢ 0.015), methionine metabolism (N442, 
§¢ 0.002) and
glucosidase activity (N521, 
�¢ 0.001).

On the other hand, although we found that most regulators
selected by the tree have been reported as important in regula-
ting stress-responsive genes (e.g., Usv1, Ppt1, Tpk1, Kin82), the
exact biological role of putative regulators is hard to determine. One
reason is that TFs are often post-transcriptional modified or translo-
cated before it can bind to a promoter. Therefore, the mRNA levels
of a TF may not indicate its activity. In some cases, since we have
included signaling molecules as candidate regulators, our method
may select a kinase that activates the TF instead of the TF itself.
In general, when the transcription of a gene requires a cascade of
activation/deactivation, our method may select a regulator upstream
to the actual transcriptional regulation. Nevertheless, we found lite-
rature support for some of the rules. For example, the tree shows
that the expression of Tpk1, a subunit of cAMP-dependent pro-
tein kinase (PKA), is negatively associated with the expression of
mRRPE targets. It has been reported that cAMP signaling pathway
regulates the down-regulation of ribosome biogenesis (Schawalder
et al., 2004). Furthermore, it is known that the RAS/cAMP pathway
negatively regulates cellular physiology characteristic of stationary-
phase (Schawalder et al., 2004). This agrees with our results that
node N1267 is enriched with GO annotation ribosome biogenesis
and assembly, and the most significant conditions are “stationary
phase”. Another computational study by Segal et al. (2003) sugge-
sted a role for Tpk1 and Sgd1 in the regulatory program for rRNA
processing and ribosome biogenesis, which is similar to our results.
Msn2, the TF that binds to STRE, needs to be translocated from the
cytoplasm to nucleus under stress conditions, and it has been repor-
ted that PKA is involved in the translocation (Jacquet et al., 2003),

which is consistent with our analysis (node N634). Our results sug-
gest that Usv1, which has been identified as a top regulator for many
stress response (Segal et al., 2003), may play a role in this process
as well.

We also calculated the importance measure of each attribute using
surrogate splits (see Section 2.4). Table 2 shows the top 20 row attri-
butes and top 20 column attributes respectively. The complete list is
available on the Supplementary website.

Among the top 20 row attributes, PAC (as well as gctcatc and
ctcatcg), mRRPE, and Fhl1 are known to be related to stress
response as discussed above. agggg, ccctt, ggggc and aggggc are
variants of the extended STRE motif (a/caggggc/ggg) or its reverse
complement (Harbison et al., 2004). tccct and tccctt are the binding
motifs of Gis1, a transcriptional factor involved in the expression
of genes during nutrient limitation (Oshiro et al., 2003). Rap1 and
Snf1 are known to control the expression of ribosomal protein genes
during various stress responses (Gasch et al., 2000; Dwight et al.,
2004). Both Gat3 and Yap5 have functions in stress responses and
co-bind with Msn4 (Banerjee and Zhang, 2003). The binding data
of Fhl1 and Rap1 measured under different conditions are all top-
ranked row-attributes, which means that their binding is probably
condition invariant. On the other hand, STRE-like motifs rather
than Msn2 are ranked as top row attributes, which suggests that
the binding specificity of Msn2 varies significantly under different
conditions.

Many of the top 20 column attributes, such as Usv1, Tpk1,
Xbp1, Gis1, Kin82, Gac1, Rim11, Gpa2, Yjl103c, and Tos8, have
evidence to be involved in regulating various stress responses in
SGD database (Dwight et al., 2004) or other computational ana-
lyses (Middendorf et al., 2004; Segal et al., 2003). Interestingly,
we find that only a few of the identified top regulators are TFs
(XBP1, GIS1, TOS8, NRG1, GAT2), while the majority are pro-
tein kinases or hydrolases. This suggests that the activities of many
stress-responsive TFs are regulated post-transcriptionally.
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Table 2. Top row and column attributes identified by BDTree

top row
attributes

PAC, mRRPE, Fhl1 rapa, Fhl1 ypd, agggg, Fhl1 sM,
Fhl1 h2o2hi, ccctt, Rap1 sm, gctcatc, Rap1 ypd, Gat3 ypd,
Rap1, ggggc, Sfp1 sm, ctcatcg, aggggc, tccct, Yap5 ypd, tccctt

top
column
attributes

Usv1, Tpk1, Xbp1, Kns1, Sip2, Kin82, Yjl103c, Mtl1, Ppz2,
Yak1, Gis1, Pde1, Rim11, Gpa2, Tpk2, Tos8, Nrg1, Gat2

Row attributes starting with upper-case letter followed by lower-case letters are from bin-
ding data of Harbison et al.. Row attributes with all upper-case letters are from the motif
set of Pilpel et al.. rapa: nutrient deprived. sm: amino acid starvation. ypd: normal growth
condition.

