Routing Multiple Unsplittable Flows Between Two
Cloud Sites with QoS Guarantees

Erdal Akin, Turgay Korkmaz
University of Texas at San Antonio, Texas, USA
Email: erdal.akin@utsa.edu, korkmaz @cs.utsa.com

Abstract—Large scale cloud applications may require users to
get multiple resources (e.g., VMs, storages) from different sites
and simultaneously connect each pair of resources by a path
that can satisfy certain Quality-of-Service (QoS) requirements.
Finding such paths with the bandwidth constraint is known
as the unsplittiable flow problem, which is shown to be NP-
hard. Accordingly, various approximations as well as heuristic
algorithms are proposed to maximize the amount of sent flows.
However, the existing solutions suffer from either low perfor-
mance in maximizing the amount of sent flows or excessive
computation time. In this paper, we propose a new efficient
heuristic for a special case, where multiple flows are sent between
two cloud sites. Our heuristic algorithm first determines level cuts
between the source and destination sites. It then rearranges the
flow set, if total bandwidth requirement exceeds total bandwidth
of minimum level cut and assigns the flows to the links in the
possible bottleneck cuts using randomized best fit approach. It
finally tries to forward flows between the cuts using bandwidth
constrained shortest path algorithm per flow. We demonstrate
the efficiency of our heuristic using simulation.

Index Terms—Cloud Computing, SDN, QoS, Multi-Flow,
Bandwidth constraint path selection

I. INTRODUCTION

Cloud Computing is a new paradigm that allows users to
access a shared pool of resources such as servers, storage, and
applications from anywhere [1], [2]. Because of its flexible
and economically advantageous model, many institutions and
companies have been increasingly using the cloud for offering
various traditional services (e.g., storage, e-mail). However, to
support large scale and more complicated services involving
multiple resources from different cloud sites (e.g., content
distribution and replication, fault tolerance), we need to figure
out how to simultaneously connect multiple resources in
different cloud sites through an underlying cloud network that
can provide Quality-of-Service (QoS) guarantees [3].

To satisfy the QoS requirements of the multiple flows, we
would like to consider bandwidth as the main QoS parameter.
Accordingly, the problem we study becomes very much related
to bandwidth-constrained path problems [4], [5] and maximum
multi-commodity flow problems [6]. Bandwidth-constrained
path selection has been extensively studied in the literature and
shown to be an easy problem in the case of a single flow [7].
However, in the case of multiple flows, the problem turns out
to be NP-hard as it is related to the integer multi-commodity
flow problem in the literature [6], [8]-[10]. More specifically,
it is known as the Unsplittable Flow Problem (UFP) and can
formally be defined as follows.

Definition 1: Unsplittable Flow Problem (UFP) : Con-
sider a network that is represented by a directed sim-
ple graph G = (N, A), where N is the set of nodes,
N = {v1,v2,03,....,0,} and A is the set of links, A =
{e1,ea,€3,...,e,m . Each link (i,j) € A is associated with
an available bandwidth parameter bw(i, j) > 0. A flow fi is a
3-tuple (si,dk,) wWhere sy is source node, dj. is destination
node and 7 is the bandwidth requirement of flow f;. Each
flow fi needs to be routed through a single path p; for which
bw(pr) = min{bw(i, j)|(i,j) € px} > 7. The problem is to
find paths that can maximize the total routed demand from
given K flows F' = {f1, fo, f3, ..., fx }:

K
maerk.yk
k=1
subject to
K
Zrkxfj < bw(i,j) for each(i,j) € A.
k=1
T if Q= sy,
Z Tkxfj_ Z Tkl'?i = —Tk ifi=di Vi k
j:(i,4)€A §:(jri)EeA 0 otherwise
b [0 Tt
T ek ep

I pr st o < bw(p)
Otherwise

1
yk—o

Even in a special case, where all the flows with different
bandwidth constraints are between the same source and desti-
nation nodes, the problem is still NP-Hard [11]. In this paper,
we specifically focus on this special case. As a motivating
application, we can consider replicating multiple real time
multimedia streams from one cloud site to another, or backing
up data for multiple tenants between two cloud sites.

