
1

Turgay Korkmaz

Office: SB 4.01.13
Phone: (210) 458-7346
Fax: (210) 458-4437

e-mail: korkmaz@cs.utsa.edu
web: www.cs.utsa.edu/~korkmaz

CS 2213
Advanced Programming

Ch 3 – Overview – C programming Language

Interfaces – Libraries

String, I/O, Math, Char Libraries

http://www.cs.utsa.edu/~korkmaz

Objectives

 To appreciate the importance of interfaces and libraries

 To understand the terminology used in interface-based programming.

 To recognize the criteria used to evaluate the design of an interface.

 To learn the syntactic rules and conventions required to write an
interface file.

 To design an example interface/library, namely random.h
 To be able to use the facilities provided by the random.h interface.

 To understand how strings are represented

 To learn how to use the standard C string.h and textbook’s strlib.h

 To learn how to use the standard C stdio.h to read and write data files

 To understand other standard libraries (math.h, ctype.h etc.)

2

Introduction to

 Programmers depend on libraries

 There is a distinction between the library itself
and other programs called its clients (application

or driver programs) that make use of libraries.

 The boundary between a library and its clients
is called the interface

 Provides a channel of communication

 Acts as a barrier that prevents complex details
on one side from affecting the other
(ABSTRACTION)

3

library

You may have two hats

4

 Library Developer Application Developer

 needs to know both

 what a library does
and

 how it does

just needs to know
what a library does,
but he/she does not care
how it does

Interfaces and
Implementations

 Suppose we want to develop several functions
and make them available to clients as a
library, then we need to have two files:
 An interface file called header file mylib.h

 Contains function prototypes

 Export data types and constants

 An implementation file mylib.c

 Contains actual implementation of the functions

 Clients can now use mylib library
5

Package and
abstraction

Standard vs. User defined
libraries

 We already used several standard libraries
and the ones provided by the textbook
#include <stdio.h>

#include “genlib.h”

 We will now learn how to design and
implement new libraries and use them in
our driver/application programs

6

Principles of good
interface/library design

 Unified. A single interface should define a consistent abstraction with a clear unifying theme.

If a function does not fit within that theme, it should be defined in a separate interface.

 Simple. To the extent that the underlying implementation is itself complex, the interface

must hide as much of that complexity from the client as possible.

 Sufficient. When clients use an abstraction, the interface must provide sufficient

functionality to meet their needs. If some critical operation is missing from an interface, clients may
decide to abandon it and develop their own, more powerful abstraction. As important as simplicity is,
the designer must avoid simplifying an interface to the point that it becomes useless.

 General. A well-designed interface should be flexible enough to meet the needs of many

different clients. An interface that performs a narrowly defined set of operations for one client is not as
useful as one that can be used in many different situations.

 Stable. The functions defined in an interface should continue to have precisely the same

structure and effect, even if their underlying implementation changes. Making changes in the behavior
of an interface forces clients to change their programs, which compromises the value of the interface. 7

"Everything should be made as simple as possible, but not simpler, " Albert Einstein

A simple library example:
Random numbers

 What is a random number?

 Do standard C libraries provide any help?

 Design and implement a random number
library…

8

9

What is a Random Number?

 Tossing a coin (0, 1) Rolling a die (1, 2,…6)

 Min, Max, Avg, possible outcomes are
equally likely or not,

 Many problems require use of random
numbers, here is an example

 How can you compute the area of an irregular
shape?

 Simulations

10

Uniform Random numbers

 All outcomes are equally likely

 For example fair die, where each outcome has
the same probability of 1/6,

 So we can generate uniform random numbers
between 1 and 6 by rolling a die.

 What if we need random numbers in another
range? For example, 1 and 100?

11

Uniform Random numbers
(cont’d)

 Standard C library stdlib.h has rand()

 generates random numbers between 0 and RAND_MAX

 RAND_MAX is a system dependent constant (e.g.,
32,767) defined in stdlib.h

 What will be the output when we execute
 #include <stdlib.h>

 main()

 {

 printf(“%d %d %d\n”,rand(), rand(), rand());

 }

 What will be the output, if we re-run the same
program?

12

Pseudo-random Numbers

 Computers generate random numbers using
a seed number and an algorithm.

