Segmented Source Routing for Handling Link
Failures in Software Defined Network

Sharvari Komajwar
The University of Texas at San Antonio
San Antonio, Texas-78249
Email: sharvari.komajwar@utsa.edu

Abstract— When a link fails in Software Defined Networks
(SDN), the flows that use the failed link need to be rerouted
over other paths. To achieve this rerouting task, researchers
have proposed reactive and proactive recovery approaches. In
reactive approach, on failure, SDN controller computes new
paths for the affected flows and installs them on demand. In
proactive approach, the SDN controller pre-calculates backup
paths and installs them on the switches in advance. While
proactive approach minimizes packet loss and delay, it introduces
a new problem, namely excessive usage of limited TCAM memory
at SDN switches. In this paper, we consider two promising
techniques (namely source routing and segment routing), and
propose a new proactive technique called Segmented Source
Routing (SSR). SRR uses source routing but in a segmented
manner: one from the failure detecting node to an emergency
node and once from emergency node to the destination. After
addressing various challenges in placing emergency nodes and
assigning emergency nodes to flows, our simulations shows
that SSR maintains the same level of performance of pure
source routing while significantly reducing the memory overhead,
computation overhead, and the packet sizes as it shortens the
source routes and avoids storing them at every node.

I. INTRODUCTION

One of the key issues in SDN is how to re-route the flows

on a failed link through other paths. Formally, this problem
can be stated as follows.
Definition 1 Link Failure Handling (LFH) Problem: Consider
a network that is represented by a directed graph G = (V, E),
where V' is the set of nodes/switches and E is the set of links.
Let n = |V| be the number of nodes in the network and
m = |E| be the number of edges in the network. Each link
(u,v) € E is associated with a cost parameter ¢(u, v). Suppose
the SDN controller will accurately maintain this network state
information and use it to compute the shortest paths for each
flow request that goes from a source node s to a destination
node d. Suppose there are F' flows passing through a link
(u, v). If that link fails, all the flows using the failed link (u, v)
will be affected as the packets belonging to these flows get lost
and/or delayed. Given a failed link (u,v), the LFH problem is
how to quickly and efficiently reroute all the affected F' flows
to other paths so that we can avoid or minimize the packet
loss and delay.

In response to addressing the LFH problem, researchers
have proposed various recovery mechanisms in the litera-
ture [1], [6]-[12]. The existing techniques are mainly of two

Turgay Korkmaz
The University of Texas at San Antonio
San Antonio, Texas-78249
Email: turgay.korkmaz @utsa.edu

types: Reactive (or path restoration) [12] and Proactive (or path
protection) [1], [7]-[11]. In the case of reactive solutions, the
controller needs to be informed about the link failure. Upon
receiving link failure notification, the controller determines a
new path and updates all the switches related to the new path.
The main advantage of the reactive approach is the fact that
the underlying switches do not need to store any extra backup
paths or state information besides the primary paths. Moreover,
the found path will be the best one under the given network
state information. However, due to the extra times required
for conveying the link failure information to the controller,
computing new paths, and consistently updating/installing
new forwarding rules [4], [5], the reactive techniques loose
and/or delay many packets until the recovery is completed.
To minimize the recovery time, Sharma et al. in [12] have
proposed an improvement where the controller pre-calculates
all the backup paths and use them on demand to reroute
the affected flows. However, due the dominance of delays in
conveying link failure and updating new rules consistently,
reactive techniques would be still very slow to avoid packet
loss and/or delay in practice. As a mater of fact, Sharma et al.
demonstrates that it is hard to obtain less than 50ms recovery
times when using a controller-based restoration approach [13].

To avoid (or minimize) packet loss and delay during re-
covery time, the researchers have considered proactive tech-
niques [1], [7]-[11]. The basic idea here is to have a backup
path readily available so that the packets from the affected
flows can quickly be re-routed without waiting for the con-
troller’s intervention. The performance and the cost of this
approach depends on how to determine and maintain backup
paths. At one extreme, while installing the primary path for a
flow, the controller computes and installs a backup path per
flow from every node on the primary path to the destination.
Clearly, this extreme version of proactive approach signifi-
cantly speeds up the response time and thus totally avoids the
packet loss and delay as the backup path is readily available
at each node. However, this improvement comes at the cost of
excessive memory usage for storing and maintaining additional
backup paths per flow on the underlying switches, where the
TCAM memory is limited and consumes significant amount
of energy [7]-[10]. For example, if we have F' flows going
through a link (u,v), then we have to maintain at least 2F
flow entries at node u, which will be a significant memory

overhead as F' increases. Therefore, it is deemed necessary to
limit the number of backup paths for efficient use of memory
space while being able to quickly reroute the affected flows.