Since there is no polynomial algorithm for the problem
unless P=NP [10], researchers have proposed various heuristics
and approximation algorithms as we review in the next section.
The main problem with the existing algorithms is that they
suffer from excessive computation time when trying to provide
good performance in maximizing the amount of sent demand.
In this paper, our goal is to provide a new computationally

efficient heuristic for the special case requiring to find multiple
bandwidth-constrained paths between two cloud sites.!

In essence, the existing simple heuristics use a traditional
bandwidth-constrained path selection algorithm (e.g., widest-
shortest path [7]) in an iterative manner. Basically, after
sorting the flows in some order (e.g., ascending, descending,
random w.r.t. bandwidth requirements), the iterative heuristics
try to find a path for each flow. However, as we demonstrate
later, this iterative approach often fails because the paths that
are found first often block the bottleneck links and prevent
finding other paths that can send more flows. To overcome
this blocking problem, the authors in [16] propose a heuristic
called Greedy Algorithm with Preemption (GAP). It mainly
preempts previously connected paths and identifies new paths
that can maximize the total routed demand. While this ap-
proach performs well in maximizing the total routed demand,
it suffers from excessive computation time as it repeatedly
preempts previously connected paths and tries new ones.

In contrast, our heuristic adopts a different approach where
it first determines level cuts between the source and destination
sites. It then rearranges flow set by eliminating some flows
using modified knapsack algorithm with randomization, if total
requested demand is greater than total bandwidth of minimum
level cut. Then, it determines possible bottleneck cuts and
assigns flows to links in those cuts using randomized best
fit approach. Finally, for each flow, it tries to find a bandwidth
constrained path through the links that are assigned to carry
the flow. Using simulation we demonstrate that our heuristic
achieves the similar or better performance in maximizing the
total routed demand while significantly reducing the compu-
tation time when compared to the recently proposed effective
heuristic in [16].

The rest of this paper is organized as follows. In Section II
we present the related work. We describe our proposed heuris-
tic algorithm in Section III. In Section IV we present our
simulation setup and the results. Finally, we conclude this
paper and discuss some possible future work in Section V.

II. RELATED WORKS

The problem we study is very much related to bandwidth-
constrained path problems [4], [5] and maximum multi-
commodity flow problems [6]. Existing bandwidth-constrained

'While focusing on how to solve this challenging problem, we assume that
the underlying network state information (e.g., available bandwidth of each
link) is accurately collected (e.g., using OSPF [12]), and the network is able to
establish per-flow connections by allocating bandwidth resources. As a matter
of fact, Software Defined Networking (SDN) has recently become a popular
paradigm to enable such new services while eliminating the limitations of
the Internet through network virtualization [13]. The key point in SDN is
decoupling the network’s control logic (the Control Plane) and forwarding
logic (the Data Plane) [14]. After this separation, routers and switches become
simple forwarding devices while the central controller becomes the brain
of the network. The controller collects network state information, makes all
the decisions (e.g., computes paths, allocates resources), and conveys these
decisions to routers/switches through an application programming interface
(API) such as OpenFlow [15]. Assuming that the cloud resources will be
connected through an SDN-based network that can support per-flow routing
decisions as in [3], we can now focus on how to compute bandwidth
constrained paths for multiple flows.

path selection algorithms are mainly consider a single flow and
thus can easily be solved. One of the best known traditional
routing algorithm is Widest-Shortest Path algorithm [7]. The
algorithm tries to find the path with largest bandwidth through-
put while minimizing hop-count. Another version known as
Shortest-Widest Path algorithm first eliminates all the links
that does not support the given bandwidth requirement and
then executes the Dijkstra’s shortest path algorithm which
selects the links with largest bandwidth capacity in case of
cost equality [17].

Existing solutions to maximum multi-commodity flow prob-
lems [6] often assume that the flows can be divided and sent
over different paths. However, in our case, each flow should
follow a single path to avoid the problems related to re-
ordering of the packets. Accordingly, the problem becomes
the Unsplittable Flow Problem (UFP). It is firstly addressed
in [11]. Under the assumption that maximum demand of a
commodity, 7,42, has to be less than the minimum link capac-
ity, which is known as no-bottleneck assumption, researchers
have developed various approximation algorithms, which often
suffer from computational complexity while being hard to
implement.