 So, if you give the same seed,
 you will always get the same sequence of

numbers called pseudo-random numbers

 Standard C library stdlib.h has
srand(int seed)

 allows us to give a new seed number

13

Example: generate 10 RNs

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 /* Declare variables. */

 int seed;

 int k;

 /* Get seed value from the user. */

 printf("Enter a positive integer seed value: \n");

 scanf("%d", &seed);

 srand(seed);

 /* Generate and print ten random numbers. */

 printf("Random Numbers: \n");

 for (k=1; k<=10; k++)

 printf("%i ", rand());

 printf("\n");

 /* Exit program. */

 return 0;

}

rand() and srand()

are not enough…

 What if we want to get

 random numbers in the range [200 500]?

 real random numbers in the range [0.5 1.0]

 random numbers from other distributions (e.g.,

exponential, normal etc.)

 We can develop a new “Random Number”
library providing all these functions while
hiding their implementation details from
client programs

14

The structure of the random.h

interface

#ifndef _random_h

#define _random_h

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include "genlib.h“

int RandomInteger(int low, int high);

double RandomReal(double low, double high);

bool RandomChance(double p);

void Randomize(void);

#endif

15

/* Comments are removed here. Please see the textbook */

/* RandomChance(.30) returns

TRUE 30 percent of the time. */

/* This function initializes the random-

number generator based on time */

#ifndef _random_h

#define _random_h

 /* … */
#endif

What is the purpose of these boilerplate lines?

The purpose of the interface
boilerplate is to prevent the compiler
from reading the same interface many
times during a single compilation.

Implementation of the random.c

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include "genlib.h"

#include "random.h"

int RandomInteger(int low, int high)

{

 int k;

 double d;

 d = (double) rand() /

 ((double) RAND_MAX + 1);

 k = (int)(d * (high - low + 1));

 return (low + k);

}

16

/* Comments are removed. Please see the textbook */

/* This library uses primitive random number generation

functions provided by standard C library… */

double RandomReal(double low, double high)

{

 double d;

 d = (double) rand() /

 ((double) RAND_MAX + 1);

 return (low + d * (high - low));

}

bool RandomChance(double p)

{

 return (RandomReal(0, 1) < p);

}

void Randomize(void)

{

 srand((int) time(NULL));

}

 int k;

 k = rand() %

 (high - low + 1);

 return (low + k);

17

Constructing a client program:
HiLo Game

#include <stdio.h>

#include "genlib.h"

#include "random.h"

void playHiLo(int s); /* prototype */

int main(void)

{

 int secret; /* Declare variables */

 Randomize();

 while(1){

 secret = RandomInteger(1,100);

 playHiLo(secret);

 }

 return 0;

}

/* Write a program that allows

a user to play HiLo game. User

wins if he/she can guess the

number between 1-100 within at

most 6 iterations */

18

void playHiLo(int s)

{

 int i, guess;

 for(i=1; i <=6; i++){

 printf("Enter your guess : ");

 scanf("%d", &guess);

 if (guess > s)

 printf("It is Higher than secret\n");

 else if (guess < s)

 printf("It is Lower than secret\n");

 else {

 printf("Cong! you won\n");

 return;

 }

 }

 printf("Sorry! Try again\n");

 return;

}

Client: HiLo Game (cont’d)

19

Exercise: Another “guess the
number game”

 Computer selects a random number s between [1000 9999]

 User tries to guess it by entering g

 Computer tells how many digits are in place, out of place,
not in secret number

 For example, if s is 6234

 User enters g as 7436, then computer says

 1 digit is in place

 2 digits are out of place

 1 digit is not in secret number

 User keeps trying until he finds the secret number

 How about developing a program where the user selects the
random number and computer tries to find it???

Home Exercise

Interactions between libraries

20

HiLo.c
client.c

genlib.h

genlib.c

random.h

random.c

stdlib.h

stdlib.c

time.h

time.c

stdio.h

stdio.c

Compile

> ls

client.c random.c random.h

> gccx client.c random.c –o client

 OR you can first compile them individually

> gccx –c random.c WHY?

> gccx –c client.c

> ls

client.c client.o random.c random.h random.o

> gccx client.o random.o –o client

 It would be better to use Makefile and make

21

Recitation

Makefile (text file) and make (program)

Makefile comments……

all: client

tidy:

 rm -f ,* .,* *~ core a.out *.o graphics.ps

C compilations

client.o: client.c random.h

 gcc -c client.c

random.o: random.c random.h

 gcc -c random.c

Executable programs

client: client.o random.o

 gcc -o client client.o random.o

22

> ls

client.c Makefile

random.c random.h

> make client

> ls

> make tidy

> ls

> make

> ls

Recitation http://en.wikipedia.org/wiki/Make_(software)