With this in mind, researchers have investigated different
proactive techniques. For example, Capone et al. have consid-
ered utilizing the cranckback routing idea to avoid maintaining
backup paths at each node [?]. In this case, the some backup
paths are computed from some selected nodes and installed
through the network. Upon a link failure, the failure detecting
node uses cranckback routing to send the packets back. When
the packets reach a node with a backup path, that node re-
routes the traffic. While this reduces the number of backup
paths, the reverse paths might be longer or congested, causing
delays and loss. Sgambelluri et al. have proposed to use
backup paths per destination rather than per flow [11]. While
these approaches reduce the number of backup paths and saves
some memory, they may still use significant amount of TCAM
space for storing and maintaining the backup paths or the
backup path might not be the best one.

To minimize the excessive TCAM memory overhead while
using the better paths, researchers have considered new
techniques based on source routing [8], [10] and segment
routing [6]. In source routing, the controller calculates the
shortest paths from each source node to all other destination
nodes and stores the complete paths at each source node.
When a particular flow is created, its source node checks the
destination and inserts the whole path to that destination into
the packet header. In SDN, VLAN tags can be pushed into
the header to store the whole path information, which contains
either the IDs of nodes along the path or just port IDs on each
node of the path [8], [14].

In [8], Huang et al. have proposed to use source routing for
maintaining backup paths. Basically, every switch u on the
primary path of a flow stores the complete backup paths to
its destination rather than installing it throughout the network.
To do this, the controller eliminates each link (u,v) on the
primary path at a time, and computes the shortest paths from
u to the destination of the flow. It then stores the corresponding
path on switch w. So, if F' flows are passing through w, then
that switch has to store F' source routes (note that these backup
paths are not installed throughout the network). When there
is a failure on link (u,v), node u will quickly detect the link
failure and (without waiting for the controller) it will reroute
the incoming packets by inserting the pre-stored source route
from w to the destination into the packet header and forward
it to the next node. Clearly, source routing minimizes the
number of flow entries in the switches. But the length of
each entry increases since the whole backup path is stored
per flow [8]. Effectively, each switch needs to maintain F
many backup paths, which will be costly as F' increases.
Moreover, the authors in [8] propose to update these backup
paths after some interval of time based on the current status of
the network, which further increases the computation overhead
on the controller. Another issue with pure source routing is
that it increases the packet size as the whole backup path is
included into the packets.

Segment routing (SR) [3] is similar to loose source routing
(an IP option to record the set of routers that a packet must
visit). In contrast to the pure source routing, SR inserts the
IDs of a few nodes into the packet header and then tries to
send a packet to the next node by using the paths determined
and maintained by the underlying routing protocol. The path
between the consecutive nodes in the header is called a
segment. In [6], authors have considered using 2-segment
routing to deal with LFH problem. This approach limits the
number of node IDs in the header and the number of entries
in the SDN flow tables. However, it relies on the underlying
protocol to compute new paths for the segments to deal with
the link failure. Unfortunately, when the failed link is on the
segment that needs to be used, this approach can still cause
packet loss and delay until the underlying routing protocol
finds new paths, as in the reactive approach. Moreover, in
segment routing when link fails, all the paths on intermediate
nodes need to be updated consistently to guarantee loop-free
and black-hole-free routing.

