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Abstract—In this paper, we compared the existing rout-
ing algorithms in the context of Software Defined Network-
ing (SDN), where a logically centralized controller obtains
the global view of the network, makes the routing decisions,
and installs them to the switches in the selected paths.
We considered three categories of routing algorithms with
static link cost (RA-SLC), dynamic link cost (RA-DLC)
and dynamic link cost with minimum interference (RA-
DLCMI). We then implemented the routing algorithms
from each category using RYU SDN controller and tested
them on Mininet emulator. In our evaluations, we consid-
ered both the idealistic case assuming the availability of
accurate network state information (NSI) and the practical
case where the NSI is collected periodically and has some
inaccuracy. Our experimental results showed that both RA-
DLC and RA-DLCMI outperformed RA-SLC in terms of
throughput and the number of accepted flows while there
was no significant difference between RA-DLC and RA-
DLCMI. We also observed that periodic collections caused
inaccuracies in NSI negatively affected the performance
of all algorithms. Further research is needed to effectively
obtain accurate NSIL.

Index Terms—Routing Algorithms; Minimum interfer-
ence routing; SDN; Software Defined Networking; Traffic
Engineering.

I. INTRODUCTION

Traditional IP Network was originally designed as a
simple but highly fault-tolerant distributed system that
can provide best-effort communications services in a
trusted environment. However, these key assumptions
behind the original design did not match up with the real-
world situations as the Internet became the part of daily
life. Accordingly, many new features had to be added.
Unfortunately, since it was almost impossible to replace
or redesign the underlying architecture [26], [36], [17],
many new features were simply patched on top of the
original architecture, resulting in one of the largest and
complex distributed system to manage.

To simplify network management while creating a
flexible architecture that can seamlessly integrate new
features into the network, researchers have introduced

the Software-Defined Networking (SDN) as a new
paradigm [29], [40]. In essence, SDN separates the
control plane from data plane, and builds up a logically
centralized controller, which obtains the global view
of the underlying network and makes all control plane
decisions (e.g., which path to use) [13], [30], [19]. The
controller then simply conveys these decisions to the
underlying routers and switches via a well-defined AP/
such as OpenFlow [21]. This centralized control plane
greatly simplifies network configuration and new policy
installation, particularly when compared to the traditional
distributed control plane where each router/switch has to
figure out what to do through exchanging massages with
each other.

Realizing the potential benefits of SDN, the indus-
try has also shown significant interest in developing
and deploying SDN-based technologies. For example,
many commercial switches/routers have now support for
OpenFlow API [13]. An OpenFlow switch is simply a
forwarding element (such as a router, switch, firewall,
etc.) that forwards incoming packets based on the routing
decisions that are determined and installed by SDN
controllers [30], [26], [13].

One of the key challenges in SDN is how to efficiently
route the given flows through the underlying network.
To achieve this, the centralized controller has to (7)
obtain the global view of the underlying network, (:7)
compute the feasible and/or optimal paths for the given
flows by taking into account the flow demands and
the current network state information, and (¢7¢) install
the new routing rules to the forwarding elements (SDN
switches) in data plane. The third step is simply achieved
by using an open communication protocol (e.g., Open-
Flow [30]). Therefore, we mainly focus on the first two
steps. More specifically, we present an OpenFlow-based
implementation of various existing routing algorithms
and compare their performances on two different net-
work topologies with two methods for obtaining network
state information. For the implementation and testing, we
used RYU controller [38] and Mininet emulator [27].

The existing routing algorithms use either static link



cost (e.g., hop count, distance, link capacity) or dynamic
link cost (e.g., available link capacity, link utilization).
Researchers have further improved the routing algo-
rithms using dynamic link cost with other metrics (e.g.,
number of flows on a link) to minimize the interference
among the flows. Accordingly, we divided the routing
algorithms into three categories and specifically imple-
mented the followings to compare:

e RA-SLC: Routing Algorithms with Static Link Cost
include Minimum Hop Algorithm (MHA), Shortest
Path Algorithm (SP) and Widest Shortest Path Al-
gorithm (WSP) [15], [34], [22].

e RA-DLC: Routing Algorithms with Dynamic Link
Cost include Constraint Shortest Path First (i.e.
Dynamic Shortest Path (DSP)), Dynamic Widest-
Shortest Path Algorithm (DWSP).

e RA-DLCMI: Routing Algorithms with Dynamic
Link Cost and Minimum Interference include Min-
imum Interference Routing Algorithm (MIRA), the
Least Interference Optimization Algorithm (LI/OA)
and the Improved Least Interference Routing Algo-
rithm (ILIOA) [12], [22], [8], [33].

These algorithms have been proposed with the as-
sumption that the controller has the accurate network
state information. To achieve this, we used a shadow
topology, which can represent accurate state information
in the case of a single controller. However, in practice,
because of multiple controllers and background traffic,
the controllers need to obtain the state information from
the SDN switches by querying them. In that case, as
we discuss later on, it is very challenging to obtain
the accurate state information. We show that this neg-
atively impacts the performance. Therefore, the future
algorithms need to take into account the inaccuracies of
network state information (NSI).

In our tests, we observed that RA-DLC and RA-
DLCMI outperform RA-SLC as expected. We also ob-
served that there is no significant difference between
the existing algorithms using dynamic link cost. These
general trends were the same under both accurate NSI
and periodic NSI. However, under periodically collected
NSI, since the controller used the inaccurate NSI, all
algorithms have accepted more flows than that the net-
work can carry. Unfortunately, accepting more requests
has caused packet loss for every flow. Clearly, this is
not desirable for the sake of Quality of Service (QoS),
even though total transfered bandwidth is high. We will
discuss more results in Section V.