What if you want to use gccx
 instead gcc

Makefile (text file) and make (program)

Makefile comments……

PROGRAMS = client

CC = gcc

CFLAGS =

all: $(PROGRAMS)

tidy:

 rm -f ,* .,* *~ core a.out *.o graphics.ps

C compilations

client.o: client.c random.h

 $(CC) $(CFLAGS) -c client.c

random.o: random.c random.h

 $(CC) $(CFLAGS) -c random.c

Executable programs

client: client.o random.o

 $(CC) $(CFLAGS) -o client client.o random.o

23

> ls

client.c Makefile

random.c random.h

> make client

> ls

> make tidy

> ls

> make

> ls

Recitation http://en.wikipedia.org/wiki/Make_(software)

To use books library, put
CC = gccx
 instead of CC = gcc

Strings: Arrays of Characters

 In Ch2, we studied strings as arrays of
characters terminated by null

 There is a standard string.h library

 The textbook defines string as a new type
in genlib.h and develops a strlib.h
library on top of the standard string library

24

Other libraries

25

Representation of Strings
Also discussed before in ch2 as Array of Characters

 A string is an array of characters
 char data[10] = “Hello”; // data is a constant !

 char data2[] = {‘H’, ‘e’, ‘l’, ‘l’, ‘o’, ‘\0’}

 char *data3 = “Hello”; // “Hello” is a constant !

 string data4 = “Hello”; /* if we use genlib.h */

 Use printf to print strings
 printf(“%s”,data); scanf(“%s”,data);

 sprintf(data, “%d ”, X); sscanf(data3, “%d ”, &X);

 data3 = GetLine(); /* Textbook’s lib*/

 Can be accessed char by char
 data[0] is first character

H e l l o \0

0 1 2 3 4 5 6 7 8 9

data

End of String Symbol

Strings: arrays vs. pointers

/* Array implementation */

static int CountSpaces(char str[])

{

 int i, nSpaces;

 nSpaces = 0;

 for (i = 0; str[i] != '\0'; i++)

 {

 if (str[i] == ' ') nSpaces++;

 }

 return (nSpaces);

}

/* Pointer implementation */

static int CountSpaces(char *str)

{

 int nSpaces;

 char *cp;

 nSpaces = 0;

 for (cp = str; *cp != '\0'; cp++)

 {

 if (*cp == ' ') nSpaces++;

 }

 return (nSpaces);

}

26

string type in genlib.h and

strlib.h and string.h libraries

 In genlib.h, the texbook defines

 typedef char *string;

 So string is identical to char *

 The biggest difference between strlib.h
and string.h is Memory allocation

 <string.h> functions assumes that user/client allocates

memory for the characters in string

 “strlib.h” functions dynamically allocate memory for

the characters in string
27

Common Functions exported
by standard string.h

size_t strlen(const char *str);

char *strcpy(char *dest, const char *src);

char *strncpy(char *dest, const char *src, size_t n);

char *strcat(char *dest, const char *src);

char *strncat(char *dest, const char *src, size_t n);

int strcmp(const char *str1, const char *str2);

int strncmp(const char *str1, const char *str2,size_t n);

char *strchr(const char *str, int c);

char *strstr(const char *str1, const char *str2);

… more …

28

String Operations <string.h>

Common Functions exported
by textbook’s strlib.h

string Concat(string s1, string s2);

char IthChar(string s, int i);

string SubString(string s, int p1, int p2);

string CharToString(char ch);

int StringLength(string s);

string CopyString(string s);

boolean StringEqual(string s1, string s2);

int StringCompare(string s1, string s2);

int FindChar(char ch, string text, int start);

int FindString(string str, string text, int start);

string ConvertToLowerCase(string s);

string ConvertToUpperCase(string s);

string IntegerToString(int n);

int StringToInteger(string s);

string RealToString(double d);

double StringToReal(string s);

29

See original strlib.h and strlib.c
files available at ~korkmaz/cslib
and at the class web page

Some of functions
dynamically
allocate memory.

But you need to
free them…
So you need to
know the
pointers…

Client program: Convert an English word
to PigLatin by applying the following rules

 If the word contains no vowels, no translation is done,
which means that the translated word is the same as the
original.

 If the word begins with a vowel, the function adds the
string "way" to the end of the original word. Thus, the Pig
Latin equivalent of any is anyway.

 If the word begins with a consonant, the function extracts
the string of consonants up to the first vowel, moves that
collection of consonants to the end of the word, and adds
the string "ay". For example, the Pig Latin equivalent of
trash is ashtray.

