
1 

 

 

Turgay Korkmaz 
 

Office: SB 4.01.13  
Phone: (210) 458-7346  
Fax: (210) 458-4437  

e-mail: korkmaz@cs.utsa.edu 
web: www.cs.utsa.edu/~korkmaz   

 

CS 2213 
Advanced Programming 

Ch 5 –  More Recursion examples 

Thanks to Eric S. Roberts, the author of our textbook, for providing some slides/figures/programs. 

http://www.cs.utsa.edu/~korkmaz


Objectives 

 To become familiar with several classic examples of recursive 
programming, but we will just consider the problem of generating 
permutations. 

 To recognize that recursion can sometimes offer concise solutions to 
problems that are difficult to solve by any other means. 

 To appreciate how recursion can be applied to the problem of 
generating graphical displays. 

2 

 Tower of Hanoi (Self-Study) 

 Generating Permutations 

 Graphical applications (Self-Study) 



Generating Permutations 

 All possible arrangements of a particular set  

 Write a function ListPermutations(s) that displays 
all permutations of the string s.  

 For example, ListPermutations(s); should display 
the following six arrangements when s is "ABC": 

ABC 

ACB 

BAC 

BCA 

CBA 

CAB 
3 

How would you implement the ListPermutations 
function?  

 Iterative control structures: finding a general solution 
that works for strings of any length is difficult.  

 Thinking about the problem recursively, on the other 
hand, leads to a relatively straightforward solution. 



The recursive insight for 
Generating Permutations 

 The permutations of the five-character string 
"ABCDE" consist of the following strings: 
 The character 'A' followed by every possible permutation of "BCDE“ 

 The character 'B' followed by every possible permutation of "ACDE“ 

 The character 'C' followed by every possible permutation of "ABDE“ 

 The character 'D' followed by every possible permutation of "ABCE“ 

 The character 'E' followed by every possible permutation of "ABCD" 

 More generally, take each of the n characters in 
turn and display that character followed by every 
possible permutation of the remaining n – 1 
characters. 

4 



Difficulty in previous strategy 

 The recursive sub-problem does not have exactly the 
same form as the original.  

 The original problem requires you to display all 
permutations of a string.  

 The sub-problem requires you to display a character from 
a string followed by all permutations of the remaining 
letters.  

 Moreover, as the recursion proceeds, the character in front 
will become two characters, then three, and so forth.  

 So the general sub-problem is to generate all permutations 
of a string with some characters at the beginning of the 
string already fixed in their positions. 

5 

a
sy

m
m

e
tr

y
  



Solving asymmetry between the 
original problem and its recursive 
sub-problems 

 RecursivePermute(str, k) generates all 
permutations of a string whose first k letters are 
fixed. 

 When k=0, all letters are free to change 

 As k increases, the problem becomes smaller 

 When k=length of string, there is no more interchange,  
print the string  

 Define ListPermutations as a simple wrapper 
function that calls a subsidiary function to solve the 
more general case. 

 6 

void ListPermutations(string str) { 

   RecursivePermute(str, 0); 

} 



RecursivePermute: 
Pseudocode form 

7 

void RecursivePermute(string str, int k)  

{ 

  if (k is equal to the length of the string) { 

    Display the  string. 

  } else { 

    For each character position i from k to the end of string { 
       Exchange the characters in positions i and k 

       Use recursion to generate permutations with the first k+1 characters fixed 

       Restore the string by exchanging the characters in positions i and k 

    } 

   } 

} 



RecursivePermute: 
Implementation in C  

8 

void RecursivePermute(string str, int k)  

{ 

  int i; 

  if (k == strlen(str)) { 

    printf(“%s\n”, str); 

  } else { 

    for(i=k; i < strlen(str); i++) {  

       ExchangeCharacters(str, k, i);  

       RecursivePermute(str, k+1); 

       ExchangeCharacters(str, k, i);   

    } 

  } 

} 

void ExchangeCharacters(string str, int k, int i) 

{ 

   char tmp; 

   tmp = str[i]; 

   str[i] = str[k]; 

   str[k] = tmp; 

} 

Can you think of any 
improvement? 
 