In this paper, we propose a new link failure handling
technique called Segmented Source Routing (SSR) by merging
the best of the source routing and segment routing. Basically,
as in the source routing, we include the path information into
the packet headers so that we can avoid memory overhead by
not installing backup paths through the network. However, to
further minimize the number of source routes maintained at
each node and to minimize the length of the paths included in
the packet headers, we do this in a segmented manner and per
destination rather than per flow. Basically, we identify some
nodes as emergency nodes. The controller then pre-computes
the shortest paths from every node to the emergency nodes and
from emergency nodes to every node. We store these paths at
their respective source nodes. When a flow request arrives,
the controller determines a primary path and installs it as
usual. In contrast to the pure source routing, which computes
a backup path from each node on that primary path [8], our
SSR approach simply determines which emergency node (say
node e) to use at each node u. For each flow, this information
is maintained in the flow table at node uw. Upon detecting a link
failure, node u simply inserts the source route from u to e into
the packet headers of the affected flows and send them towards
the corresponding emergency node e. Upon receiving such a
packet, node e inserts the source route from e to d and send
it towards d. In contrast to the pure segment routing, we do
not rely on the underlying routing protocols to find paths for
segments. Instead, we determine each segment using source
routing. In the following sections, we will further describe the
proposed SSR framework and address the challenges in it.

The rest of the paper is organized as follows. Section II
gives the overview of the proposed SSR framework. Section III
addresses the challenges in SSR. Section IV presents the
performance evaluation using simulation. Section V talks
about future work and concludes the paper.

II. THE PROPOSED SEGMENTED SOURCE ROUTING
FRAMEWORK

To quickly and efficiently respond to the link failures, we
propose a new technique called Segmented Source Routing
(SSR). In essence, SSR is similar to source routing. How-
ever, instead of including the whole source route into packet
headers, SSR divides the path into two segments and include
the source route for each segment into packet headers one
at a time. To be able to that, SSR designates some nodes in
the network as the emergency nodes. Then, SSR makes every
emergency node store the list of source routes to all desti-
nations while making every other switch/node store only the
source routes to all the emergency nodes. Since the number of
emergency nodes is expected to be significantly less than n, we
will avoid significant memory overhead when storing source
routes. Moreover, instead of storing source routes per flow as
in [8], SSR stores source routes per destination. This way SSR
minimizes both the length of the path information included
into packet headers and the number of source routes stored.
This will significantly reduce memory overhead, particularly
when the number of flows F' increases.

When installing the primary path for a particular flow, the
SDN controller needs to determine which emergency nodes to
contact from each node on the primary path. Emergency node
information is included as part of the flow entry at each node
on the primary path. So when link (u,v) fails, node u can
detect the failure and identify the emergency node for each
flow passing through this link. Accordingly, node w inserts
the first segmented source route from u to the corresponding
emergency node e into the packet header and send it. Upon
receiving such a packet, the emergency node e inserts the
second segmented source route from the emergency node to
the destination.

For example, Fig. 1 shows a link failure scenario where
primary shortest path from the source S4 to destination D2 is
{54, 59,513,518, D2}. Suppose node e2 is the emergency

Fig. 1.

An Example for Link Failure Handling.

node for that flow at node S13 and the link (S13,.518) fails.
In this case, the switch S13 detects the link failure and inserts
the first segmented source route {S13,e2} into the packets
of that flow and send them to the emergency node e2. Upon
receiving these packets, the emergency node e2 inserts the

second segmented source route {e2,512,517, D2} into the
packets and send them to the destination node D2.

Instead of using pure source routing per flow as in [8] or
the pure segment routing as in [3], we combine the best of
these two mechanisms as segmented source routing, which
pre-computes and installs two segments of source routes:
segment(u,e) from every node u to each emergency node
e; segment(e,d) from every emergency node e to every
destination node d. Then, when installing a primary path,
the SDN controller decides which emergency node to use
for each node on the primary path, and includes the ID of
the selected emergence node in the flow entry. So, when a
link fails, the failure detecting node u simply includes the
corresponding segment(u, e) into the packets of the affected
flows. Receiving emergency nodes include the corresponding
segment(e,d) into the packets and send them.

The key goals of SSR are to (a) reduce the packet size
by including shorter source routes into the packets, (b) min-
imize the number of source routes maintained at each node,
and (c) avoid the unnecessary path computations during the
installation of the primary path. While achieving these goals,
the proposed SSR method should maintain the same level of
performance as the pure source routing. Using simulations, we
show that SSR has almost the same performance in terms of
the cost of the backup paths used and the link utilization, while
significantly reducing the packet size, minimizing the number
of source routes at each node, and avoiding the unnecessary
path computations. We should also note that segmented-source
routes are computed in a loop-free and black-hole-free manner
and can be changed independently without worrying about a
network wide convergence of the underlying routing protocol
that maintains the paths for the segments in the pure segment
routing.

