
An Efficient Binary-Search Based Heuristic for

Extended Unsplittable Flow Problem

Erdal Akin

Computer Science

University of Texas at San Antonio

San Antonio, Texas, USA

Email: erdal.akin@utsa.edu

Turgay Korkmaz

Computer Science

University of Texas at San Antonio

San Antonio, Texas, USA

Email: korkmaz@cs.utsa.com

Abstract—Routing a given set of flows with bandwidth require-
ments is a fundamental problem, which has been formulated
as Unsplittable Flow Problem (UFP). One of the key issues
in this formulation is that the bandwidth requirement is fixed
for each flow. In practice, however, many applications (e.g.,
video-on-demand, backup and replication services) would greatly
benefit from getting more bandwidths beyond the fixed minimum
bandwidth requirement. To achieve this, we extended UFP such
that bandwidth requirements will be given in a range. The
challenge is now how to find paths and dynamically determine the
allocated bandwidths such that we can provide more bandwidth
to each flow while making sure that each flow gets at least
the requested minimum amount. Like UFP, the extended UFP
problem is also NP-Hard. Therefore, we propose two heuristics
and demonstrate their efficiency using simulation.

Index Terms—Bandwidth-constraint path selection; Multi-
commodity Flow; QoS; Cloud Computing; SDN

I. INTRODUCTION

One of the fundamental problems in computer networking

is how to route a given set of flows through a network

while satisfying the bandwidth requirements of these flows.

This fundamental problem known as bandwidth-constrained

path selection appears in many contexts such as IP traffic

engineering and MPLS routing [1], [2], and more recently

inter-cloud communications [3]. As a new paradigm, cloud

computing allows users to access a shared pool of resources

such as servers, storage, and applications from anywhere [4],

[5]. However, to support large scale and more complicated

services involving multiple resources from different cloud sites

(e.g., content distribution and replication, fault tolerance), we

need to figure out how to simultaneously connect multiple

resources in different cloud sites through an underlying cloud

network that can provide bandwidth guarantee as the main

Quality-of-Service (QoS) parameter [3].

While being easy to be solved in the case of a single

flow [6]–[8], the bandwidth-constrained path selection prob-

lem is known to be NP-hard in the case of multiple flows as

it is related to the integer multi-commodity flow problem [9]–

[12]. More specifically, it is known as the Unsplittable Flow

Problem (UFP), which is formally defined as follows.

Definition 1: Unsplittable Flow Problem (UFP): Consider

a network that is represented by a directed simple graph G =
(N,A), where N is the set of nodes, N = {v1, v2, v3,, vn}

and A is the set of links, A = {e1, e2, e3, ..., em}. Each

link (i, j) ∈ A is associated with an available bandwidth

parameter bw(i, j) ≥ 0. A flow fk is a 3-tuple (sk, dk, rk)
where sk is source node, dk is destination node and rk
is the requested bandwidth demand of flow fk. Each flow

fk needs to be routed through a single path pk for which

bw(pk)
def
= min{bw(i, j)|(i, j) ∈ pk} ≥ rk . The problem is to

find paths that can maximize the total routed demand from

given K flows F = {f1, f2, f3, ..., fK}:

max
K
∑

k=1

rkyk

subject to

K
∑

k=1

rkx
k
ij ≤ bw(i, j) for each(i, j) ∈ A. (1)

∑

j:(i,j)∈A

rkx
k
ij−

∑

j:(j,i)∈A

rkx
k
ji =







+rk if i = sk
−rk if i = dk
0 otherwise







∀i, k

(2)

xk
ij =

{

0 : xk
ij /∈ pk

1 : xk
ij ∈ pk

(3)

yk =

{

1 : ∃ pk s.t. rk ≤ bw(pk)
0 Otherwise

(4)

Since UFP is NP-hard [12], there is no polynomial algo-

rithm to solve it unless P=NP. Accordingly, researchers have

proposed various heuristics and approximation algorithms. We

will review them in the next section and use one of them as

part of our solutions when addressing an extended version of

UFP.

One of the key issues in the above formulation is that the

bandwidth demand rk is fixed for each flow. In practice, how-

ever, many applications (e.g., video-on-demand, backup and

replication services) would greatly benefit from getting more

bandwidths beyond the guaranteed minimum amounts [3],

[13]. Finding such paths, albeit challenging, will improve user

experiences and increase revenues for the network operators.

Accordingly, we extend the above formulation such that the

bandwidth requirement of each flow fk can be given in a range

(lk, uk), where lk is minimum demand and uk is maximum

demand.