In contrast, the researchers have also explored the possibility
of developing easy-to-implement but effective heuristics with
no assumptions, as done in this paper. In this direction, the
first heuristic called Greedy Algorithm (GA) is introduced
in [11]. GA is an iterative algorithm that attempts to find a
shortest path for each request. It tries each request once and
accepts it if there is a feasible path; otherwise, rejects it. To
improve its performance, the authors in [18] has modified GA
and called it Bounded Greedy Algorithm (BGA). In essence,
BGA limits hop counts with a bound, L, when trying to
find a path for each flow as in GA. The authors have also
proposed further modifications and called it Careful Bounded
Greedy Algorithm (cBGA). In addition to the hop count bound
(L), cBGA considers another bound to limit the overloading
link capacities of a path while searching a feasible path for
each request. In [16], the authors have mainly considered
the ideas behind the above iterative solutions and developed
a new heuristic, called Greedy Algorithm with Preemption
(GAP). It basically tries to find better solutions by preempting
an existing path and re-trying the flows failed previously.
Overall, this new approach gives the best performance in
terms of maximizing the amount of sent data. Thus, we will
compare our solution against this heuristic in [16] and show
that our heuristic significantly reduce computation time while
also achieving slightly better performance in maximizing the
amount of sent data.

III. PROPOSED HEURISTIC ALGORITHM

The simplest heuristic is to use the existing path selection
algorithms (e.g., widest-shortest path or shortest-widest path)
in an iferative manner [11], [16], [18]. For this, we can
consider the given flows in some order (e.g., ascending,
descending, or random order w.r.t. bandwidth requirements)
and try to find a path for each flow f}, using, for example, the

Widest-Shortest algorithm [7]. If there is a path for fj,, we can
subtract the bandwidth requirement 7, from the bandwidth of
each link along that path. Then, we can repeat the process for
the next flow fji1 until we consider all the flows. Actually,
this heuristic can perform well when the network resources are
abundant. However, in the case of busy networks, this heuristic
will often fail while there might be a better feasible solution.
As a matter of fact, to find such a solution, the authors in [16]
extended this iterative heuristic. In essence, they preempt the
previously found paths and re-try the not-sent requests in
several different orders. While this improves the amount of
sent demands, it significantly increases the computation time.

Our goal here is to propose a new heuristic that can improve
the performance in maximizing the amount of sent demands
while significantly reducing the computation time when all
the flows are between two cloud sites. After demonstrating
the inadequacy of the pure iterative heuristic, we present the
details of our proposed heuristic and its computation time
analysis.

A. Failure of pure iterative heuristics

Consider the sample graph in Figure 1, where the available
bandwidth of each link is given in parentheses. Suppose we

11(0,11,2) e4(3)
£20,11,3)

13(0,11,4)

Fig. 1.

A sample graph with 12 nodes and 22 links.

need to send three flows from node 0 to node 11 with the
bandwidth demands of 2, 3, and 4. First, we will find the
Widest-shortest path, which is shown by dashed links in
Figure 2. The Widest path will start from vy then continue

f1(0,11,2)

cr7(6)
cr8(6) ;

12(0,11,3)
>

13(0,11,4)

Fig. 2.

Widest-Shortest Path.

with v1, v, v4, Vg, Vs, U7, Vg, V10, V9 and end with wvi;. The
maximum bandwidth capacity for the chosen widest path will
be 5. We can try to send the given three flows in any order.
By inspection, one can easily see that after sending any one
of these flows and reducing link bandwidths along that path,
we will not have any more feasible paths for the other flows
in the residual network. For example, if we send f1(0,11,2)
and f2(0,11,3) on the widest path, then we cannot find any
path for f3(0,11,4). Likewise, if we send f5(0,11,4) on the
widest path, then there will not be any feasible path for the
other flows.