30
Home Exercise

PigLatin using string.h

static void PigLatin(char *word, char buffer[], int bufferSize)

{

 char *vp;

 int wordLength;

 vp = FindFirstVowel(word);

 wordLength = strlen(word);

 if (vp == word) {

 wordLength += 3;

 } else if (vp != NULL) {

 wordLength += 2;

 }

 if (wordLength >= bufferSize)

 Error("Buffer overflow");

 if (vp == NULL) {

 strcpy(buffer, word);

 } else if (vp == word) {

 strcpy(buffer, word);

 strcat(buffer, "way");

 } else {

 strcpy(buffer, vp);

 strncat(buffer, word, vp - word);

 strcat(buffer, "ay");

 }

}

31

static char *FindFirstVowel(char *word)

{

 char *cp;

 for (cp = word; *cp != '\0'; cp++){

 if (IsVowel(*cp)) return (cp);

 }

 return (NULL);

}

static bool IsVowel(char ch)

{

 switch (ch) {

 case 'A': case 'E': case 'I':

 case 'O': case 'U':

 case 'a': case 'e': case 'i':

 case 'o': case 'u':

 return (TRUE);

 default:

 return (FALSE);

 }

}

Home Exercise

PigLatin using strlib.h
 static string PigLatin(string word)

{

 int vp;

 string head, tail;

 vp = FindFirstVowel(word);

 if (vp == -1) {

 return (word);

 } else if (vp == 0) {

 return (Concat(word, "way"));

 } else {

 head = SubString(word, 0, vp - 1);

 tail = SubString(word, vp, StringLength(word) - 1);

 return (Concat(tail, Concat(head, "ay")));

 }

}
32

static int FindFirstVowel(string word)

{

 int i;

 for (i = 0; i < StringLength(word); i++) {

 if (IsVowel(IthChar(word, i))) return (i);

 }

 return (-1);

}

/* isVowel is the same as before */

Home Exercise

Standard I/O Library

33

Other libraries

34

Data Files

 So far, we used
 scanf (also GetInteger, GetReal, GetLine) to enter data

 printf to print data on the screen

 What if
 we have 1000 data points to enter? Can we

still enter them by hand?

 the output has several lines and we want to
store the output results and use them in
other programs?

35

Read Access to Data Files

36

Read Access to Data Files

 #include <sdtio.h>

 File pointer must be defined in C program

 FILE *sensor1;

 File pointer must be associated with a specific file using the
fopen function

 If the program and data file are in the same directory

 sensor1 = fopen(“sensor1.dat”, “r”);

 Else give the full path

 sensor1 = fopen(“C:\turgay\H\prog\sensor1.dat”, “r”);

37

 Input file - use fscanf instead of scanf
#include <sdtio.h>

FILE *sensor1;

double t, motion;

sensor1 = fopen(“sensor1.dat”, “r”);

while(/* not end of file */){

 fscanf(sensor1, “%lf %lf”, &t, &motion);

}

Read from Data Files

t

motion

sensor1

2

4.4

3

3.5

4

6.3

FILE

STRUCT

38

Create New Data Files
Write Access to Data Files

 #include <sdtio.h>

 File pointer must be defined in C program

 FILE *balloon;

 File pointer must be associated with a specific file using the
fopen function

 If the program and data file are in the same directory

 balloon = fopen(“balloon.dat”, “w”);

 Else give the full path

 balloon = fopen(“C:\turgay\H\Teaching\prog\balloon.dat”, “w”);

Instead of “w” we can use “a” if we
want to file be open for appending

39

 Output file - use fprintf instead of printf
#include <sdtio.h>

FILE *balloon;

double time=6.5, height=5.3;

 balloon = fopen(“balloon.dat”, “w”);

 while(/* there is data */)

 fprintf(balloon, “t: %f h: %f\n”, time, height);

Write to Data Files

time

height

ballon

6.5

5.3

7.1

8.3

8.3

3.7
t: 6.500000 h: 5.300000

t: 7.100000 h: 8.300000

t: 8.300000 h: 3.700000

FILE

STRUCT

40

At the end, Use fclose
fclose(sensor1); fclose(balloon);

41

Example

 Read 6 values from a file named
my_data.txt and write their average
into another file named avg-of-6.txt

6 5

4

2 3 4

5

my_data.txt

program

4

avg-of-6.txt

42

Example: average grade

 Suppose we keep the id and three HW grades
of 36 students in a file named grades.txt