The challenge is now how to find paths and dynamically

determine the allocated bandwidths (i.e., rk’s) such that we

can provide more bandwidth to each flow while making sure

that each flow gets at least the requested minimum amount.

We formulate this problem as the Extended Unsplittable Flow

Problem, which can be stated as follows.

Definition 2: Extended Unsplittable Flow Problem (E-

UFP): Consider the same directed graph in the above UFP for-

mulation. Now a flow fk is given as a 4-tuple (sk, dk, lk, uk)
where sk is source node, dk is destination node, lk is minimum

demand, uk is maximum demand of flow fk. Again each

flow fk needs to be routed through a single path pk for

which bw(pk)
def
= min{bw(i, j)|(i, j) ∈ pk} ≥ rk . Assuming

that all flows can be routed when rk = lk in the above

UFP1, the problem here is to find a path pk and and its

allocated bandwidth rk for each flow fk so that we can

maximize the total routed demand for the given K flows

F = {f1, f2, f3, ..., fK}:

max

K
∑

k=1

rk

subject to the same constraints (1), (2), and (3) in the above

UFP formulation with the key difference that now rk’s are

decision variables that need to be dynamically determined

under the following additional constraint:

lk ≤ rk ≤ uk (5)

Since rk’s are now decision variables, our E-UFP problem

turns out to be a quadratically constrained integer program-

ming problem, which is known to be NP-hard [15]. Thus,

no efficient algorithms exist to solve this problem, calling for

efficient heuristics. To the best of our knowledge, we are the

first to address the Extended Unsplittable Flow Problem (E-

UFP).2

In essence, we plan to use an existing efficient heuristic

solution to UFP, namely Greedy Algorithm with Preemption

(GAP) [14], as the key building block in our solutions. So the

1Using existing heuristics (e.g., GAP [14]), we can first solve UFP with
rk = lk . If we cannot find paths for all flows, then we can just take the subset
of flows that has been routed as the new flow set. We then try to increase the
allocated bandwidth for each of these flows beyond the minimum requirement.

2While focusing on how to solve this challenging problem, we assume that
the underlying network state information (e.g., available bandwidth of each
link) is accurately collected (e.g., using OSPF [16]), and the network is able to
establish per-flow connections by allocating bandwidth resources. As a matter
of fact, Software Defined Networking (SDN) has recently become a popular
paradigm to enable such new services while eliminating the limitations of
the Internet through network virtualization [17]. The key point in SDN is
decoupling the network’s control logic (the Control Plane) and forwarding
logic (the Data Plane) [18]. After this separation, routers and switches become
simple forwarding devices while the central controller becomes the brain
of the network. The controller collects network state information, makes all
the decisions (e.g., computes paths, allocates resources), and conveys these
decisions to routers/switches through an application programming interface
(API) such as OpenFlow [19]. Assuming that the cloud resources will be
connected through an SDN-based network that can support per-flow routing
decisions as in [3], we can now focus on solving E-UFP.

key issue is how to set bandwidth requirements before calling

the existing solution for UFP. For example, we can simply

solve E-UFP in a brute force manner by first recursively gener-

ating all permutations of bandwidth requests ranging from lk to

uk with the increments of 1. Then we can call GAP by setting

rk’s to the bandwidth values in each permutation and return

the permutation that maximizes the objective function while

finding a path for each flow. Clearly, this brute force approach

can only work with a very small number of flows and small

ranges as the number of permutations increases exponentially.

Accordingly, we need new heuristics that can accomplish the

similar performance of brute force in maximizing the objective

function while significantly reducing the computation time.

With this in mind, we propose two heuristics, namely ran-

domized and binary-search based algorithms that iteratively

calls GAP while adjusting the bandwidth ranges depending

on the paths returned in previous iterations. Using simulations

we show that our binary-search based algorithm provides the

best performance.

The rest of this paper is organized as follows. In Section II

we present the related work. We describe our proposed heuris-

tic algorithms in Section III. In Section IV we present our

simulation setup and the results. Finally, we conclude this

paper and discuss some possible future work in Section V.

II. RELATED WORKS

The main problem that we study is related to bandwidth-

constrained path problems [6], [7] and maximum multi-

commodity flow problems [9]. Finding a path for a single

flow is a simple problem which can be solved by exist-

ing bandwidth-constrained path selection algorithms such as

Widest-Shortest Path algorithm and Shortest-Widest Path algo-

rithm [8], [20]. Maximum multi-commodity flow problems [9]

are solved by dividing flows and sending over different paths.

However, in our case, in order to avoid the problems related to

re-ordering of the packets, each flow should be routed through

a single path. This is known as Unsplittable Flow Problem

(UFP), which has been initially represented in [21].