The rest of the paper is organized as follows. In
Section II, we give background information about SDN.
We present existing routing algorithms in Section III. In

Section IV, we explain how to mimic the availability of
accurate NSI while also discussing how to periodically
collect NSI in practice. In Section V, we present our
experimentation set up and discuss our results. Finally,
we conclude the paper by stating challenges and future
works in Section VI.

II. BACKGROUND OF SOFTWARE DEFINED
NETWORKING

A. What is Software Defined Networking?

Software-Defined Networking is a new network ar-
chitecture that decouples the network’s control logic
(the Control Plane) and forwarding logic (the Data
Plane) [26]. After this separation, routers and switches
become simple forwarding devices while the central con-
troller becomes the brain of the network. As illustrated
in Figure 1, this is in sharp contrast to the traditional
IP network where the control logic and forwarding logic
are coupled and distributed.
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Fig. 1: Comparing Traditional Network and SDN.

The main components and the general architecture of
SDN are shown in Figure 2. From this Figure, we can
see that SDN has the following four key innovations over
the traditional networks:
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Fig. 2: Software Defined Network Architecture.



e SDN removes the control logics from network de-
vices (e.g., routers and switches). So the network
devices have become simple forwarding elements.

e SDN puts control logic in an external and central
unit called SDN controller or Network Operating
System (NOS), which is a software that runs on
a server. It obtains the global view of the network
and make necessary routing decisions for the simple
forwarding devices.

o SDN makes routing decisions per flow!' while tra-
ditional IP routing is destination based. SDN then
places identical policies on the forwarding devices
in the determined path so that each packet of the
flow receives consistent services [20]. This flow-
based programming capability of SDN provides ex-
traordinary flexibility in managing the network [30].

o SDN makes it easy to develop several new services
by running new applications on top of SDN con-
troller. Such applications simply get the abstract
network view (ANV) from the SDN controller. Upon
making the necessary policy decisions, they inter-
act with the underlying data plane through SDN
controller that maps higher-level policy decisions to
lower-level forwarding decisions. This is considered
as the most important innovation of SDN.

B. Routing framework in SDN

The SDN controller has to perform three common
routing tasks: (z7) discovering network topology and
obtaining accurate link-state information, (¢¢) computing
feasible and/or optimal paths for the given flows, and
(#2¢) installing the necessary forwarding rules on each
SDN switches over the determined path using OpenFlow.

We will now briefly discuss these three tasks. We will
then mainly focus on the first two tasks in the rest of
the paper and experimentally evaluate the performance
of various path selection algorithms with two different
methods of obtaining the link-state information.

1) Acquiring the global view of the network: To
make routing decisions and compute new paths, the
SDN controller first needs to obtain the accurate global
view of the underlying network. Since management
capability is removed from forwarding elements, they do
not have any information about the whole network while
this was the case in traditional routing protocols (e.g.,
OSPF). Therefore, the SDN controller is responsible for
discovering network topology and obtaining the accurate
link-state information from the underlying switches.

'A flow can be defined as a sequence of packets from a source to
a destination.

After getting the list of switches and links, the SDN
controller can query the underlying switches and obtain
the link-state information about each link. Since the
static link-state metrics do not change, the SDN con-
trollers can simply obtain these metrics once when using
topology discovery protocols [19], [28]. However, since
the dynamic link-state metrics (e.g., available bandwidth,
utilization, delay, jitter etc.) do often change, the SDN
controller needs to query the switches and gets the sate
of every link at very short intervals to maintain an
accurate view. Unfortunately, this will create a significant
overhead, particularly when we need high accuracy in
the link-state information, which is necessary to better
utilize the underlying network resources while meeting
the flow demands and avoiding congestions.

So one of the challenging issues here is how to
achieve the accurate acquisition of the dynamic link-
state information while minimizing the overhead on the
controller and in the network. To address this challenge,
more research is needed. However, when comparing the
existing routing algorithms that assume the availability
of accurate state information, we will mimic the accuracy
by maintaining a shadow of the network at the controller
and update it after each path selection. But this cannot
be implemented in practice because the involvement
of multiple controllers, elastic background traffic, and
excessive delays etc. Therefore, as done in practice, we
will also consider periodic link-state collection approach
with three different intervals and show their impacts on
the routing algorithms. We present the details of our
link-state representation and collection mechanisms in
Section IV.

2) Computing feasible and/or optimal paths: After
discovering topology and obtaining the link-state infor-
mation of each link, the SDN controller computes a
feasible and/or optimal path for a given flow based on
the routing algorithms that we discuss in Section III.

All the existing algorithms assume that the accurate
network state information is available; thus, represented
as a directed graph G = (V, E), where V is the set of
nodes/switches and F is the set of links. Let n = |V|
be the number of nodes and m = |E/| be the number of
edges in the network. Each link (u,v) € F is associated
with a link cost C(u,v) based on the obtained static
or dynamic link-state information. As a matter of fact,
most of the existing algorithms that we compare differ
in how they determine C'(u,v), as we further discuss in
Section III. After determining C(u,v) and eliminating
the links that do not satisfy the requested demand, most
of the existing algorithms mainly use Dijkstra’s shortest
path algorithm or its modified versions to find a path.