 Write a program to compute average grade
for each student and write each students avg
into another file named avg-hw.txt

1 5 10 15

2 10 20 30

…

36 4 6 20

grades.txt

program

1 10
2 20
…
36 10

avg-hw.txt

43

Check what
fopen, fscanf, fprintf return

FILE *fp;

fp=fopen(“data.txt”, “r”);

if (fp==NULL){

 printf(“Program cannot open the file\n”);

 return -1;

}

N=fscanf(fp, “%d %d %d”, &v1, &v2, &v3);

/* N is the number of values read successfully */

while(fscanf(fp, “%d %d %d”, &v1, &v2, &v3) == 3) {

 /* process v1 v2 v3 */

}

 if ((fp=fopen(“data.txt”, “r”)) == NULL){

44

Reading Data Files

When to stop
 Counter controlled loop

 First line in file contains count
 Use for loop

 Trailer signal or Sentinel signal
 Data ends when a special data value is seen -999
 Use while loop

 End of file controlled loop
 When file is created EOF is inserted
 Use while loop

 feof(fileptr) == 0 is TRUE if EOF is not reached
 fscanf cannot read as many values as you wanted when EOF is reached

45

Counter controlled loop
Usually first line in file contains the count

#include <stdio.h>

int main()

{

 FILE *scorefile;

 int score, count, i, sum=0;

 if((scorefile = fopen("scores2.txt","r")) == NULL)){

 printf(“Program cannot open the file\n”);

 exit(-1);

 }

 fscanf(scorefile,"%d", &count);

 for (i=1; i<=count; i++) {

 fscanf(scorefile,"%d", &score);

 sum = sum + score;

 }

 printf(“Average score %lf \n",(double)sum/count);

 fclose(scorefile);

 return(0);

}

6
56
78
93
24
85
63

scores2.txt

46

Trailer signal or Sentinel signal
#include <stdio.h>

int main()

{

 FILE *scorefile;

 int score, count=0, i, sum=0;

 if((scorefile = fopen("scores3.txt","r")) == NULL)){

 printf(“Program cannot open the file\n”);

 exit(-1);

 }

 fscanf(scorefile,"%d", &score);

 while(score >= 0) {

 count++;

 sum = sum + score;

 fscanf(scorefile,"%d", &score);

 }

 printf(“Average score %lf \n",(double)sum/count);

 fclose(scorefile);

 return(0);

}

56
78
93
24
85
63
-999

scores3.txt

47

End of file controlled loop
#include <stdio.h>

int main()

{

 FILE *scorefile;

 int score, count=0, i, sum=0;

 if((scorefile = fopen("scores4.txt","r")) == NULL)){

 printf(“Program cannot open the file\n”);

 exit(-1);

 }

 while (fscanf(scorefile,"%d",&score) == 1) {

 count++;

 sum = sum + score;

 }

 printf(“Average score %lf \n",(double)sum/count);

 fclose(scorefile);

 return(0);

}

56
78
93
24
85
63

scores4.txt

while (feof(scorefile) == 0) {

 fscanf(scorefile,"%d",&score);

 count++;

 sum = sum + score;

}

48

Exercise

 In previous three programs, we found
average.

 Suppose, we want to also know how
many data points are greater than
average.

 Change one of the previous programs
to determine the number of data points
that are greater than average.

Home Exercise

49

Exercise

 Given a file of integers. Write a program that finds the minimum
number in another file.

 Algorithm to find minimum in a file:
 open file
 set minimum to a large value
 while (there are items to read)
 read next number x from file
 if (x < min)
 min = x
 display the minimum
 close file

File

56
78
93
24
85
63

Solution available on the next page

Home Exercise

50

#include <stdio.h>

int main()
{
 FILE *scorefile;
 int score;
 int min;

 scorefile = fopen("scores.txt","r");
 if (scorefile == NULL)
 printf("Error opening input file\n");
 else
 {
 min = 110;
 while (feof(scorefile) == 0) {
 fscanf(scorefile,"%d",&score);
 if (score < min)
 min = score;
 }
 }

 printf("Min = %d\n",min);

 fclose(scorefile);
 system("pause");
 return(0);
}

Home Exercise

51

Exercise

 Given a file of integers. Write a program that searches for
whether a number appears in the file or not.