To solve the UFP, researchers have offered various approx-

imation algorithms, which often suffer from computational

complexity while being hard to implement. In contrast, ef-

fective heuristics are also developed by the researchers. In

this direction, Greedy Algorithm (GA) is the first heuristic

introduced in [21]. GA is an iterative algorithm that relies

on finding a shortest path for each request. Researchers tried

to improve the performance of GA. Accordingly, Bounded

Greedy Algorithm (BGA) is proposed in [22]. In essence,

BGA tries to find a path for each flow as in GA by limiting

hop counts with a bound L. In addition to the hop count

bound L, they offered a new algorithm called cBGA which

takes into account another bound to limit the overloading link

capacities of a path while searching a feasible path for each

request. By generalizing the key ideas from these heuristics,

the author in [14] proposed a new heuristic, called Greedy

Algorithm with Preemption (GAP). It basically tries to find

better solutions by preempting an existing path and re-trying

the flows failed previously. Overall, this new approach gives

the best performance in terms of maximizing the amount of

sent data. Therefore, we will use it in our solutions.

While we focus on the bandwidth-constrained path selection

in this paper, there are several other related works considering

how to provide effective communication between geographi-

cally distributed cloud sites by controlling traffic at application

and network layers [23]–[25]. In [3], authors propose a mech-

anism to manage switches and network bandwidth by using

Software Defined Network (SDN) principles. In [25], authors

provide an integer linear programming formulations to reserve

variable bandwidth capacity at different times and solve it us-

ing shortest path-based computation. In [26], authors consider

multiple-layer network architecture and utilize different layers

for transporting the bandwidth requests depending on their rate

which can be classified as low, high, and highest.

III. PROPOSED HEURISTIC ALGORITHMS

Our general approach to solve E-UFP is to iteratively

use an existing heuristic solution of UFP with a given set

of bandwidth requirements. So the key issue here is how

to select the bandwidth requirements from the given ranges

and in which order to pass them to the existing heuristic

solution of UFP. One simple approach will be to consider all

possibilities in a brute force manner. Accordingly, we will

first develop a brute force (BF) algorithm that can simply

generate all permutations of bandwidth requirements from the

given ranges and then call an existing solution of UFP with

each permutation of bandwidth requirements. Unfortunately,

BF algorithm can not be used in practice as the number

of permutations increases exponentially. Therefore, there is a

need for developing new efficient heuristics.

In response to that, we propose two heuristics. Our first

heuristic (called Rand) is a randomization algorithm, where

we randomly generate bandwidth requirements from the given

ranges and call an existing solution of UFP. Depending on the

returned paths, we adjust the ranges based on some heuristics

that we will discuss. Then we randomly generate bandwidth

requirements from the new ranges with the objective of ob-

taining better solutions in the next iteration. As the number of

iterations increases, this algorithm is expected to return better

solutions at the expense of increased computation time.

Our second heuristic (called BS) is a binary-search based

algorithm, where we generate the bandwidth requirements by

taking the mean of the corresponding ranges. Again depending

on the returned paths, we adjust the ranges based on some

heuristics that we will discuss. This search is repeated until

the lower and upper bounds of all ranges become equal. As

we show later, this algorithm provides the best performance.

As we discussed in the related work section, there are

several existing heuristics and approximation solutions for

UFP. In our heuristics, we will use the GAP algorithm as the

existing solution of UFP because of its simplicity and better

performance when compared to others [14].

We now present details of our solutions and their computa-

tional time analysis.

A. Brute Force (BF) Algorithm

The pseudo-code of brute force (BF) algorithm is given

in Algorithm 1. It first calls Algorithm 2 which recur-

sively generates all permutations of bandwidth requirements

and stores them in Demands list. BF algorithm then sorts

Demands list in decreasing order with respect to (w.r.t.)

the sum of each demand. BF algorithm then calls GAP

algorithm for each demand. Since the demands are sorted

from maximum to minimum, BF algorithm stops when the

GAP algorithm finds a solution that satisfies the bandwidth

requirements in the given demand permutation for all flows.

In the worse case, the running time of the BF algorithm would

be O((max(uk − lk))
|F |

GAP) where |F | is number of flow,

as it runs for all permutations whose number grows expo-

nentially. Clearly, this algorithm can not be used in practice.

Nevertheless, we run the BF algorithm for small number of

flows and ranges so that we can show the effectiveness of our

other heuristic solutions.

