
CS 2213 Advanced Programming Recitation - Exercise

Improving queueADT implementations with a ReverseQueue function

First copy the files under 10-Linear-Structures from the class web page (follow the link

“programs from the textbook” and then go to 10-Linear-Structures). You can get all files, but

you will mainly need the following files for this recitation...

Makefile qarray.c qlist.c qtest.c queue.h scanadt.c scanadt.h

We already studied queue.h, qarray.c and qlist.c in class. So examine the qtest.c client/driver

program which simply asks user to enter some commands to enqueue and dequeue strings in a

queue and display the queue elements. You can simply compile the same qtest.c driver/client

program with qarray.c and qlist.c implementations of queue.h interface to create array-qtest

and list-qtest executable files, respectively. scanadt.h and scanatd.c are used in both cases as a

library so you don't need to fully examine or understand them to complete this recitation. To

compile everything as is, just say make. Then test both array-qtest and list-qtest programs.

Now, you are asked to do the followings:

1. Add void ReverseQueue(queueADT queue); prototype into queue.h interface:

2. Implement this function under both array and list representations. That is, add its

implementation into both qarray.c and qlist.c files

When Implementing this function, make sure that you will use the original

memory cells and do not allocate any additional storage (of course you can

use local variables)

3. Modify qtest.c client/driver program so that a user can reverse the existing queue by calling

the above function that is just added to the interface.

4. Finally say make and compile qtest.c with new qarray.c and qlist.c. Then test both array-

qtest and list-qtest programs....

As always, make sure you release (free) the dynamically allocated memories when you quit

from your program. So, before submitting your program, run it with valgrind to see if there

is any memory leakage…

Also if you need to debug your program, compile your programs with –g option and then run it

with gdb and/or ddd.

Even though you just simply change three files, you need to zip and submit everything so that

TAs can easily compile and check your implementations....

/* Don’t forget to include comments about the problem, yourself and each major

step in your program! */

_
You must submit your work using Blackboard Learn and respect the following rules:

1) All assignments must be submitted as either a zip or tar archive file unless it is a single pdf file.
2) Assignments must include all source code.
3) Assignments must include an output.txt file which demonstrates the final test output run by

the student.
4) If your assignment does not run/compile, the output.txt file should include an explanation of

what was accomplished, what the error message was that prevented the student from
finishing the assignment and what the student BELIEVES to be the underlying cause of the
error.

__