III. CHALLENGES AND SOLUTIONS IN SSR

In this section, we discuss three crucial challenges that need
to be addressed for the SSR technique to efficiently handle link
failures. Specifically, we consider: (a) how to select and place
emergency nodes, (b) how to compute the segmented source
routes from each node to emergency nodes and from each
emergency node to all destinations, and (c) which emergency
node to assign to which flow at each node on the primary path.

A. Emergency Node Selection and Placement Problem

Selection of emergency nodes and their placement play an
important role in improving the performance of proposed SSR
technique. Intuitively, emergency nodes need to be distributed
evenly in the network so that a given node can access one
of the emergency nodes with minimum number of hops. At
the same time, the emergency node should be able to access
the destination with minimum number of hops. In this paper,
we will content with randomly selecting the desired number
of nodes as emergency nodes to achieve even distribution. In
the future, we will investigate how to optimally place them to
further improve the performance.

B. Segmented Source Route Calculation

Once the controller selects emergency nodes in the network,
it calculates the shortest paths for two segments. For the first
segment, it computes the shortest paths from every node to
emergency nodes and stores these as source routes at each
node. For the second segment, it computes the shortest paths
from every emergency node to all destinations and stores these
as source routes at each emergency node.

We compute the shortest paths based on the same cost
parameter used for the pure source routing in [8]. Specifically,
the cost of a link (u,v) is determined as follows:

1
1 —p(u,v)
where p(u,v) represents the utilization of link (u,v) and
computed using

(D

c(u,v) =

D(u,v)
B(u,v)

where B(u,v) is the bandwidth capacity of link (u,v) and
D(u,v) is the total demand of the flows using link (u,v). In
the future, we plan to also consider different cost parameters
that take into account the interference of backup paths on the
primary paths.

p(u,v) = (2)

C. Per Flow Emergency Node Assignment

In the case of a link failure, the failure detecting node needs
to know which emergency node to contact for each affected
flow passing through the failed link. This decision should be
made by the SDN controller, which determines a primary path
and installs the necessary flow table entries as usual. In the
pure source routing, the controller computes the shortest path
from each node u on the primary path to destination d as a
backup path per flow, and store that path as the source route at
node u. In contrast, SSR assigns an emergency node for each
node v on the primary path and save this information as part
of the flow entry at node . Since our segmented-source routes
are pre-computed and stored at each node per destination, the
controller is not overloaded with backup path computations
per flow or sending these paths to each node while installing
the primary path. This way SSR significantly reduces the
memory requirements at each node while also decreasing the
computation and communication overheads at the controller.
Such reductions in the computational load and chattiness of
the controller will significantly improve its responsiveness and
performance.

The selection of emergency node at each node is an impor-
tant decision as it will impact the overall performance when
there is a link failure. So the controller needs to carefully
select the emergency node at each node on the primary path.
We formally define this problem as follows:

Definition 2 Emergency Node Assignment (ENA) Problem:
Consider the network model given in Definition 1. Let R be
the set of emergency nodes, where R C V. Suppose the
controller has already computed and stored the shortest paths
(source routes) from each node u € V to the emergency node
e € R; and from each emergency node e € V' to every node

u € V. Upon receiving a request for a flow going from s to d,
the controller finds the shortest path (the primary path) psq as
usual. Given R, psq and the pre-computed segmented-source
routes, the EAN problem is to find/assign the best emergency
node e € R for each node u € psqg = {s,...,u,v,...,d} such
that the link (u,v) is not included in source routes denoted by
segment(u,e) or segment(e,d).

Ideally, we would like to select an emergency node e €
R for each node u € psq such that the sum of the cost of
segment(u,e) and the cost of segment(e,d) is minimum.
However, since we would like to also minimize the packet
size by including a source route with minimum number of hop
IDs, we should select the segments containing less number of
hops. Accordingly, we propose to select the emergency node
e € R for each node u € ps4 based on the following objective
function:

vnéleilll%{C(u, e)* H(u,e)+ Cle,d) « H(e,d)} 3)
where C(u,e) and C(e,d) represent the total costs
and H(u,e) and H(e,d) represents the hop counts of
segment(u,e) and segment(e,d), respectively.