Algorithm 1 Brute Force Algorithm

Input: Graph G(N,A), F = {(sk, dk, lk, uk) : k =
1, 2, . . . ,K}

Output: Ssuccess, flow set maximizes routed demand

1: Demands = φ
2: All Demand Permutations(F, 1)

3: Sort(Demands) in descending order w.r.t. sum of each

demand

4: for ∀D ∈ Demands do

5: Ssuccess = GAP (G,F,D)
6: if

∣

∣Ssuccess

∣

∣ ==
∣

∣F
∣

∣ then

7: return Ssuccess

8: end if

9: end for

Algorithm 2 All Demand Permutations

Input: F = {(sk, dk, lk, uk) : k = 1, 2, . . . ,K}, size
Output: Demands, set of all possible demand requirements

1: if size == K then

2: Demands = Demands ∪ [r1, r2, . . . , rK]
3: else

4: for rsize = lsize to usize do

5: All Demand Permutations(F, size+ 1)

6: rsize = rsize + 1
7: end for

8: end if

B. Randomization (Rand) Algorithm

The pseudo-code of our randomized (Rand) algorithm is

given in Algorithm 3. It is an iterative algorithm that ran-

domly chooses current bandwidth requirement rk between

lower bound (lk) and upper bound (uk) and then calls GAP

algorithm. It repeats this process α times to increase the

chance of finding a solution that maximize routed bandwidth

requirements. After each iteration, we actually adjust the

bandwidth ranges to avoid the blind search. Specifically, if

all flows are sent, then we set the lower bound lk of all ranges

to rk (lk = rk). Otherwise, we keep the ranges the same. We

will test the Rand algorithm with different values of α. The

running time of the Rand algorithm is O(αGAP).

Algorithm 3 Randomized (Rand) Algorithm

Input: Graph G(N,A), Repeat value α, F =
{(sk, dk, lk, uk) : k = 1, 2, . . . ,K}

Output: Ssuccess, flow set maximizes routed demand

1: for ∀fk ∈ F do rk = lk end for

2: Ssuccess = GAP (G,F)
3: repeat = 0
4: while repeat ≤ α do

5: for ∀ fk ∈ F do rk = uniform(lk, uk) end for

6: Scurrent = GAP (G,F)
7: if

∣

∣Scurrent

∣

∣ ==
∣

∣F
∣

∣ then

8: if
∑|Scurrent|

k=1 rk >
∑|Ssuccess|

k=1 rk then

9: Ssuccess = Scurrent

10: end if

11: for ∀fk ∈ F do lk = rk end for

12: end if

13: repeat++
14: end while

15: return Ssuccess

C. Binary-Search Based (BS) Algorithm

The pseudo-code of our binary-search based (BS) algorithm

is given in Algorithm 4. As in the binary search, it always takes

the means of the ranges as the current bandwidth requests

for all flows. It then calls GAP algorithm to find paths to

send these flows. If it succeeds, then new lower bounds lk of

all flows are updated to rk . Otherwise, it changes the upper

bound uk of not-sent flows to rk while keeping lower ranges

the same. It then continues to search paths for flows with

new bandwidth requirements rk. It terminates when all lk
and uk become equal. The running time of the algorithm is

O(log(max(uk − lk))GAP).

IV. EXPERIMENTAL RESULTS

To evaluate our algorithm, we implemented a simulator in

Java. We run our simulator on a computer which has Intel

Core(TM) i7 − 4710HQ CPU @2.50 GHz with 12GB
RAM. We compare our heuristics against brute force algo-

rithm, which always performs he best in maximizing routed

bandwidth requirements. However, since it suffers from its

exponentially growing execution time, we only execute it

with small number of flows. As the performance measure, we

consider the total amount of sent demand and the execution

time of each algorithm.

For our tests, we first use a realistic topology by adding

new links to ANSNET in [27], as seen Figure 1. We also

consider random graphs generated by BRITE [28] with differ-

ent densities (M) and randomly assigned bandwidths. When

Algorithm 4 Binary-Search Based (BS) Algorithm

Input: Graph G(N,A), F = {(sk, dk, lk, uk) : k =
1, 2, . . . ,K}

Output: Ssuccess, flow set maximizes routed demand

1: for ∀fk ∈ F do : rk = lk end for

2: Ssuccess = GAP (G,F)
3: for ∀fk ∈ F do rk = (lk + uk)/2 end for

4: LOOP:

5: Scurrent = GAP (G,F)
6: if

∣

∣Scurrent

∣

∣ ==
∣

∣F
∣

∣ then

7: Ssuccess = Scurrent

8: for ∀fk ∈ F do lk = rk end for

9: for ∀fk ∈ F do rk = (lk + uk)/2 end for

10: else

11: for ∀ fk ∈ F do

12: if fk /∈ Scurrent then

13: uk = rk
14: rk = (lk + uk)/2
15: end if

16: end for

17: end if

18: for ∀fk ∈ F do

19: if lk 6= uk then

20: Goto LOOP

21: end if

22: end for

23: return Ssuccess

�
�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
� ��

��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������

�������������
�������������
�������������

�������������
�������������
�������������

����
����
����
����
����
����

����
����
����
����
����
����

��
��
��
��

��
��
��
��

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���
���

���
���
���
���
���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
���� ����

����
����
����
����

����
����
����
����
����

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������

���������
���������
���������

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

������
������
������
������

������
������
������
������

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

���
���
���
���
���
���
���

���
���
���
���
���
���
���

1

2

3

4

5

6

7
9

13 14

16

17

15

12

10 18

19

20

11

8

26

31

32

30

28
29

25

27

24

22
23

21

Fig. 1: Modified ANSNET topology.

generating graphs, link weights, and requested demands, we

used common random numbers to minimize the variance and

thus obtain a better confidence level on our comparison results.

We run each algorithm 100 times and report their averages.

Test 1

Our first test is based on ANSNET topology [27]. Band-

width capacity of each link is randomly generated from

uniform(10, 100). We consider K = 3 − 15 flows. For each

flow set, we randomly generate source sk and destination dk
from uniform(1, N) where N = 32 for this topology, and

bandwidth requirement range (lk, uk) from uniform(1, 5) and

uniform(5, 10), respectively.Algorithms try to maximize total

routed rk which can be any variable between lk and uk.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 3 4 5 6 7 8 9 10 11 12 13 14 15

T
ot

al
 R

ou
te

d
D

em
an

d

Number of Flows (K)

RUN = 100, Bandwidth Range [10-100], Demand Range [1-10]

BFA
BSA

Rand-3

O

O

O

O
O

O

O

O
O

O

O

O
O

O
Rand-6

x

x

x

x
x

x

x

x

x

x

x

x
x

x
Rand-9

Rand-12
Rand-15

GAP-with rk = lk

(a) Total Routed Demand

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 3 4 5 6 7 8 9 10 11 12 13 14 15

E
xe

cu
tio

n
T

im
e

(m
s)

Number of Flows (K)

RUN = 100, Bandwidth Range [10-100], Demand Range [1-10]

BFA
BSA

Rand-3

O O O O O
O O O O O O O

O

O
Rand-6

x

x x
x x x x

x
x x

x
x x

x
Rand-9

Rand-12
Rand-15

GAP-with rk = lk

(b) Execution Time

Fig. 2: Performance results under ANSNET Topology [27].

As seen in the Figure 2a and Figure 2b, BF Algorithm gives

optimum solution for maximizing bandwidth requirement.

However, while execution time of the algorithm is low for

small size of flows, it goes up exponentially when flow size

and/or bandwidth demand range increases. Because of that

we terminate the algorithm for next flows when execution

time dramatically increases. We run the same inputs for Rand

Algorithm with α = 3, 6, 9, 13, 15. It gives very close results

to BF Algorithm in maximizing total routed demand with

better execution time. For Rand Algorithm, the execution time

grows linearly as α increases. Nevertheless, routed bandwidth

demand is not increasing in parallel with execution time. So,

we will run next experiments with α = 3 and 6 for Rand Algo-

rithm. In contrast to Rand algorithm, BS Algorithm approaches

optimum solution with better execution time especially for

large number of flows (K ≥ 6).

Test 2

Our second test is based on random graphs generated

by BRITE [28]. We have tried different densities (M) and

observed the similar trends. Due to page limitations, we report

the results with M = 3 and M = 5. But more results can be

found in our technical paper [29]. We generated 100 random

graphs with density M = 3 and M = 5. Bandwidth capacity

for each link is randomly generated from uniform(10− 100).

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 3 4 5 6 7 8 9 10 11 12 13 14 15

T
ot

al
 R

ou
te

d
D

em
an

d

Number of Flows (K)

M = 3, RUN = 100, Bandwidth Range [10-100], Demand Range [1-20]

BFA
BSA

Rand-3

O

O

O

O

O

O
O

O

O

O

O

O

O
O

Rand-6

x

x

x

x

x

x

x

x

x

x

x
x

x
x

GAP-with rk = lk

(a) Total Routed Demand

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 3 4 5 6 7 8 9 10 11 12 13 14 15

E
xe

cu
tio

n
T

im
e

(m
s)

Number of Flows (K)

M = 3, RUN = 100, Bandwidth Range [10-100], Demand Range [1-20]

O
O

O
O O

O O O
O

O
O O

O

x x

x x x

x x x
x

x
x x

x

(b) Execution Time

Fig. 3: Performance results under topologies generated by [28]

with density M = 3.