3) Installing the forwarding rules: Upon computing
a path, the SDN controller installs the necessary rules
on the forwarding table of each switch using OpenFlow.
One key question here is how and who starts the path
computation and the rule installment process. These can
be done in a proactive or reactive manner. It is also
possible to use a hybrid approach. We can explain these
three modes of operations as follows:

Reactive Mode:
When a switch receives a request that does not
match with the existing rules in its forwarding
table, it considers this as a new flow and
creates an Open Flow Protocol (OFP) packet-
in message for the first packet of the new flow.
It then sends this message to the controller for
a decision. Accordingly, the controller creates
a rule and sends it to the switch via Open-
Flow. The switch uses this rule to forward
future packets. Even though this approach uses
existing flow table memory more efficiently,
unfortunately, it causes performance delay be-
cause of continuous communication between
forwarding elements and the controller for the
first packet of each new flow. This delay can
be ignored in small scale networks; but, it is
a significant burden for geographically remote
controllers, short-lived flows, general purpose
CPU and/or vSwitches [9], [32], [3], [4].

Proactive Mode:
The SDN controller determines forwarding
rules for possible traffic in advance and installs
the necessary rules to the switches ahead of
time. So when a new flow arrives, the switches
can forward its packets without consulting with
the controller. Accordingly, the switches for-
ward all the packets at line rate [9], [32], [3],
[4], [42]. Moreover, since all flows find a match
in the switches and avoid consultation with the
controller, this mode significantly reduces the
burden on the controller. The disadvantage of
this approach is that the flow tables should be
coarse-grained because of scalability issues. To
meet fine-grained control needs, we can use the
hybrid approach discussed next.

Hybrid Mode:
The controller and switches can use the com-
bination of reactive and proactive modes. Ac-
cordingly, we can get the flexibility of reactive
mode in providing fine-grained control while
benefiting from proactive mode by eliminat-
ing delay and avoiding significant burden on

the controller. Based on the network perfor-
mance, the proactive mode can periodically
modify routes and flow tables to improve per-
formance [9], [3], [4].

In the simulations, since we mainly evaluate the rout-
ing algorithms based on their performance in finding the
paths for given flows, we will use the reactive mode of
operation. When a new flow is seen, the source switch
will inform the controller. Accordingly the controller will
compute an appropriate path and install it through the
network.

III. EXISTING ROUTING ALGORITHMS

We divide the existing routing algorithms into three
groups: RA-SLC (Routing Algorithms with Static Link
Cost), RA-DLC (Routing Algorithms with Dynamic Link
Cost), and RA-DLCMI (Routing Algorithms with Dy-
namic Link Cost and Minimum Interference). Before
describing the details of specific algorithms, we would
like to first present Algorithm 1 as a general framework
to better show the key steps that are performed by
almost all RA-SLC, RA-DLC, and RA-DLCMI with some
exceptions. For example, Dynamic Widest Shortest Path
(DWSP) does not perform Step 1. Instead, it directly
uses the residual bandwidth of each link along with a
modified version of Dijkstra’s algorithm to find a path
with the largest residual bandwidth in Step 3.

Algorithm 1 General Framework for All Routing Algo-

rithms

Input: Graph G(V, E), vector BW which is the initial
bandwidth capacity of the links, vector RBW which
is the residual bandwidth of the links, vector I which
is the number of flows carried on the links, and a
flow request between the pair of nodes (s,d) with
the required demand of 7, ).

Output: p, a path between the pair of nodes (s,d)
that satisfies the requested demand of r(, 4. That
is min{ RBW(,, ,y|(u,v) € p} > 7(5 ).

1: Based on the proposed heuristic, compute link cost
metric c(, ) for all edges (u,v) € E.

2: Eliminate all links that have residual bandwidth less
than requested demand 7 g ).

3: Use Dijkstra’s algorithm to compute the shortest
path p between the pair of nodes (s, d).

4: SDN Controller installs the forwarding rules on the
SDN switches in p.

5: SDN switches route the packets of the requested
demand 7, 4) through path p.

6: SDN Controller periodically obtains the updated
link-state information.




The first two steps are not needed in RA-SLC because
these algorithms do not take into account the changes in
link-state information. Accordingly, RA-SLC start with
Step 3 and always find the same path for all the flows
between a given pair of nodes (s, d).

In contrast, the first two steps (particularly, Step 1)
are very important for the success of RA-DLC and RA-
DLCMI. In Step 1, these algorithms compute the dy-
namic link cost metric based on the proposed heuristics.
Therefore, this step is the most crucial one and it is the
key difference between the proposed algorithms, as we
discuss later in detail. In Step 2, all the algorithms simply
eliminate the links whose residual bandwidth is less than
the requested demand.

The first two steps constitute the pre-computation
phases of RA-DLC and RA-DLCMI. Since the link-state
information changes after installing the forwarding rules
for each flow, these pre-computation phase need to be
performed for each new flow. However, since it will be
very costly to obtain all the changes in link-state infor-
mation, the SDN controller obtains link-state information
in a periodic manner. As we discuss later, this introduces
some inaccuracy in the link-state information and may
negatively affect the network performance.

The remaining steps are the same for all routing
algorithms including RA-SLC. In Step 3, all algorithms
simply use Dijkstra’s algorithm to find the least cost
(shortest) path based on the dynamic link costs deter-
mined in Step 1 (or static link cost obtained once during
topology discovery). After finding the shortest path p,
the controller installs the necessary forwarding rules on
the SDN switches in Step 4. Then, the SDN switches
route the packets of the given flow through p in Step
5. Finally, in Step 6, the SDN controller periodically
queries the SDN switches and obtain the dynamic link-
state information (e.g., residual bandwidth) to use when
making routing decisions for the new flows.