 // algorithm to check for y in a file
 open file
 set found to false
 while (there are items to read and found is false)
 read next number x from file
 if (x equals y)
 set found to true
 Display found message to user
 Display not found message to user
 close file

File

56
78
93
24
85
63

Solution available on the next page

Home Exercise

52

#include <stdio.h>
int main()
{
 FILE *scorefile;
 int score, num, found;

 printf("Please Enter a number\n");
 scanf("%d", &num);

 scorefile = fopen("scores.txt","r");
 if (scorefile == NULL)
 printf("Error opening input file\n");
 else{
 found = 0;
 while ((feof(scorefile) == 0) && (found == 0)) {
 fscanf(scorefile,"%d",&score);
 if (score == num)
 found = 1;
 }
 if (found == 0)
 printf("%d does not appear in the file\n",num);
 else
 printf("%d appears in the file\n",num);
 }
 fclose(scorefile);
 system("pause");
 return(0);
}
Home Exercise

53

Exercise

 Change the previous program to count
how many times the given number
appears in the file?

Instead of fount =1; put fount++;

Home Exercise

54

Read/Write Example

 Suppose we have a data file that contains worker ID, the number of
days that a worker worked, and the number of hours the worker
worked each day.

 We would like to find out how much to pay for each worker. To
compute this, find the total number of hours for each worker and
multiply it by 7 dollar/hour.

 For instance, your program should process the following input.txt and
generate the corresponding output.txt as follows:

 Id numofD hour1 hour2 hour3 Id total-hour payment

 1 2 3 8

 2 3 5 7 6

 3 1 2

 4 2 5 1

 5 3 1 3 2

input.txt

1 11 77

2 18 126

3 2 14

4 6 42

5 6 42

output.txt

program

Home Exercise

55

#include <stdio.h>

int main(void)

{

 FILE *infp, *outfp;

 int ID, numofD, hour, i, total_hour;

 if ((infp = fopen("input.txt", "r"))==NULL){

 printf("Input file cannot be opened\n");

 return -1;

 }

 if ((outfp = fopen("output.txt", "w"))==NULL){

 printf("Output file cannot be opened\n");

 return -1;

 }

 while(fscanf(infp, "%d %d",&ID, &numofD)==2) {

 total_hour=0;

 for(i=1; i <= numofD; i++){

 fscanf(infp,”%d”,&hour);

 total_hour +=hour;

 }

 fprintf(outfp, "%3d %3d %4d\n",

 ID, total_hour, total_hour*7);

 }

 fclose(infp); fclose(outfp);

 return 0;

} Home Exercise

56

Read/write Example

 Suppose we have a data file that contains student ID and his/her
homework grades for hw1, hw2, hw3, and hw4.

 We would like to find out min, max and average grade for each
student and write this information into another file.

 For instance, your program should process the following input.txt
and generate the corresponding output.txt as follows:

 1 20 30 28 18

 2 35 50 27 36

 3 17 20 34 44

 4 20 50 14 12

 5 33 15 30 20

 input.txt

 1 18 30 24.00

 2 27 50 37.00

 3 17 44 28.75

 4 12 50 24.00

 5 15 33 24.50

output.txt

prog

Id hw1 hw2 hw3 hw4 Id min max avg

Home Exercise

57

#include <stdio.h>

int main(void)

{

 FILE *infp, *outfp;

 int ID, hw, max, min;

 double sum;

 if ((infp = fopen("input.txt", "r"))==NULL){

 printf("Input file cannot be opened\n");

 return -1;

 }

 if ((outfp = fopen("output.txt", "w"))==NULL){

 printf("Output file cannot be opened\n");

 return -1;

 }

 while(fscanf(infp, "%d %d",&ID, &hw)==2) {

 sum=max=min=hw;

 for(i=1; i <= 3; i++){

 fscanf(infp,”%d”,&hw);

 sum = sum + hw;

 if (hw > max) max = hw;

 if (hw < min) min = hw;

 }

 fprintf(outfp, "%3d \t %3d \t %4d \t %3.2lf\n",

 ID, min, max, sum/4);

 }

 fclose(infp); fclose(outfp);

 return 0;

}
Home Exercise

Character I/O

 stdio.h has three functions for char I/O
 int getc(FILE *infp); /* why return int */

 putc(char ch, FILE *outfp);

 ungetc(FILE *infp);

 File Copy
static void CopyFile(FILE *infile, FILE *outfile)

{

 int ch; /* why declare int */

 while ((ch = getc(infile)) != EOF) {

 putc(ch, outfile);

 }

} We could use fscanf(infile, “%c”, &ch);

58

59

static void CopyRemovingComments(FILE *infile, FILE *outfile)