Regarding computational complexity, for each node u, this
optimization can simply be done in O(|R|) while the pure
source routing requires the execution of the shortest path
algorithm with O(|E| + |V'|log|V|). Note that |R| << |V]|.

While the above heuristic finds an emergency node quickly
in most cases, it is possible that the source path from u to e
or the source path from e to d might include the failed link.
We call such a path as a non-safe path. So, the controller
needs to eliminate such non-safe paths by simply checking it
as follows. Suppose we have a link (u,v) on the computed
primary path. So when selecting the emergency node e for
node u, the controller needs to make sure that the link (u,v)
is not part of the source route from u to e or from e to d.
Note that since the controller has all the source routes that
are stored in the switches, it can do this locally. There is no
communication between the controller and switches. In our
simulations, we always find a safe path. But in a rare case, if
there is no safe path through any emergency node, then we
can use the pure source routing for that case only.

D. Computation overhead and Memory consumption

The major goals of the proposed SSR method is to reduce
the computation overhead on the controller and memory
consumption on the switches. In [8], while installing the flow
entries for a flow, the controller calculates a backup path
(source route) for the possible failure of each link (u,v) on
the primary path and stores that source route from wu to the
destination d on the switch u. Moreover, to keep these backup
paths up-to-date, the controller runs a modified Dijkstra for
each switch after a particular interval, which further increases
the computation overhead on the controller and the chattiness
between the controller and the switches. Since the backup
paths are maintained per flow, each flow entry at node u
has to contain the full source route from w to d, causing
significant memory overhead. In contrast, the proposed SSR

method pre-computes the shortest path per destination as in the
segment routing. In contrast to segment routing, SSR stores
the shortest paths as source routes. So these source routes can
be independently computed or updated without relying on the
underlying routing protocols to determine and install them in
a consistent manner as the pure segment routing does.

Compared to the pure source routing, the proposed SSR ap-
proach involves much less computation overhead and memory
consumption. Another key advantage of SSR is that since it
includes a segment rather than the whole source route into the
packets, it decreases the packet size, resulting in efficient use
of resources and faster transfer. Despite these advantages, one
natural question is to find out how SSR performs in terms of
other measures. In the next section, we compare SSR against
the pure source routing in terms of the cost of the backup paths
used and the level of increase in link utilization after the link
failure. Clearly, the pure source routing would be better as it
uses per flow backup paths. However, our simulations show
that the proposed SSR closely achieves the same performance
while using less resources and computation time.

IV. PERFORMANCE EVALUATION
A. Simulation Setup

We compared our proposed SSR method against the pure
source routing (PSR) in [8]. We implemented both methods
in Python and compared them by using the realistic network
topologies shown Figure 2 and 3, which are modified from
ANSNET [2].

Fig. 2. Topology with n=33,m=110

Fig. 3.

Topology with n=33,m=184

Our topology A (shown in Figure 2) has n=33 nodes and
m=110 directed edges. While topology B (shown in Figure 3)
has has n=33 nodes and m=184 directed edges. We first

randomly select the bandwidth for each link from uniform(10,
20). We randomly select the source node s from uniform(l,
6), the nodes on the left, while selecting the destination d
from uniform(23, 32), the nodes in the right. To test different
load, we used two set of experiments with 20 flows and 40
flows. Respectively, the demand of each flow is randomly
selected from the range uniform(1,6) and uniform(1,4). For
the proposed SSR, we varied the number of emergency nodes
as 3, 6, 12 and selected the given number of emergence nodes
randomly. After installing the given set of flows, we do not
generate any new flow. But we fail randomly selected links
one at a time and re-route the affected flows through backup
paths.

As the performance measures, we consider (a) the cost of
the backup paths at the time of link failures, (b) the increase
in link utilization because of using backup paths, and (c) the
number of hop IDs included into the packets (hop count). We
repeated each experiments 10 times and took their averages.