In the following three subsections, we describe the key
assumptions and the ideas behind the existing routing
algorithms that we classified into three groups, as shown
in Table I. In addition to summarizing their key charac-
teristics, we examine the advantages and disadvantages
of each group of routing algorithms.

A. Routing Algorithms with Static Link Cost
(RA-SLCO)

The SDN controller using RA-SLC needs to discover
the network topology and determine the static link cost
(e.g., hop count, distance, 1/bandwidth) for each link.
Since RA-SLC do not take into account link-state infor-
mation that changes over the time (e.g., link utilization),

the controller can simply calculate the static link cost
once during the topology discovery phase and use it
when computing a path for any given flow.

Clearly, using static link cost significantly reduces
the message overhead and the pre-computation overhead
because the controller does not need to periodically
query each switch to obtain the up-to-date link-state
information or re-compute the link cost based on the new
link-state information. This approach might be effective
when the network utilization is low. However, as the
network utilization increases, this approach will cause
significant unbalance and congestion in the network
because it always calculates the same paths for the flows
with the same source and destination pairs.

To overcome these problems, researchers have con-
sidered RA-DLC and RA-DLCMI that we discuss next.
To better understand the performance improvements of
RA-DLC and RA-DLCMI, we included the following RA-
SLC in our evaluations.

Minimum Hop Algorithm (MHA) chooses the short-
est path that has the minimum number of links between
source and destination nodes [22]. Such paths can sim-
ply be computed using BSF (Breadth First Search) or
Dijkstra’s Algorithm by setting the cost of each link to
1.

Shortest Path Algorithm (SP) uses Dijkstra’s Algo-
rithm to choose the shortest path when the cost metric of
each link is set to inversely proportional to the bandwidth
capacity of that link [15]. Actually, Open Shortest Path
First (OSPF) also use this same approach [31].

Widest-Shortest Path Algorithm (WSP) tries to find
the path with largest bandwidth capacity while min-
imizing hop-count and can be implemented by using
modified version of Dijkstra’s Algorithm [34], [23]. An-
other version known as Shortest-Widest Path algorithm
first eliminate all the links that does not support the
given demand request and then executes the Dijkstra’s
shortest path algorithm which selects the links with
largest bandwidth capacity in case of cost equality [43].

B. Routing Algorithims with Dynamic Link Cost
(RA-DLCO)

Since RA-SLC compute the paths using static link
cost, they always find the same paths for all the flows
with the same source and destination nodes. This causes
congestion on some links while there are alternative links
to use. To deal with this problem, the controller needs to
periodically obtain information about available network
resources and takes that information into account when
computing paths. With this in mind, researchers have
proposed various routing algorithms with dynamic link



Type of Rout- | Algorithm Cost metric calculation Computation Complexity
ing Algorithm Name
Pre-computation  per | Path Selection Algo-
flow rithm per flow
MHA Cluwy) =1
. Dijkstra’s Algorithm
SP C(uﬂ))
RA-SLC EWw.0) -
wWSP Clupw) = BW(y,v) Modified Dijkstra’s Al-
gorithm
DSP 1 .o > .
Cluw) REW a0, Dijkstra’s Algorithm
RA-DLC O(m)
DWSP C(u,v) = RBW(, for computing cost Moc-lt;l?ed Dijkstra’s Al-
metric for each gorithm
Ie link
LIOA Cluw) = TEs "
(u,v)
RA- .. ,
DLCMI ILIOA Clu v) = (1=Uuwy) * D1Jk8§ra S
I + U % Algorithm
1
RBWE
MIRA Initialize C(y,,) to | O(m) for computing
0. Using max-flow | cost metric for each
min-cut algorithm, | link + O(max -—
find min-cut sets | flow min — cut)
(critical links) between | for finding critical
the pairs. For each | links (e.g., O(n?y/m)
appearance of a critical | with Goldberg-Tarjan
link (u,v) in the | highest label pre-flow
min-cut sets, increase | push algorithm [18])
C(u’v) by 1.
In this table, C(,,,) represents cost metric, BW(, ,) is the initial bandwidth capacity, RBW(, ) is
residual bandwidth capacity, I,,,.) is number of flow carried on the link (u,v). U,,.) is equal to 1 —
RBW (y ) / BW/(y,v). m is the number of the links and n is the number of nodes in the topology. We
choose @ = 0.5 and 8 = 0.3 in our tests because they are shown to give the best results [8], [33]

TABLE I: Classification of existing routing algorithms.

cost such that the underlying network resources can
be effectively utilized to increase the throughput while
avoiding congestion. To achieve these goals, the routing
algorithms have to compute paths for the given demands
such that the rejection of the future demands will be
minimized.

Since future demands are not known, it is impossible
to achieve these goals when the flows arrive one at
a time (on-line setting). Moreover, even if they are

known (off-line setting), the problem turns out to be NP-
Complete [16], [10], [14], [6], [5]. Therefore, heuristic
algorithms have been proposed. In this section, we
present the basic form of these heuristic algorithms as
RA-DLC and review their advanced form as RA-DLCMI
in the next section.

In essence, RA-DLC simply use the above mentioned
SP and WSP by taking into account the residual band-
width of each link rather than the static link bandwidth.