We again consider K = 3 − 15 flows. For each flow set,

we randomly generate source sk and destination dk from

uniform(1, N), where N = 100, and bandwidth requirement

range (lk, uk) from uniform(1, 10) and uniform(10, 20), re-

spectively.

Figure 3a and Figure 3b show the performance results

when M = 3. Again BS Algorithm runs effectively as

much as BF Algorithm in maximizing total routed demand

while significantly reducing execution time. Although Rand

Algorithm with α = 3 is slightly better than BS Algorithm

in terms of execution time, it underperforms in maximizing

total routed demand. Assigning α to 6 does not increase

performance of routing demand as much as it affects execution

time negatively.

Figure 4a and Figure 4b show the performance results when

M = 5. Clearly we observe the same trends as in previous

tests. Again BS Algorithm has better performance than the

others in maximizing total routed demand with reasonable

execution time.

Test 3

Our third test is again based on ANSNET topology [27].

Same as first test, bandwidth capacity of each link is randomly

generated from uniform(10, 100). We consider K = 3 − 15

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 3 4 5 6 7 8 9 10 11 12 13 14 15

T
ot

al
 R

ou
te

d
D

em
an

d

Number of Flows (K)

M = 5, RUN = 100, Bandwidth Range [10-100], Demand Range [1-20]

BFA
BSA

Rand-3

O

O

O

O

O

O

O

O

O

O

O
O

O
O

Rand-6

x

x

x

x

x

x

x

x

x

x

x
x

x
x

GAP-with rk = lk

(a) Total Routed Demand

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 8
 8.5

 9
 9.5
 10

 10.5
 11

 11.5
 12

 12.5
 13

 13.5
 14

 14.5
 15

 15.5
 16

 16.5
 17

 17.5
 18

 3 4 5 6 7 8 9 10 11 12 13 14 15

E
xe

cu
tio

n
T

im
e

(m
s)

Number of Flows (K)

M = 5, RUN = 100, Bandwidth Range [10-100], Demand Range [1-20]

O O O O O O O O O
O O O O

x

x

x x
x

x x
x x x

x

x x

(b) Execution Time

Fig. 4: Performance results under topologies generated by [28]

with density M = 5.

flows. For each flow set, we randomly generate source sk and

destination dk from uniform(1, N) where N = 32 for this

topology. In this test, different than first test, we determined

bandwidth requirement range (lk, uk) from uniform(1, 10)
and uniform(10, 20), respectively.

As seen in the Figure 5a and Figure 5b, BF Algorithm

gives optimum solution for maximizing bandwidth require-

ment. However, execution time of the algorithm is high even

for K = 3 and it goes up exponentially when flow size

and/or bandwidth demand range increases. Because of that

we terminate the algorithm for next flows when execution

time dramatically increases. We run the same inputs for Rand

Algorithm with α = 3, 6. It gives very close results to BF

Algorithm in maximizing total routed demand with better

execution time. BSA algorithm gives very close results with

best execution time.

Test 4

Our fourth test is again based on random graphs generated

by BRITE [28]. All variables are set with same values except

bandwidth requirement range (lk, uk) which is chosen from

uniform(1, 10) and uniform(10, 30), respectively.

Figure 6a and Figure 6b show the performance results when

M = 3. Because of high range of bandwidth requirements,

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 3 4 5 6 7 8 9 10 11 12 13 14 15

T
ot

al
 R

ou
te

d
D

em
an

d

Number of Flows (K)

RUN = 100, Bandwidth Range [10-100], Demand Range [1-20]

BFA
BSA

Rand-3

O

O

O

O

O

O

O

O

O

O

O

O
O

O
Rand-6

x

x

x

x

x

x

x

x

x

x

x

x

x

x
GAP-with rk = lk

(a) Total Routed Demand

 0

 3

 6

 9

 12

 15

 18

 21

 3 4 5 6 7 8 9 10 11 12 13 14 15

E
xe

cu
tio

n
T

im
e

(m
s)

Number of Flows (K)

RUN = 100, Bandwidth Range [10-100], Demand Range [1-20]

O O O O O O O O O O O O O
x x x x x x x x x x x x x

(b) Execution Time

Fig. 5: Performance results under ANSNET Topology [27].

execution time of BF algorithm is very high such that it did

not fit the graph. Again BS Algorithm runs effectively as

much as BF Algorithm in maximizing total routed demand

while significantly reducing execution time. Although Rand

Algorithm with α = 3, 6 is slightly better than BS Algorithm

in maximizing total routed demand, it suffers in terms of

execution time.