{

 int ch, nch;

 bool commentFlag;

 commentFlag = FALSE;

 while ((ch = getc(infile)) != EOF) {

 if (commentFlag) {

 if (ch == '*') {

 nch = getc(infile);

 if (nch == '/') {

 commentFlag = FALSE;

 } else {

 ungetc(nch, infile);

 }

 }

 } else {

 if (ch == '/') {

 nch = getc(infile);

 if (nch == '*') {

 commentFlag = TRUE;

 } else {

 ungetc(nch, infile);

 }

 }

 if (!commentFlag) putc(ch, outfile);

 }

 } /* end of while */

}
Home Exercise

Line-oriented I/O

 stdio.h has two functions for line I/O
 char *fgets(char buff[], int bsize, FILE *infp);

 fputs(char *str, FILE *outfp);

 File Copy
static void CopyFile(FILE *infile, FILE *outfile)

{

 char buffer[MaxLine+1];

 while (fgets(buffer, MaxLine, infile) != NULL) {

 fputs(buffer, outfile);

 }

} 60

stdin, stdout, stderr

 When a C program starts, it opens three files
with the following file pointers:

 stdin keyboard,

 stdout screen,

 stderr screen

 stdin and stdout might be redirected

 main212> myprog < infile > outfile

61

File copy using indirections

 #define getchar() getc(stdin)

 #define putchar(c) putc((c), stdout)

62

/* version 1 */

#include <stdio.h>

main()

{

 int c;

 c = getchar();

 while (c != EOF){

 putchar(c);

 c = getchar();

 }

}

/* version 2 */

#include <stdio.h>

main()

{

 int c;

 while ((c = getchar()) != EOF){

 putchar(c);

 }

}

…> myprog < infile.txt > outfile.txt

Textbook’s simpio.h

 int GetInteger(void);

 long GetLong(void);

 double GetReal(void);

 string GetLine(void);

 string ReadLine(FILE *infile);

 /* dynamically allocates memory */

 #define GetLine(void) Readline(stdin)

63

Standard C I/O (stdio)

64

fputc()
fputs()
fread()
freopen()
fscanf()
fseek()
fsetpos()
ftell()
fwrite()

getc()
getchar()
gets()
perror()
printf()
putc()
putchar()
puts()
remove()
rename()
rewind()

scanf()
setbuf()
setvbuf()
sprintf()
sscanf()
tmpfile()
tmpnam()
ugetc()
vfprintf()
vprintf()
vsprintf()

clearerr()
fclose()
feof()
ferror()
fflush()
fgetc()
fgetpos()
fgets()
fopen()
fprintf()

fflush(): If the given file stream is an output stream, then fflush() causes the output buffer to be written
to the file. If the given stream is of the input type, then fflush() causes the input buffer to be cleared.

Text Files vs. Binary Files
http://www.fileinfo.com/help/binary_vs_text_files

 The two file types may look the same on the surface, but they encode data
differently. While both binary and text files contain data stored as a series of
bits (binary values of 1s and 0s), the bits in text files represent characters,
while the bits in binary files represent custom data.

 Binary files typically contain a sequence of bytes, or ordered groupings of eight
bits. When creating a custom file format for a program, a developer arranges
these bytes into a format that stores the necessary information for the
application. Binary file formats may include multiple types of data in the same
file, such as image, video, and audio data. This data can be interpreted by
supporting programs, but will show up as garbled text in a text editor.

 Text files are more restrictive than binary files since they can only contain
textual data. However, unlike binary files, they are less likely to become
corrupted. While a small error in a binary file may make it unreadable, a small
error in a text file may simply show up once the file has been opened.

 We just discussed text files….

 65

http://www.techterms.com/definition/encoding
http://www.techterms.com/definition/binary
http://www.techterms.com/definition/bit
http://www.techterms.com/definition/data
http://www.techterms.com/definition/byte
http://www.techterms.com/definition/bit

66

Other Library Functions

67

Math Functions
#include <math.h>

fabs(x) Absolute value of x .

sqrt(x) Square root of x , where x>=0.

pow(x,y) Exponentiation, x y. Errors occur if

 x=0 and y<=0, or if x<0 and y is not an integer.

ceil(x) Rounds x to the nearest integer toward  (infinity).

 Example, ceil(2.01) is equal to 3.

floor(x) Rounds x to the nearest integer toward - (negative
 infinity). Example, floor(2.01) is equal to 2.

exp(x) Computes the value of ex.

log(x) Returns ln x, the natural logarithm of x to the base e.
 Errors occur if x<=0.

log10(x) Returns log10x, logarithm of x to the base 10.