Accordingly, we call these algorithms as Dynamic
Shortest Path (DSP) and Dynamic Widest-Shortest
Path (DWSP) [12], [34].

The main advantages of RA-DLC are that they provide
alternative paths for the flows between the same source
and destination nodes. Accordingly, this allows the op-
erators to effectively utilize all their resources and max-
imize their revenues. However, these algorithms require
significant protocol overhead to be able to accurately
obtain the dynamic link-state information. Moreover, the
link cost needs to be re-computed based on new link-
state information, involving an extra pre-computation
cost before the actual path computation starts.

C. Routing Algorithms with Dynamic Link Cost and
Minimum Interference (RA-DLCMI)

Using just the dynamic link metrics (e.g., residual
bandwidth) as in RA-DLC may not be enough to max-
imize the chance of accepting more future demands
while also providing better performance (e.g., less delay
and loss). To accomplish these goals, RA-DLCMI try
to evenly distribute the traffic load throughout the net-
work and minimize the interferences among the flows.
Accordingly, when determining the cost of each link,
RA-DLCMI use the combination of other metrics (e.g.,
critical links between source-destination pairs and/or
number of flows carried on the links) and the dynamic
metrics (e.g., residual bandwidth).

In the literature, researchers have proposed several
heuristic algorithms that mainly differ in how they
compute the dynamic cost of each link using different
combination of various metrics. We will first discuss
the details of the key algorithms that we implemented.
We then give a brief description of the other heuristic
algorithms proposed in the literature.

Minimum Interference Routing Algorithm (MIRA)
assumes that all the flow requests come from a pre-
defined set of (ingress-egress) pairs. So when computing
the shortest path for a given pair, MIRA tries to avoid
the links that are more crucial to the other pairs [22].
To do that, it gives higher costs to such crucial/critical
links. More specifically, before computing the shortest
path for a given pair, it initially sets the cost metric of
each link to 0. Using the residual bandwidth information
in max-flow min-cut algorithm, MIRA computes the min-
cut set between each pair except for the pair for which
it tries to find a path. It then increases the cost of each
critical link by 1 for each appearance in the min-cut
sets. After this pre-processing step of computing link
costs, MIRA runs Dijkstra’s algorithm. MIRA is able
to maximize the minimum available capacity between

all other (ingress-egress) pairs. However, due to the ex-
cessive computational complexity of the pre-processing
step for each flow, MIRA would have a limited use in
practice, particularly when the network is large.

Least Interference Optimization Algorithm (LIOA)
calculates the link cost metric using the inversely pro-
portional ratio of the number of flows on each link
to the residual capacity on that link [8]. Specifically,
(LIOA) computes the link cost using C', ) = Ré%,
and then calls Dijkstra’s algorithm to determine(u{ﬁe
shortest path. Due the nature of the link cost calculations,
(LIOA) favors the links with less number of flows and
high residual bandwidth. Accordingly, it reduces the
interference between source-destination (ingress-egress)
pairs by balancing the number and quantity of flows in
the network.

Improved Least Interference Optimization Algo-
rithm (ILIOA) is an extended version of LIOA and
considers more metrics in determining the link cost [33].
(ILIOA) takes into account the number of flows on the
links, initial bandwidth capacity, residual bandwidth ca-
pacity, and utilization of the links. Specifically, (ILIOA)

computes Cy )y = (1 = Upyy) * sz;ﬁ + Ul *
IQ

B
(u,v)
RBW2

. oqe . . ]H
- If link utilization is low, (1 —U,.) * B

dominates the cost metric to choose the links with large
capacities. Otherwise, U, ,) * ﬁ aims to choose
the links with large remaining bandwidth.

In addition to the above algorithms, there are several
other RA-DLC and RA-DLCMI. For example, Dynamic
Link Weight (DLW) tries to choose lower loaded paths
in order to avoid congested links [35]. As in MIRA,
Wisitak’s Routing Algorithm (WSS) calculates a cost
parameter to find possible critical links [39]. However,
it does not take into account residual bandwidth or other
dynamic link costs. Fabio’s Weight Function (WF) uses
dynamic link costs; but, it does not take into account pair
interferences [37]. BU-MIRA computes a cost metric for
each link by using the available bandwidth of links and
the number of flows carried on it [44]. The algorithm by
Wang-Su-Chen (WSC) is the diversified version of MIRA
and determines the cost metric with different method
that takes into account the other dynamic and static link
costs such as hop count and residual bandwidth along
with critical links [41]. Bandwidth Constrained Routing
Algorithm (BCRA) uses residual capacity, initial band-
width of the links and the number of the flows carried on
the links to find interference, as in LIOA [24]. Maximize
Residual Bandwidth and Link Capacity - Minimize Total
Flows Routing Algorithm (MaxRC-MinF) computes a
cost metric as in LIOA and BCRA [25]. These algorithms
have been intensively evaluated in the literature and



shown to under-perform when compared to the three
algorithms (MIRA, LIOA, ILIOA) that we implement.
Therefore, we will not include them in our evaluations. In
addition, our evaluations do not include Light Minimum
Interference Routing (LMIR) algorithm [14] because we
determined some ambiguities in some steps that do not
lead to finding the lowest capacity paths.