Fortunately, again by inspection, one can see that we can
actually satisfy the bandwidth requirements of all these three

flows, if we carefully assign the flows to different links as
shown in Figure 3, where flows that are assigned to each
link are shown in brackets. Unfortunately, finding such an

[fZ] [f2 f3] [f2]

f1(0,11,2)

12(0,11,3)
——>

Fig. 3.

Feasible assignments of the flows with our heuristic.

assignment is not an easy task as the problem is NP-Hard.
So, our goal is to develop a new heuristic that can efficiently
do such assignments by using various mechanisms.

B. Details of the proposed heuristic

The pseudo-code of our proposed heuristic is given in
Algorithm 1. Our heuristic mainly consists of four stages:
finding level cuts based on hop count information (Line 1),
identifying the set of flows that can pass through the links on
the level cut which has the minimum total bandwidth (Lines
2 — 10), assigning the flows to the links on level cuts that
are likely to be bottleneck (Lines 11 — 15), and determining a
complete path for each flow by finding and concatenating the
paths between the assigned links on the consecutive level cuts
(Lines 16 — 28).

In the first stage, we need to determine level cuts. We can
formally define a level cut as the set of the links that are at
the same distance (minimum number of hops) from the source
node s and whose removal will disconnect the source and
destination. We can easily find such level cuts using the breath
first search (BFS) algorithm, as presented in Algorithm 2.
Basically, we start from the source node s and explore the
graph level-by-level based on BFS and set the levels of the
encountered links in a non-decreasing manner, as illustrated
in Figure 4. If a link (u,v) is not encountered during the

Fig. 4. Level determination.

search process, we keep its level as —1, indicating that it is
not part of any level cut.

Intuitively, a level cut represents the set of the links that
must be used to carry all the flows one step ahead towards
the destination. So, we call the links in a level cut as straight

Algorithm 1 Proposed Level Cut algorithm

Algorithm 2 Compute Levels

Input: Graph G(N,A), F ={(s,d,r;) : k=1,2,..., K},
randomization factor 3, and best fit factor -y
Output: P, a set of paths that maximize routed demand
1: Compute Levels(G(N, A), s, d)
total Demand = Zszl Tk
for L =0 to h[d] do
total BWy, = Z{(i,j):level(i,j) is L} bw(l,j)
end for
if min(total BWp) < total Demand then
run randomized 0 — 1 knapsack to find F’, the new set
of flows that can best fit into min(total BWr,)

total Demand = Zszl Tk

. FP=F

10: end if

11: for L =0 to h[d] do

12: if (totalDemand < total BWj < ~ x total Demand

A S

R

then
13: BESTFIT(L,F,3)
14: end if
15: end for

16: for fk(S,d, Tk) € Fdo
17: sequencey = {s}
18: for L =0 to h[d] do

19: if Sharingy, is true then

20: Find the link (i,7) such that level(i,j) = L and
J;fj =1

21: sequencey, = sequencer U {i,j}

22: end if

23: end for

24: sequencey, = sequencey, U {d}

25: Compute p; by concatenating bandwidth-constrained
shortest paths between the consecutive nodes in
sequencey, except for the nodes ¢ and j when (i,7)
is a link and has already been assigned to carry f.

26: P=PUp;

27: end for

28: return P

links (denoted as by e(bw) in the figures) as they are expected
to carry the flows in one direction. We call the other links that
are not in any level cuts as cross links (denoted by cr(bw)
in the figures) as they can be used to carry flows between or
within level cuts in the final stage of our heuristic.

In the second stage, we first check if the sum of all re-
quested demands (total Demand) exceeds the total bandwidth
(total BW') of minimum level cut, which has the minimum
total BW among all level cuts. If so, we rearrange the set
of flows, so that we can get a new set of flows for which
the totalDemand is less than or equal to the total BW of
the minimum level cut. For this, we simply use a modified
knapsack algorithm with randomization.