 Errors occur if x<=0.

68

Trigonometric Functions

 sin(x) Computes the sine of x , where x is in radians.

 cos(x) Computes the cosine of x , where x is in radians

 tan(x) Computes the tangent of x, where x is in radians.

 asin(x) Computes the arcsine or inverse sine of x,

 where x must be in the range [-1, 1].

 Returns an angle in radians in the range [-/2,/2].

 acos(x) Computes the arccosine or inverse cosine of x,

 where x must be in the range [-1, 1].

 Returns an angle in radians in the range [0, ].

 atan(x) Computes the arctangent or inverse tangent of x. The

 Returns an angle in radians in the range [-/2,/2].

 atan2(y,x) Computes the arctangent or inverse tangent of the value

 y/x. Returns an angle in radians in the range [-, ].

69

Meaning of Parameters
of a function

 A function may contain no argument or contain one
or more arguments

 If more than one argument, list the arguments in the
correct order

 Be careful about the meaning of an argument. For
example, sin(x) assumes that x is given in radians, so
to compute the sin of 60 degree, you need to first
conver 60 degree into radian then call sin function:
#define PI 3.141593
theta = 60;
theta_rad = theata * PI / 180;
b = sin(theta_rad); /* is not the same as sin(theta); */

70

Exercise

 Write an expression to compute velocity using the following
equation

 Assume that the variables are declared

)(22 xoxavovelocity 

velocity = sqrt(vo*vo+2*a*(x-xo));

velocity = sqrt(pow(vo,2)+2*a*(x-xo));

Home Exercise

71

Exercise

 Write an expression to compute velocity using the following
equation

 Assume that the variables are declared

asr

asr
center

)(

sin)(19.38
22

33






center = (38.19*(pow(r,3)-pow(s,3))*sin(a))/
 ((pow(r,2)-pow(s,2))*a);

Make sure that a is given in radian; otherwise, first convert it to radian

center = (38.19*(r*r*r - s*s*s)*sin(a))/((r*r –s*s)*a);
Home Exercise

Exercise

72

C

c

B

b

A

a

sinsinsin


AbcBacCabarea sin
2

1
sin

2

1
sin

2

1


A

B C a

b
c

Write a program that asks user to
enter A in degrees, a and b in cm,
then computes
 B=? in degrees
 C=? in degrees
 c=? in cm
 area=? in cm2

For example, given A=36o, a=8 cm, b=5 cm:
B=21.55o, C=122.45o, c=11.49 cm

Home Exercise

73

Character
Functions

#include <ctype.h>
int ch; /* why int */

putchar(‘a’);

ch = getchar();

toupper(ch) If ch is a lowercase letter, this function returns the

 corresponding uppercase letter; otherwise, it returns ch

isdigit(ch) Returns a nonzero value if ch is a decimal digit; otherwise, it

 returns a zero.

islower(ch) Returns a nonzero value if ch is a lowercase letter; otherwise,

 it returns a zero.

isupper(ch) Returns a nonzero value if ch is an uppercase letter;

 otherwise, it returns a zero.

isalpha(ch) Returns a nonzero value if ch is an uppercase letter or a

 lowercase letter; otherwise, it returns a zero.

isalnum(ch) Returns a nonzero value if ch is an alphabetic character or a

 numeric digit; otherwise, it returns a zero.

Alphanumeric isalnum(ch)
alphabetic isalpha(ch)
control character iscntrl(ch)
decimal digit isdigit(ch)
printing character (not incl space) isgraph(ch)
lower case letter islower(ch)
printing character (incl space) isprint(ch)
printing char except space, letter, digit? ispunct(ch)
space, formfeed, newline, cr, tab, vtab? isspace(ch)
upper case letter isupper(ch)
hexadecimal digit isxdigit(ch)
convert to lower case tolower(ch)
convert to upper case toupper(ch)

74

Exercise

What is the output of the following program

#include <stdio.h>

#include <ctype.h>

int main(void)

{

 char ch1='a', ch2;

 char ch3='X', ch4;

 char ch5='8';

 ch2 = toupper(ch1);

 printf("%c %c \n",ch1,ch2);

 ch4 = tolower(ch3);

 printf("%c %c \n",ch3,ch4);

 printf("%d\n",isdigit(ch5));

 printf("%d\n",islower(ch1));

 printf("%d\n",isalpha(ch5));

 return(0);

}
Home Exercise