We also learned a model of the yeast cell-cycle data. The tree
and detailed analysis is on the Supplementary website. Our method
identified almost all known TFs regulating the yeast cell-cycle genes
and their binding motifs (see Supplementary website).

4 DISCUSSION
In this research, we have developed a novel method, the bi-
dimensional regression tree (BDTree), for modeling transcriptional
regulation from large-scale gene expression data. BDTree is a signi-
ficant extension of previous works. First, the tree-based approach
does not assume linear additivity of regulatory elements or any dis-
tribution of the underling data set. Second, by considering gene
expression under multiple conditions simultaneously, the method
can tolerate more noises than using individual arrays. More import-
antly, by taking into account both the expression of putative regula-
tors and the occurrence of putative binding motifs, BDTree is able
to identify condition-specific regulatory elements and regulators for
each gene. We have successfully applied BDTree to the yeast cell-
cycle and stress response data, and identified many biologically
significant binding motifs and regulators.

Two existing methods are similar to our approach in that they
also attempt to model the large-scale gene expression data under a
large number of conditions. The module networks approach (Segal
et al., 2003) clusters genes according to their expression patterns,
and builds a regression tree for each cluster. However, in their
method, binding motifs are not considered when clustering genes.
As a result, genes having similar expression patterns are assigned
the same set of regulators, regardless of the difference of their pro-
moters. Furthermore, the clustering of genes in their method is
based on the expression levels across all conditions. Therefore, their
method is unlikely to identify condition-specific regulation.

The Geneclass method (Middendorf et al., 2004) is the most simi-
lar to ours. Indeed, Geneclass and BDTree have the same schematic
representation (Fig. 1 box E), i.e., modeling gene expression levels
from putative binding motifs and TF expression levels. In addition,
both methods build tree-based models (decision trees in Geneclass
and regression trees in BDTree). Despite these similarities, the
underling modeling rationales are very different. BDTree is a novel
extension to a multivariate regression tree approach, while Gene-
class transforms the modeling problem into a traditional decision
tree learning problem. This difference leads to several significant
consequences.

First, in Geneclass, gene expression levels have to be discretized
into three categories: up, down, and intermediate, but only the up

and down categories are used for training. These choices are arbi-
trary and may cause a significant amount of information to be lost.
BDTree, on the other hand, accepts real-valued data and uses all
data points. Second, because Geneclass treats expression levels as
univariate variables, the differences between genes and conditions
are disregarded. As a result, Geneclass attempts to find submatrices
that have constant expression levels along both dimensions, which
may not be biologically meaningful. In contrast, BDTree optimi-
zes the homogeneity on one dimension of the expression matrix
in each split, while allows heterogeneity on the other dimension.
Third, Geneclass forces each split to couple a row attribute and a
column attribute. Therefore, a total of � / attribute pairs need to be
considered for each split, where � and / are the numbers of row
and column attributes, respectively. BDTree only needs to consider�Tv / row and column attributes individually for each split and is
thus more scalable. By coupling row and column attributes, Gene-
class may have the advantage of directly suggesting associations
between regulators and binding motifs. However, it is not always
advisable to relate regulators to binding motifs. For example, the
binding motifs of a regulator or a regulator itself may not be pre-
sent in the list of candidates. It is also possible that the regulators
are post-transcriptionally regulated; therefore its expression levels
do not correlate with the expression levels of its targets. BDTree is
more flexible since it does not force an explicit pairing of regulators
and binding motifs.

Our method is general and can be turned into several previous
methods easily, taking each of them as a special case. For exam-
ple, when the minimum number of column instances is set to a
sufficiently large number, BDTree is equivalent to that in Phuong
et al. (2004). When vertical splits are restricted to occur only after
horizontal splits are completed, BDTree performs similarly as the
method of Segal et al. (2003). BDTree can also be applied to
domains other than computational biology, such as clinical studies.
For example, the multivariate responses may be a time-series obser-
vation of drug efficacies on patients, for which our method can be
used to identify the time-dependent impact of different factors.

There are several directions that this method may be exten-
ded. One problem with the current implementation of BDTree is
that the splitting of genes or conditions is strictly based on attri-
bute values. Such a hard split may be undesirable considering that
there are inevitable noises in attribute values: motif representations
may be inaccurate, expression levels of regulators are unreliable,
and normalization may introduce additional noises. Furthermore,
the regression tree learning algorithm is essentially greedy, never
re-considering a split that has been made. To circumvent these
problems, some fuzzy rules may be applied to find soft splitting.
Look-ahead strategies may be used to find globally better top-level
splits. Furthermore, some iterative strategies may be adopted to
improve motif representations. Another problem with our approach
is that it can only model simultaneous changes between regulators
and targets, i.e., the expression levels of regulators have to be cor-
related or anti-correlated with those of the target genes. To allow
shifted or reversely shifted correlations to be identified, the method
may include the expression levels of regulators at previous time
points as additional column attributes.
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