1) Average Cost: Fig. 4 shows the average cost of the
backup path used by SSR and PSR. Also we have shown the

Average Cost

40

B 30

EP

10

3Nodes 6 Nodes

No. of Emergency Nodes

12 Nodes
—@—PR SR

(a) F=20

Average Cost

3 Nodes 6 Nodes 12 Nodes

No. of Emergency Nodes

w=fli= PSR SSR
(b) F=40

Fig. 4. Average cost of backup paths at the time of link failures.

effect of number of emergency nodes on the average backup
path cost. We calculated the cost as mentioned in 1 but at the
time of using that backup path. From Fig. 4, it can be seen
that as we increase the number of emergency nodes from 3
to 12, the average cost of backup paths for SSR decreases
and becomes almost the same as that of PSR. Fig. 5 Shows
the effect of link failure on average cost for Topology A and
Topology B.

2) Utilization: Fig 6 shows the increase in link utilization
for PSR and SSR before and after the failure happens. It
also shows the link utilization when there are 3, 6 and 12

Average Cost(n=33,m=110)

70
60
50
LES
30
20
10
0 \
20 Flows 40 Flows
BPR &SR
(a) Average Cost for Topology A
Average Cost(n=33,m=184
30
25
20
&

10
5
0

(b) Average Cost for Topology B

A\

20 Flows

40 Flows

mPR s SR

Fig. 5. Average cost of backup paths at the time of link failures.

emergency nodes in the network. In the case of 3 emergency
nodes, since all the traffic of backup paths goes through these
3 emergency nodes, some of the links are heavily loaded. But
as the number of emergency nodes increases, link utilization
for PSR and SSR becomes very close.

Fig 8 shows the utilization of the network before and after
failure. We can see that also under the Topology B, link
utilization for PSR and SSR is very close.

3) Average Hop Count: One of the main advantages of
the SSR method is the reduction of hop count (i.e., the
number of hops included into the packets). As shown in the
Fig. 9, the SSR method reduces the number of hop information
inserted into the packets. From Fig. 9, it can be seen that
when the number of emergency nodes are 37% of the total
number of nodes each packet carries approximately 50% of
hop information carried by the packets in PSR. Similar results
can be seen in 10. As shown in Fig. 10(b), even when the
network is highly loaded and there are 6 emergency nodes
average hop count is almost 50% of PSR. The main advantage
of this reduced hop count is to reduce the packet size, which
improves transmission time and avoids unnecessary usage of
resources.

V. CONCLUSION AND FUTURE WORK

We proposed a failure handling method in SDN based on the
best features of source routing and segment routing. Through
simulations, we showed that proposed SSR method reduces
memory overhead on the switches, computation time at the
controller, and the packet size while providing almost the same
performance of pure source routing in terms of the cost of the
backup paths and the link utilization increase after the failure.

Link Utilization

Utilization

—e=— Initial Utilization PSR Utilization SR Utilization(3)
SR Utilization(6) —— SR Utilization(12)
(a) F=20
Link Utilization
5
4
5 3 gt
§ M
% 2]
1 R
0 &=/
TR RKARRILIRACBBINRREBBREEES
S88
No. of Links
—e— Initial Utilization PSR Utilization SSR Utilization(3)
SSR Utilization(6) —a— SSR Utilization(12)
(b) F =40
Fig. 6. Link utilization distribution before and after link failures.

To demonstrate the potential benefits of the proposed SSR
framework, we used simple heuristics in addressing various
challenges in SSR. We now plan to further investigate new
algorithms to address these challenges. Both PSR and our SSR
simply computes the shortest path as a backup path. We plan
to develop new cost parameters that can take into account the
interference of backup paths on the primary paths.

REFERENCES

[1] Antonio Capone, Carmelo Cascone, Alessandro Q. T. Nguyen, and
Brunilde Sanso. Detour planning for fast and reliable failure recovery
in SDN with openstate. CoRR, abs/1411.7711, 2014.

[2] D. E. Comer. Internetworking with TCP/IP, volume 1. Prentice Hall,
Inc., third edition, 1995.

[3] C. Filsfils, N. K. Nainar, C. Pignataro, J. C. Cardona, and P. Francois.
The segment routing architecture. In IEEE Global Communications
Conference (GLOBECOM), pages 1-6, Dec 2015.

[4] Klaus-Tycho Foerster, Stefan Schmid, and Stefano Vissicchio. Survey
of consistent network updates. CoRR, abs/1609.02305, 2016.

[5] K. T. Frster, R. Mahajan, and R. Wattenhofer. Consistent updates
in software defined networks: On dependencies, loop freedom, and
blackholes. In IFIP Networking Conference (IFIP Networking) and
Workshops, pages 1-9, May 2016.