In the third stage, we assign the flows to the links in each
bottleneck level cut. To determine a bottleneck cut, we find the

Input: Graph G(N, A), Source s, Destination d
Output: Levels

1: for V (u,v) € Ado

2. level(u,v) = -1

3: hlu] = inf

4: end for

5: Q1 = {s} and Q2 = {}, where Q1 and Q2 are FIFO

queues

6: h[s] =0

7. while d ¢ Q1 do

8: while Q1 # ¢ do

9 u = dequeue(Q1)

10: for Vv € AdjcentList(u) do
11: if h[u] < h[v] then

12: level(u,v) = hlu]

13: hlv] = hlu] +1

14: enqueue(Q2,v)

15: end if

16: end for

17: end while

18: Q1 =Q2

190 Q2=1{}

20: end while

Algorithm 3 BESTFIT
Input: L, F, Randomization value
Output: inDemand, outDemand, Sharingy,, :vfj
1: sort({(i,7) : level(i, j) is L}) in decreasing order w.r.t.
bw(i, j)
2: for 3 times do
3: Randomly shuffle flows in F'
4: Assign each fi to a feasible link (i,7) € {(i,4) :
level(i, j) is L} and set zf; to 1

5. if Vfi(s,d,rg) € F are assigned then
6: Sharingy, = true
7: Based on the fit, set inDemand[i] and

outDemand|j] for (i,7) € {(4,7) : level(i, j) is L}
8: end if
9: end for
10: Sharingr, = false

total bandwidth on each level cut. If total BW, is greater than
~ times total Demand, then there is no need for an action here
as the next stage can easily send all requests through that level
cut. However, if total BW7, is less than y times total Demand,
then this cut is considered to be a bottleneck cut and we need
to carefully assign the flows to the links on that level cut. In
order to share flows on links in a level cut, we use randomized
best fit algorithm presented in Algorithm 3. We run the best fit
algorithm /3 times.> When we share flows to each link (i, j),
head node i keeps flows in outDemand list and tail node j

2Note in our experiments we set v to 1.5 and 3 to 3, as they provide the
best trade-off between computation time and performance.

keeps flows in tnDemand list. We assume that there is an
internal link between inDemand and outDemand with the
bandwidth of oo.

In the fourth stage, our heuristic first identifies the sequence
of links in the level cuts that are assigned to carry each
flow fi. It then tries to find bandwidth-constrained shortest
paths between the consecutive cuts and concatenates them
to find a complete path for each flow. Let assume flow
f£(0,10,7) is shared on links (vg,v4), and (vs,vs) in a
graph. So, sequencey has nodes (vg, va, v4, U5, Ug, V19) Where
vg 18 source node and wvyig is destination node. Our heuristic
searches shortest paths from vy to ve, from vy to vs and from
vg to v1p and concatenate them to the create complete path
between vy and v1g. It does not search paths between vy — vy
or vs — vg, because the shared links, (ve,v4) and (vs,vs),
are already assigned to carry that flow in previous stage.
When finding shortest paths, our algorithm uses the Constraint
Shortest Path First (CSPF) metric which is the reciprocal of
residual bandwidth of links [19].

C. How the proposed heuristic works

To clarify the key ideas behind our heuristic, we will
illustrate its execution using the sample graph in Figure 5.
In the first stage, we found level cuts and we grouped links

infLf2] | outfLf3] inffLf3] lout(f2,f3]

11(0,11,2)

e2(6)
w0 ()
crl(6)
° cr2(6)
In = out:[f1,f2,f3]
) ()

12(0,11,3)

13(0,11,4) e

in:[f3] out(f2] in:[f2] out[f1]

level 0 level 1 level 2

Fig. 5. Determining the level cuts and sharing demands (in and out represent
inDemand and outDemand lists, respectively).

by their levels. In the second stage, we computed the total
bandwidths of links in each level cuts. The total bandwidths
of links in each levels are equal to 9. Since, none of the
total bandwidths of level cuts is less than totalDemand,
we proceeded to next stage without rearranging flow set. In
the third stage, we applied the randomized best fit algorithm.
Suppose it assigns fi to eg, €2, e5; fo to ey, es,eq; and f3 to
e1, €2, eq. Accordingly, the assigned flows put into inDemand
and outDemand lists of the corresponding head and tail nodes
of each link. In the fourth stage, we computed complete paths
for f1(0,5,2), f2(0,5,3), and f3(0,5,4) by finding paths
between level cuts. As an example, consider fo for which
sequencesy is (vg, vy, vg, V4, V3, vs). We then searched paths
from vy to vy and from v4 to vs. Finally, we concatenated
these paths with already assigned links (vo,v1), (va,v4), and
(vs, vs) to create complete path for fs.