IV. OBTAINING NETWORK STATE INFORMATION

All the algorithms we presented assume that the
accurate network state information (NSI) is available at
the controller before computing a path. Unfortunately,
the accurate NSI cannot be obtained in practice unless
the controller can continuously query the distributed
switches. Even if it can, this will impose significant pro-
tocol overhead. Moreover, the NSI will still be inaccurate
due to delays and measurement errors. To balance the
trade-offs between the accuracy and protocol overhead,
the controller usually implements a periodic monitoring
mechanism where it obtains the link-state information
from each switch at a predetermined rate (e.g., every
7 seconds) [38]. As the value of .7 is reduced, the
controller is expected to get much more accurate NSI at
the cost of significant protocol overhead. Therefore, the
value of .7 should be selected carefully.

In the rest of this section, we will first show how
we can mimic the availability of accurate NSI at the
controller. We then discuss the key steps in periodically
collecting NSI. In the next section, to better compare the
existing algorithms under the ideal and practical settings,
we will use both accurate NSI and periodically collected
NSI, respectively.

1. Accurate Network State Information (NSI): To
mimic the availability of accurate NSI, we make
the controller keep the shadow of the topology and
the residual link capacities. Upon computing a path
for a given flow demand, the controller subtracts
the requested demand from the residual capacity of
the links on the computed path. As a result, the
controller can always have the up to date residual
graph before computing a new path. Clearly, this
idealistic approach cannot be implemented unless
there is only one physical controller and there is
no background traffic. Nevertheless, we can use
this approach in our simulations to better judge the
performance of various routing algorithms under the
original assumption of having accurate NSI.

2. Periodically collecting NSI:

In practice, the controller monitors NSI period-
ically by sending requests in every .7 seconds.
Specifically, the controller sends the port statistics

requests to the all OpenFlow switches. As soon as
the switches receive the message, they reply with
total traffic on the ports. Let ta:fuw be the currently
recorded total amount of traffic that is sent until
the current time t.. Let ta:’(’u’v) be the previously
recorded total amount of traffic that was sent until
the previous query time ¢,. Using these quantities,
the controller can update the residual bandwidth of
link (u.v) as follows:

t:pfu,v) - txj(ou v)

Diyy = — 2 “w) 1
(u,v) t.— tp ( )

RBW(U,U) = BW(u,v) - D(u,v) (2)

Using the equation (1), the controller calculates the
average current traffic rate denoted by Dy, ,,). Using
the equation (2), the controller subtracts Dy, ,,) from
the BW(,, ), which is the initial capacity of the link,
and determines the residual bandwidth denoted by
RBW(y). Finally, the controller uses the follow-
ing equations to save the current quantities as the
previous quantities for the calculations in the next
period.

t, = t¢ 3)

4

D —
tqj(u,v) - tw?u,v)

V. PERFORMANCE EVALUATION

Our goal is to compare the performance of several
existing routing algorithms in the context of SDN-
based networks. Accordingly, we have implemented
some of the promising routing algorithms within RYU
SDN Controller [38], which provides application pro-
gram components/interfaces (APIs) to create new control
applications. We then used our controller on Mininet
emulator, which creates a network of virtual switches,
hosts, controllers, and links [2], [27]. The controller used
OpenFlow protocol (version 1.3) to interact with the
underlying switches on Mininet. The traffic generation
and performance measurements were performed by the
hosts on Mininet using Linux software and iperf [1].

Since the routing algorithms we compare take into
account the given requested demand, we generated UDP
flows with randomly selected demands rather than using
TCP flows which try to use all of the available bandwidth
to maximize throughput. Upon receiving a randomly
generated flow request (s, d, 7, q)), the controller com-
putes a path from s to d based on the network state
information at the controller and checks if that path has
enough available capacity. If so, it installs the necessary



forwarding rules along the path. Otherwise, it rejects
the flow. Each established flow continues to load the
network at the given requested demand until the end of
the simulation.

As the performance measures, we have considered the
followings:

Number of Accepted Flows
We generate the same set of flow requests under
each algorithm and then count the number of
flows for which that algorithm finds a path.
Total Transfered Bandwidth (throughput)
The total amount of transfered data rate of the
accepted flows. In the best case, this will the
sum of the demands of the accepted flows.
Packet Loss
The percentage of the packets got lost with
respect to packets sent by the accepted flows.
Normalized Path Computation Time
The computation time of each algorithm over
the computation of the algorithm which has the
minimum computation time.

In the rest of this section, we first describe the network
topologies that we used. Regarding network state infor-
mation (NSI), we used both methods that we discussed
in Section IV. Accordingly, we then present performance
evaluation results under Accurate NSI, where we keep
the shadow of the topology and update it at the con-
troller. Finally, we present performance evaluation results
while Periodically Collecting NSI with the intervals of
7 = 3,5,10 seconds.

A. Network Topologies

We compared the routing algorithms under two dif-
ferent topologies, namely MIRANET [22] and enhanced
ANSNET [11]. We chose MIRANET to fairly compare
all the algorithms under the same settings used by the
algorithms in [12], [33], [8], [22]. As seen in Figure 3,
MIRANET topology has 15 nodes and 56 bidirectional
links. The thinner links have 5 Mbps and thicker links
have 25 Mbps. We kept the same four (s,d) pairs
(namely, (S1,513),(S55,59),(54,52) and (S5, 515))
that were originally used in [12], [33], [8], [22]. We
randomly generated 100 flows (25 flows between each
pair), 200 flows (50 flows between each pair), and
300 flows (75 flows between each pair) with requested
demand of uni form(50,200) kbps.