Figure 7a and Figure 7b show the performance results

when M = 5 and bandwidth requirement range (lk, uk)
which is chosen from uniform(1, 30) and uniform(30, 60),
respectively. Clearly we observe the same trends as in previous

tests. Again BS Algorithm has better performance than the

others in maximizing total routed demand with reasonable

execution time.

V. CONCLUSIONS AND FUTURE WORKS

We have extended the Unsplittable Flow Problem (UFP)

such that bandwidth requirements will be given in a range.

Since the extended UFP is still NP-hard, we have proposed

two efficient heuristics using randomization and a binary-

search based idea. We compared our heuristics against a brute

force algorithm. We observed that the binary-search based

(BS) algorithm provides the best performance. However, there

is still a room for improvement. So, in the future, we plan

to integrate some of the ideas from Random algorithm into

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000
 11000
 12000
 13000
 14000
 15000
 16000
 17000
 18000
 19000
 20000
 21000
 22000

 3 4 5 6 7 8 9 10 11 12 13 14 15

T
ot

al
 R

ou
te

d
D

em
an

d

Number of Flows (K)

M = 3, RUN = 100, Bandwidth Range [10-100], Demand Range [1-30]

BFA
BSA

Rand-3

O

O

O

O

O

O

O

O

O

O
O

O
O

O
Rand-6

x

x

x

x

x

x

x

x

x

x

x

x

x

x
GAP-with rk = lk

(a) Total Routed Demand

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25

 3 4 5 6 7 8 9 10 11 12 13 14 15

E
xe

cu
tio

n
T

im
e

(m
s)

Number of Flows (K)

M = 3, RUN = 100, Bandwidth Range [10-100], Demand Range [1-30]

O O O O
O

O O
O O O

O O
O

x
x

x
x

x

x
x

x x
x

x

x

x

(b) Execution Time

Fig. 6: Performance results under topologies generated by [28]

with density M = 3.

BS algorithm. In addition to maximizing the routed demand,

we will also consider priority and fairness when allocating

bandwidth to each flow.

REFERENCES

[1] D. O. Awduche, “Mpls and traffic engineering in ip networks,” Commu-

nications Magazine, IEEE, vol. 37, no. 12, pp. 42–47, 1999.

[2] Y.-X. Xu and G.-D. Zhang, “Models and algorithms of qos-based routing
with mpls traffic engineering,” in High Speed Networks and Multimedia

Communications 5th IEEE International Conference on. IEEE, 2002,
pp. 128–132.

[3] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with a
globally-deployed software defined wan,” in ACM SIGCOMM Computer

Communication Review, vol. 43, no. 4. ACM, 2013, pp. 3–14.

[4] A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, and I. Stoica, “Above the clouds: A berkeley
view of cloud computing,” Dept. Electrical Eng. and Comput. Sciences,

University of California, Berkeley, Rep. UCB/EECS, vol. 28, p. 13, 2009.

[5] P. Mell and T. Grance, “The nist definition of cloud computing,” 2011.

[6] Q. Ma and P. Steenkiste, “On path selection for traffic with bandwidth
guarantees,” in Proceedings of the IEEE International Conference on

Network Protocols (ICNP ’97), 1997, pp. 191 –202.

[7] A. Orda, “Routing with end-to-end QoS guarantees in broadband net-
works,” IEEE/ACM Transactions on Networking, vol. 7, no. 3, pp. 365–
374, 1999.

[8] R. A. Guérin and A. Orda, “Qos routing in networks with inaccurate
information: theory and algorithms,” IEEE/ACM Transactions on Net-

working (TON), vol. 7, no. 3, pp. 350–364, 1999.

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000
 11000
 12000
 13000
 14000
 15000
 16000
 17000
 18000
 19000
 20000
 21000
 22000

 3 4 5 6 7 8 9 10 11 12 13 14 15

T
ot

al
 R

ou
te

d
D

em
an

d

Number of Flows (K)

M = 5, RUN = 100, Bandwidth Range [10-100], Demand Range [1-60]

BFA
BSA

Rand-3

O

O

O
O

O
O

O
O

O
O

O
O O

O
Rand-6

x

x

x

x

x
x

x
x

x
x

x
x

x
x

GAP-with rk = lk

(a) Total Routed Demand

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26

 3 4 5 6 7 8 9 10 11 12 13 14 15

E
xe

cu
tio

n
T

im
e

(m
s)

Number of Flows (K)

M = 5, RUN = 100, Bandwidth Range [10-100], Demand Range [1-60]

O O O O O O O O O O O O O

x
x x

x x x
x

x
x

x
x

x

x

(b) Execution Time

Fig. 7: Performance results under topologies generated by [28]

with density M = 5.