D. Computational time analysis

Our heuristic has four stages. The first stage finds hop
counts and determines level cuts of graph using BFS algo-
rithm. So the time complexity of the first stage is O(n + m)
where n is the number of nodes and m is the number of
links in the graph. The second stage only arranges flows based
on minimum cut using a randomized knapsack algorithm that
shuffles flows 5 times to find best fit on total bandwidth of
links in minimum cut and eliminates other flows which do
not fit. If this case happens, rest of the algorithm uses this
new flow set. The running time of this stage is O(8|F|), |F|
is number of flows. The third stage shares flows on links in
each level cut if the total bandwidth of the links in that level
cut is between total demand and ~ times total demand. For
sharing, we shuffle flows and try to assign them to links using
best fit. We try this process at most J times for each level
cut. So, the running time of the third stage is O(ﬁ£|F‘ |m|),
where £ is number of level cuts (i.e., minimum number of
hops between source and destination). Since [is constant, the
running time of the second and third stages of the algorithm
become O(|F|) and O(L|F||m|), respectively. Finally, the
fourth stage basically uses a modified shortest path algorithm
for each flow between the the consecutive bottleneck level
cuts. Thus, the worst-case running time of this stage would be
O(|F |£(Dijkstra)), which is also the overall running time
of the proposed heuristic.

IV. EXPERIMENTAL RESULTS

To evaluate our algorithm we implemented a simulator in
Java. We run our simulator on a computer which has Intel
Core(TM) i7 — 4710HQ CPU @250 GHz with 12GB
RAM. We compare our algorithm against Greedy Algorithm
with Preemption (GAP) in [16], which provides the highest
performance in maximizing the total routed demand to the best
of our knowledge. As the performance measure, we consider
the total amount of sent flow and the execution time of each
algorithm. We normalized the execution times based on our
algorithm.

Fig. 6. Modified ANSNET topology.

For our tests, we first use a realistic topology by adding new
links to ANSNET in [20], as seen Figure 6. We also consider
random graphs generated by BRITE [21] with different densi-
ties (M) and randomly assigned bandwidths. Number of flows
(K) is between 3— 15 with randomly assigned demands. When

generating graphs, link weights, and requested demands, we
used common random numbers to minimize the variance and
thus obtain a better confidence level on our comparison results.
We run each algorithm 1000 times and report their averages.
I all tests, we assign v = 1.5, = 3.

First Test

Our first test is based on ANSNET topology [20]. In each it-
eration, bandwidth capacity of each link is randomly generated
from uniform(10,100). Then for each flow set, we randomly
generate source s and destination d from uniform(1, N), and
r from wuniform(1,40). As shown in Figures 7 and 8, our
algorithm increases performance by %2 — 10 in maximizing
the total routed demand (or bandwidth) while significantly
reducing the computation time. As the number of flows (K)
increases, the computation time of GAP algorithm naturally
increases significantly, as it preempts existing paths and re-
tries many different possibilities.

RUN = 1000, Bandwidth Range [10-100]

" GAP C— |
Level-Cut Rz

120000

100000

80000

60000

40000

20000

Total Routed Demand

0

3 4 5 112

ls\lurﬁbesr o? Flgws (K)

13 14 15

Fig. 7. First Test: Total Routed Demand.

RUN = 1000, Bandwidth Range [10-100]

GAP ———
Level-Cut -~

IS

©

~

Normalized Execution Time

o 7 5 s 10 u
Number of Flows (K)

Fig. 8. First Test: Normalized Execution Time.