To see how the algorithms perform on a larger topol-
ogy, we used the realistic network topology in Figure 4,
which is modified from ANSNET in [11]. It has 32 nodes
and 108 bi-directional links. We randomly assigned
bandwidth capacity of the links uniform(2,10) Mbps.

Fig. 4: Modified ANSNET Topology.

We randomly generated 50, 75, 100 flows with requested
demand of uni form(200,500) kbps while selecting the
source from the nodes on the left side (1,2,3,4,5)
and the destination from the nodes on the right side
(23,25,29,30,31). This time pairs could be any match
between the chosen source and destination, resulting in
25 different pairs. Under this setting, we did not evaluate
MIRA algorithm because it gets computationally very
expensive as it needs to run max-flow algorithm for all
pairs except the pair for which it computes a path.

B. Performance Results under Accurate NSI

In general, since RA-DLC and RA-DLCMI use dy-
namic link costs, they are expected to find alternative
paths for the flow requests and thus outperform the RA-
SLC (e.g., MHA, SP, WSP) in terms of the number of
accepted requests and total transfered bandwidth. We
clearly see this general trend in Figure 5.

We are actually more interested in how the RA-DLC
and RA-DLCMI perform. As seen in Figure 5, DSP,
LIOA and ILIOA give similar results while DWSP gives
less than these three. It seems that this low performance
of DWSP can be attributed to the MIRANET topology
because DWSP gives the similar performance under the
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Fig. 5: Throughput and Number of Accepted Flows
under MIRANET Topology with Accurate NSI

larger ANSNET topology, as presented later. We believe
that since DWSP occupies larger capacity links first and
there is not much alternatives in MIRANET topology,
DWSP cannot later find paths for the flow requests
having larger demands.

Among the three best algorithms, MIRA is the most
computationally expensive solution because it needs to
run max-flow min-cut algorithm for all pairs. We have
measured the actual computation times and normalized
them by the fastest algorithm. As seen in Figure 6, the
computation time of MIRA is 9—15 times worse than the
other algorithms. We did not show the computation time
of the static algorithms because they are similar to the
fastest dynamic algorithm as they all just use Dijkstra’s
algorithm.

Due to the high computation time of MIRA, we
exclude it when comparing the other algorithms under
our larger ANSNET topology with 25 source-destination
pairs. As seen in Figure 7, we observe the same trend
where RA-DLC and RA-DLCMI outperform the RA-SLC
in terms of the number of accepted flows and total trans-
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Results under ANSNET Topology with Accurate NSI

fered bandwidth. We again observe that all the dynamic
algorithms including DWSP gave similar performance
results. We believe that this happens because all the
algorithms are able to explore the alternatives that exist
in larger topologies like ANSNET.



In theory, there should be no packet loss when we use
the accurate NSI because the algorithms do not accept
any flow beyond the available link capacities. However,
during our experiments, we observed 1 — 2% packet
loss under MIRANET and 3 — 7% packet loss under
ANSNET. Some of these packet losses are due to the
delay in computing paths and installing them on the
switches. Moreover, the shadow topology and NSI that
we maintain at the controller do not take in to account
the protocol overheads imposed by OpenFlow Discovery
Protocol (OFDP). To discover the topology, the con-
troller sends encapsulated LLDP (Link Layer Discovery
Protocol) packets to each switch. The switch sends the
packet to one of its adjacent switch via a port. This
switch encapsulates received LLDP packet and sends it
back to the controller. After this process, the controller
learns that there is a unidirectional link between the
two switches. The same process is performed for all
links in the network that may result in increasing of
the controller’s usage and load on the links. Thus, if
the network size increases, the cost of network discovery
increases linearly [7]. Since we could not incorporate this
process when keeping the shadow graph for mimicking
accurate NSI, we observe the above-mentioned packet
losses.

Under periodically collected NSI, We do not have this
type of loss because it takes into account total traffic
on the ports including these protocol packets. However,
periodically collected NSI causes other inaccuracies that
also cause packed losses because the algorithms accept
more flows than that the network can carry. We explain
the reasons of packet loss due to periodically collected
NSI in the next subsection.

C. Performance Results under Periodically Collecting
NSI

In this section, we conducted more simulation experi-
ments to evaluate the routing algorithms under the same
two topologies while periodically collecting NSI. Before
presenting simulation results, we would like to make
some general observations. First, due to the delays in
periodically collecting NSI, the controller cannot have
accurate information about the links. Accordingly, the
controller may wrongly assume that there are enough
capacities on the links and accepts more requests than the
available bandwidth capacities of the links. This results
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in losing more packets for all flows.? Second, it is also
possible that there is enough bandwidth capacity on the
link because some flows stop sending traffic. However,
until the next query time, the controller will not know
that and assume that the link is still overloaded. In
this case, the controller does not accept flows, resulting
in underutilization of the network resources. In our
simulations, we observed the effects of both cases, as
explained below.

Simulations in this section use the same two topolo-
gies while periodically collecting NSI in every 7 =
3,5,10 seconds. In addition, we generated the same
set of flows as in Section V-B. Since we observed the
similar trends with different number of flows, we will
just present the results with 300 flows under MIRANET
topology and 100 flows under ANSNET topology.