[6] F. Hao, M. Kodialam, and T. V. Lakshman. Optimizing restoration
with segment routing. In JEEE INFOCOM 2016 - The 35th Annual
IEEE International Conference on Computer Communications, pages
1-9, April 2016.

[71 N. Kitsuwan, D. B. Payne, and M. Ruffini. A novel protection design
for openflow-based networks. In The 16th International Conference on
Transparent Optical Networks (ICTON), pages 1-5, July 2014.

[8] Huang Liaoruo, Shen Qingguo, and Shao Wenjuan. A source routing
based link protection method for link failure in sdn. In The 2nd IEEE
International Conference on Computer and Communications (ICCC),
pages 2588-2594, Oct 2016.

[91 Y. D. Lin, H. Y. Teng, C. R. Hsu, C. C. Liao, and Y. C. Lai. Fast
failover and switchover for link failures and congestion in software
defined networks. In IEEE International Conference on Communications
(ICC), pages 1-6, May 2016.

Utilization(n=33,m=110,f=20)

N
o

N)

§1s
E="
8
51
05
0
—— Initial Utilization —— PSR Utilization Aftrer Failure —=— SSR Utilization After Failure
(a) F=20
Utilization(n=33,m=110,f=40)
6
5
c 4
2
83
5,

SN O ORN TN ON TN R ON SN0 M N o
N8 TIITRANITIIIIRRNRIODERDS S S
=222

Li

No. of Links

Initial Utilization —— PSR Utilization after Failure —<— SSR Utilization after Failure

(b) F=40

Fig. 7. Link utilization distribution before and after link failures for Topology

A.

[10]

(1]

[12]

[13]

[14]

R. M. Ramos, M. Martinello, and C. Esteve Rothenberg. Slickflow:
Resilient source routing in data center networks unlocked by openflow.
In The 38th Annual IEEE Conference on Local Computer Networks,
pages 606-613, Oct 2013.

A. Sgambelluri, A. Giorgetti, F. Cugini, F. Paolucci, and P. Castoldi.
Openflow-based segment protection in ethernet networks. [EEE/OSA
Journal of Optical Communications and Networking, 5(9):1066-1075,
Sept 2013.

S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester.
Enabling fast failure recovery in openflow networks. In The 8th Inter-
national Workshop on the Design of Reliable Communication Networks
(DRCN), pages 164—171, Oct 2011.

Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pickavet, and
Piet Demeester. Openflow: Meeting carrier-grade recovery requirements.
Computer Communications, 36(6):656 — 665, 2013. Reliable Network-
based Services.

M. Soliman, B. Nandy, I. Lambadaris, and P. Ashwood-Smith. Exploring
source routed forwarding in sdn-based wans. In IEEE International
Conference on Communications (ICC), pages 3070-3075, June 2014.

Fig. 8. Link utilization distribution before and after link failures for Topology
B.

16
14
12

0.8
06
04
02

Utilization

ilization

Avg Hop Count

Avg Hop Count

Utilization (n=83,m=184,f=20)

ARSI REBRG
S88AXS88858

"TPORRRBEIRRBER
0.

No. of Linl

@ 106

—— Initial Utilization —+— PSRFinal Utilization after Failure

—— SSRFinal Utilization after Failure

(a) F=20

Utilization(m=33,n=183,f=40)

L NQXVOON Y DR DN 0
COROoERANTINY DR
ERi IR R R

183

No. of Links

Intial Utilization —=— PSR Final Utilization after Failure

—— SSR Final Utilization after failure

(b) F =40

Average Hop Count

‘—‘\.

3 Nodes 6 Nodes 12 Nodes
No. of Emergency Nodes

=l PSR === SSR

(a) F=20

Average Hop Count

‘*\‘

3 Nodes 6 Nodes 12 Nodes

No. of Emergency Nodes

il PSR = SSR

(b) F=40

Fig. 9. Average Number of hops carried by the packet

Avg #of Hops Per Packet(n=33,m=110)

Average #of Hops Per Packet(n=33,m=184)

Fig. 10. Average Number of hops carried by the packet

20 Flows

g

11 PR s SR

(a) Topology A

B
¢\

(b) Topology B