Second Test

Our second test is based on random graphs generated
by BRITE [21]. We have tried different densities (M) and
observed the similar trends. Due to page limitations, we report
the results with M/ = 5. But more results can be found in
our technical paper [22]. We generated 100 random graphs
with density M = 5. Bandwidth capacity for each link
is randomly generated from wuniform(10 — 100). We again
consider K = 3 — 15 flows. For each flow set, we randomly

generate source s and destination d from uniform(1, N), and
7y, from uniform(1,60) for all number of flows. As shown in
Figures 9 and 10, both algorithms have similar performance in
maximizing the total routed demand (our algorithm increases
up to %4.5) while ours again provides significant reduction in
computation time as K increases.

RUN =100, M = 5, Bandwidth Range [10-100]

16000

"GAP ——
wo | Level-Cut ©ss
12000 - 3 j

6000 -

4000 |-

Total Routed Demand

2000

0

3 4 5

6 7 8 9 10 11 12
Number of Flows (K)

Fig. 9. Second Test: Total Routed Demand.

RUN =100, M = 5, Bandwidth Range [10-100]

GAP ——
o Level-Cut -+ |

Normalized Execution Time

L
14

7 s s 1 u
Number of Flows (K)

Fig. 10. Second Test: Normalized Execution Time.

Third Test

In our third test, we want to see how demand re-
quirement range affects the performance. Here we gen-
erated bandwidth requirements 7, from wniform(1,10),
uniform(1,20) ... uniform(1,100), while keeping the topol-
ogy, and the number of flows fixed. Again, we observed similar
trends under different topologies and flow numbers as can bee
seen in [22]. Thus we present one set of these results here
based on randomly generated 100-node graphs. We fixed the
number of flows (K) to 4 and density parameter M to 7 in
random graphs. As before, we randomly generated bandwidth
capacities from uniform(10 — 100), source s and destination
d from uniform(1, N) for each flow set.

As shown in Figures 11 and 12, our algorithm again gets
similar performance in maximizing the total routed demand,
while providing significant reduction in computation time.
One can see that total routed demand is increasing for both
approaches until uniform(1,80). It then begins to show a
declining tendency. This is because, bandwidth requirements
of flows begin to exceed link capacities, which prevent to
route some flows. Regarding computation time, we observe

that both algorithm has the similar computation times when
we deal with small demands. However, as the demand ranges
increase, again the computation time of GAP algorithm in-
creases significantly as it ends up re-trying many possibilities
to achieve a good performance in maximizing routed demands.

RUN = 100, M = 7, K = 4, Bandwidth Range [10-100]

GAP L —
Level-Cut s SR

10000 - —
8000

6000

LXXAXAXHXA

%%

4000

XHXHXHXHXKKKKK

Total Routed Demand

2000

(1,10) (1,20) (1,30) (1,40) (L50) (1,60) (1,70) (L80) (1.90) (1,100)

Bandwidth Demand Range

Fig. 11. Third Test: Total Routed Demand.

RUN =100, M =7, K = 4, Bandwidth Range [10-100]

GAP ——
Level-Cut -+

total routed Demand

(1,10) (120) (L30) (L40) (L50) (160) (1,70) (1,80) (1,90) (1,100)

Bandwidth Demand Range

Fig. 12. Third Test: Normalized Execution Time.

V. CONCLUSIONS AND FUTURE WORKS

We have focused on a special case of the Unsplittable
Flow Problem (UFP), where the multiple flows with different
bandwidth constraints are between two cloud sites. Since
this special case is still NP-Hard, we proposed a heuristic
algorithm. Our heuristic algorithm first determines level cuts
between the source and destination. After rearranging flow set
based on total bandwidth of minimum cut, it then assigns the
flows to the links in the bottleneck cuts using randomized
best fit approach. It finally tries to forward flows between
the bottleneck cuts using a bandwidth constrained shortest
path per flow. We compared our algorithm against an effective
heuristic provided in [16]. We demonstrated that our algorithm
achieved similar or better performance in maximizing total
routed demand while significantly reducing computation time.
So, our solution will be much more useful in real-time path
computation scenarios.

As the future work, we plan to generalize our algorithm
to find paths for multiple flows among different source-
destination pairs. In addition, we will study how to deal with

inaccurate state information while the current version assumes
accurate state information.