[9] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory,

Algorithms, and Applications. Upper Saddle River, NJ, USA: Prentice-
Hall, Inc., 1993.

[10] M. M. Atanak, A. Dogan, and M. Bayram, “Modeling and resource
scheduling of real-time unsplittable data transfers,” Appl. Math, vol. 9,
no. 2, pp. 1067–1080, 2015.

[11] B. Ma and L. Wang, “On the inapproximability of disjoint paths
and minimum steiner forest with bandwidth constraints,” Journal of

Computer and System Sciences, vol. 60, no. 1, pp. 1–12, 2000.

[12] N. Garg, V. V. Vazirani, and M. Yannakakis, “Primal-dual approximation
algorithms for integral flow and multicut in trees,” Algorithmica, vol. 18,
no. 1, pp. 3–20, 1997.

[13] S. Spanbauer, “Bandwidth on demand,” PC World(San Francisco, CA),
vol. 15, no. 8, pp. 158–164, 1997.

[14] K. Walkowiak, “New algorithms for the unsplittable flow problem,” in
Computational Science and Its Applications-ICCSA 2006. Springer,
2006, pp. 1101–1110.

[15] J. Lee and S. Leyffer, Mixed integer nonlinear programming. Springer,
2012.

[16] J. Moy, “OSPF version 2,” IETF, Standards Track RFC 2328, April
1998.

[17] N. M. K. Chowdhury and R. Boutaba, “A survey of network virtualiza-
tion,” Computer Networks, vol. 54, no. 5, pp. 862–876, 2010.

[18] D. Kreutz, F. M. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” proceedings of the IEEE, vol. 103, no. 1, pp. 14–76,
2015.

[19] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[20] M.-C. Yuen, W. Jia, and C.-C. Cheung, “Simple mathematical modeling
of efficient path selection for qos routing in load balancing,” in Multi-

media and Expo, 2004. ICME’04. 2004 IEEE International Conference

on, vol. 1. IEEE, 2004, pp. 217–220.
[21] J. M. Kleinberg, “Approximation algorithms for disjoint paths prob-

lems,” Ph.D. dissertation, Citeseer, 1996.
[22] P. Kolman and C. Scheideler, “Improved bounds for the unsplittable

flow problem,” in Proceedings of the thirteenth annual ACM-SIAM

symposium on Discrete algorithms. Society for Industrial and Applied
Mathematics, 2002, pp. 184–193.

[23] N. Laoutaris, M. Sirivianos, X. Yang, and P. Rodriguez, “Inter-datacenter
bulk transfers with netstitcher,” in ACM SIGCOMM Computer Commu-

nication Review, vol. 41, no. 4. ACM, 2011, pp. 74–85.
[24] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,

and R. Wattenhofer, “Achieving high utilization with software-driven
wan,” in ACM SIGCOMM Computer Communication Review, vol. 43,
no. 4. ACM, 2013, pp. 15–26.

[25] F. Ricciato and U. Monaco, “Routing demands with time-varying
bandwidth profiles on a mpls network,” Computer Networks, vol. 47,
no. 1, pp. 47–61, 2005.

[26] R. Doverspike, G. Clapp, P. Douyon, D. M. Freimuth, K. Gullapalli,
J. Hartley, E. Mavrogiorgis, J. O’Connor, J. Pastor, K. Ramakrishnan
et al., “Using sdn technology to enable cost-effective bandwidth-on-
demand for cloud services,” in Optical Fiber Communications Confer-

ence and Exhibition (OFC), 2014. IEEE, 2014, pp. 1–3.
[27] D. E. Comer, Internetworking with TCP/IP, 3rd ed. Prentice Hall, Inc.,

1995, vol. I.
[28] A. Medina, A. Lakhina, I. Matta, and J. Byers, “Brite: An approach to

universal topology generation,” in Modeling, Analysis and Simulation

of Computer and Telecommunication Systems, 2001. Proceedings. Ninth

International Symposium on. IEEE, 2001, pp. 346–353.
[29] E. Akin and T. Korkmaz, “An efficient binary-searched based heuristic

for extended unsplittable flow problem,” April 2016, technical Paper.
[Online]. Available: http://www.cs.utsa.edu/∼korkmaz/research/range