We first report the simulation results under MIRANET
topology. As seen in Figure 8(a), all the algorithms
accept more flow requests under periodically collected
NSI than that under accurate NSI. As mentioned above,
this often happens because the controller uses the NSI
obtained in previous period and thus wrongly accepts
more flows that overload some links. Since more flows
are accepted, the total throughput will be higher as seen
in Figure 8(b). However, this increase in throughput
is not desirable because the algorithms wrongly accept
more requests than the capacity of the network, causing
every flow to lose significant number of packets, as seen
in Figure 8(c). It is important for the routing algorithms
to maintain the Quality of Service (QoS) by rejecting the
flows that cannot be supported for the sake of providing
QoS for the existing flows.

We would like to also note that intuitively the accuracy
should be increasing as the collection interval decreases.
However, we observed that all the algorithms accept
more flows and lose more packets when we periodically
collect NSI in every 3 seconds than 5 or 10 seconds.
We believe that this happens because of two reasons: (a)
collecting NSI with shorter periods significantly increase
the load in the network and decrease the responsiveness
of the controller, (b) SDN switches do not collect enough
statistical information to make accurate estimation. Un-

To illustrate this, consider the following example. Assume there
is a link with 6 M bps capacity and we generated two requests with
demands of 5Mbps. Under accurate NSI, the algorithms accept the
first flow and update the available bandwidth capacity of that link
as 1 Mbps. So, they do not accept second request which has higher
demand (5Mbps) than the remaining capacity (1M bps) of the link.
But when periodically collecting NSI, the controller can accept both
requests since the controller did not get the updated information yet.
Clearly, this causes overload on the link and makes both flows suffer
from packet loss while total throughput of both flows is higher or
similar to the throughput of a single flow under accurate NSI.
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Fig. 8: Accepted Flows, Throughput, and Packet Lost
(%) under MIRANET topology with Accurate and Peri-
odically Collected NSI in every 3,5 and 10 seconds.

der 5 and 10 seconds collection, the algorithms give more
accurate results but still packet lost is high.

We now report the simulation results under ANSNET
topology. As seen in Figure 9(a), again all the algorithms
accept more flow requests when NSI is periodically
collected in every 3 seconds, resulting in higher total
throughput (as seen in Figure 9(b)) at the cost of more
packet loss (as seen in Figure 9(c)). When the periodic
collection is in every 5 seconds, all the algorithms accept
less requests, resulting in underutilization of the network
resources. When we collect NSI in every 10 seconds,
the number of accepted flows is not increasing as much
as packet loss. We believe that this happens because the
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Fig. 9: Accepted Flows, Throughput, and Packet Lost
(%) under ANSNET topology with Accurate and Period-
ically Collected NSI in every 3,5 and 10 seconds.

controller computes the same paths for different requests
due to the inaccurate state information which is stem
from longer period of collection.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we classified existing algorithms into
three groups: (i) Routing Algorithms with Static Link
Cost (RA-SLC) that use static link costs such as hop
count, distance and/or link capacity [15], [34], [22]; (i)
Routing Algorithms with Dynamic Link Cost (RA-DLC)
that use dynamic link cost such as available bandwidth
capacity of the links; (¢27) Routing Algorithms with



Dynamic Link Cost and Minimum Interference (RA-
DLCMI) that use other dynamic link costs such as link
utilization and number of flows carried on the links along
with available bandwidth capacity and static link costs
(e.g. hop count, distance, link capacity) [12], [22], [8],
[33]. We then compared existing routing algorithms in
the context of SDN-based networks. Accordingly, we
have implemented many routing algorithms using RYU
SDN-controller and tested them on Mininet emulator.
As the network topology, we first considered the same
MIRANET used in the literature. We then considered a
larger topology by enhancing ANSNET.

One of the key issues was how to obtain network
state information (NSI). All routing algorithms have
been proposed under the assumption that accurate NSI is
available at the controller that makes routing decisions.
However, in practice, since the controller periodically
collects NSI, it is hard to achieve high accuracy. In our
evaluations, we try to compare the existing algorithms
under both the idealistic case assuming the availability
of accurate NSI and the practical case where the NSI is
collected periodically and has some inaccuracy.

In order to mimic accurate NSI, we kept the shadow
of the network in the controller and we updated links
after each path computation to have residual graph. As
expected, the results show that RA-DLC and RA-DLCMI
outperform the RA-SLC in terms of the throughput and
accepted requests under both topologies. We did not see
significant difference among RA-DLC and RA-DLCMI
algorithms in therms of throughput and accepted number
of flows. However, MIRA was very expensive in terms
of computation time. Under accurate NSI, we were not
expecting any packet loss. However, we have observed
%1 — 2 packet loss in MIRANET topology and %3 — 7
packet loss in ANSNET topology. We attribute these
losses to the background traffic generated by OFDP
(OpenFlow Discovery Protocol) and the delays until the
paths are installed.

Under periodically collected NSI in every 3,5 and
10 seconds, we observed that the controller does not
get consistence results due to inaccuracies in NSI. For
example, when the algorithms use the available capacity
information from previous period, they wrongly accept
more flows than the network can carry. Accordingly, even
though more flows are accepted and total throughput is
higher, this causes significant packet losses and nega-
tively affects the QoS of all flows. It is also possible that
the actual available capacity is higher that the controller
knows. In that case the algorithms unnecessarily rejects
flow request and cause under utilization.

As the future work, we plan to specifically focus on
how to deal with the inconsistencies caused by periodi-
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cally collected NSI. First, we plan to develop algorithms
that can take into account inaccurate state information
using some probabilistic link metrics. Second, we plan
to investigate how to effectively collect the NSI while
minimizing the load on the controller and the message
overhead throughout the network.
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