REFERENCES

[11 A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, and I. Stoica, “Above the clouds: A berkeley
view of cloud computing,” Dept. Electrical Eng. and Comput. Sciences,
University of California, Berkeley, Rep. UCB/EECS, vol. 28, p. 13, 2009.

[2] P. Mell and T. Grance, “The nist definition of cloud computing,” 2011.

[3] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with a
globally-deployed software defined wan,” in ACM SIGCOMM Computer
Communication Review, vol. 43, no. 4. ACM, 2013, pp. 3-14.

[4] Q. Ma and P. Steenkiste, “On path selection for traffic with bandwidth
guarantees,” in Proceedings of the IEEE International Conference on
Network Protocols (ICNP ’97), 1997, pp. 191 -202.

[5] A. Orda, “Routing with end-to-end QoS guarantees in broadband net-
works,” IEEE/ACM Transactions on Networking, vol. 7, no. 3, pp. 365—
374, 1999.

[6] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory,
Algorithms, and Applications. Upper Saddle River, NJ, USA: Prentice-
Hall, Inc., 1993.

[71 R. A. Guérin and A. Orda, “Qos routing in networks with inaccurate
information: theory and algorithms,” IEEE/ACM Transactions on Net-
working (TON), vol. 7, no. 3, pp. 350-364, 1999.

[8] M. M. Atanak, A. Dogan, and M. Bayram, “Modeling and resource
scheduling of real-time unsplittable data transfers,” Appl. Math, vol. 9,
no. 2, pp. 1067-1080, 2015.

[9] B. Ma and L. Wang, “On the inapproximability of disjoint paths
and minimum steiner forest with bandwidth constraints,” Journal of
Computer and System Sciences, vol. 60, no. 1, pp. 1-12, 2000.

[10] N. Garg, V. V. Vazirani, and M. Yannakakis, “Primal-dual approximation
algorithms for integral flow and multicut in trees,” Algorithmica, vol. 18,
no. 1, pp. 3-20, 1997.

[11] J. M. Kleinberg, “Approximation algorithms for disjoint paths prob-
lems,” Ph.D. dissertation, Citeseer, 1996.

[12] J. Moy, “OSPF version 2,” IETF, Standards Track RFC 2328, April
1998.

[13] N. M. K. Chowdhury and R. Boutaba, “A survey of network virtualiza-
tion,” Computer Networks, vol. 54, no. 5, pp. 862-876, 2010.

[14] D. Kreutz, F. M. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” proceedings of the IEEE, vol. 103, no. 1, pp. 14-76,
2015.

[15] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69-74, 2008.

[16] K. Walkowiak, “New algorithms for the unsplittable flow problem,” in
Computational Science and Its Applications-ICCSA 2006. Springer,
2006, pp. 1101-1110.

[17] M.-C. Yuen, W. Jia, and C.-C. Cheung, “Simple mathematical modeling
of efficient path selection for qos routing in load balancing,” in Multi-
media and Expo, 2004. ICME’04. 2004 IEEE International Conference
on, vol. 1. IEEE, 2004, pp. 217-220.

[18] P. Kolman and C. Scheideler, “Improved bounds for the unsplittable
flow problem,” in Proceedings of the thirteenth annual ACM-SIAM
symposium on Discrete algorithms. Society for Industrial and Applied
Mathematics, 2002, pp. 184-193.

[19] E. Crawley, H. Sandick, R. Nair, and B. Rajagopalan, “A framework for
qos-based routing in the internet,” 1998.

[20] D. E. Comer, Internetworking with TCP/IP, 3rd ed. Prentice Hall, Inc.,
1995, vol. 1.

[21] A. Medina, A. Lakhina, I. Matta, and J. Byers, “Brite: An approach to
universal topology generation,” in Modeling, Analysis and Simulation
of Computer and Telecommunication Systems, 2001. Proceedings. Ninth
International Symposium on. 1EEE, 2001, pp. 346-353.

[22] E. Akin and T. Korkmaz, “Routing multiple unsplittable flows between
two cloud sites with QoS guarantees,” March 2016. [Online]. Available:
http://www.cs.utsa.edu/~korkmaz/research/levelcut