What is the complexity?  
 



Exercise: Trace 
ListPermutations 

 ListPermutations(“KLMN”) 

9 



Exercise: Trace 
ListPermutations 

 ListPermutations(“KLMN”) 

 4! =4*3*2*1=24 

10 

BTW if you call it like this, you will 
get segmentation fault in C. Why? 
 
How can you fix the problem? 



SELF-STUDY 

Rest can be skipped  

11 



The Towers of Hanoi Solution  

Hanoi 

skip simulation 

int main() { 

   int nDisks = 3; 

   InitHanoiGraphics(nDisks); 

   MoveTower(nDisks, 'A', 'B', 'C'); 

   return 0; 

} 

nDisk

s 3 

void MoveTower(int n, char start, char finish, char temp) { 

   if (n == 1) { 

      MoveSingleDisk(start, finish); 

   } else { 

      MoveTower(n - 1, start, temp, finish); 

      MoveSingleDisk(start, finish); 

      MoveTower(n - 1, temp, finish, start); 

   } 

} 
start finish 

'A' 'B' 

n 

3 
temp 

'C' 

void MoveTower(int n, char start, char finish, char temp) { 

   if (n == 1) { 

      MoveSingleDisk(start, finish); 

   } else { 

      MoveTower(n - 1, start, temp, finish); 

      MoveSingleDisk(start, finish); 

      MoveTower(n - 1, temp, finish, start); 

   } 

} 
start finish 

'A' 'C' 

n 

2 
temp 

'B' 

void MoveTower(int n, char start, char finish, char temp) { 

   if (n == 1) { 

      MoveSingleDisk(start, finish); 

   } else { 

      MoveTower(n - 1, start, temp, finish); 

      MoveSingleDisk(start, finish); 

      MoveTower(n - 1, temp, finish, start); 

   } 

} 
start finish 

'A' 'B' 

n 

1 
temp 

'C' 

void MoveTower(int n, char start, char finish, char temp) { 

   if (n == 1) { 

      MoveSingleDisk(start, finish); 

   } else { 

      MoveTower(n - 1, start, temp, finish); 

      MoveSingleDisk(start, finish); 

      MoveTower(n - 1, temp, finish, start); 

   } 

} 
start finish 

'B' 'C' 

n 

1 
temp 

'A' 

void MoveTower(int n, char start, char finish, char temp) { 

   if (n == 1) { 

      MoveSingleDisk(start, finish); 

   } else { 

      MoveTower(n - 1, start, temp, finish); 

      MoveSingleDisk(start, finish); 

      MoveTower(n - 1, temp, finish, start); 

   } 

} 
start finish 

'C' 'B' 

n 

2 
temp 

'A' 

void MoveTower(int n, char start, char finish, char temp) { 

   if (n == 1) { 

      MoveSingleDisk(start, finish); 

   } else { 

      MoveTower(n - 1, start, temp, finish); 

      MoveSingleDisk(start, finish); 

      MoveTower(n - 1, temp, finish, start); 

   } 

} 
start finish 

'C' 'A' 

n 

1 
temp 

'B' 

void MoveTower(int n, char start, char finish, char temp) { 

   if (n == 1) { 

      MoveSingleDisk(start, finish); 

   } else { 

      MoveTower(n - 1, start, temp, finish); 

      MoveSingleDisk(start, finish); 

      MoveTower(n - 1, temp, finish, start); 

   } 

} 
start finish 

'A' 'B' 

n 

1 
temp 

'C' 

int main() { 

   int nDisks = 3; 

   InitHanoiGraphics(nDisks); 

   MoveTower(nDisks, 'A', 'B', 'C'); 

   return 0; 

} 

void MoveTower(int n, char start, char finish, char temp) { 

   if (n == 1) { 

      MoveSingleDisk(start, finish); 

   } else { 

      MoveTower(n - 1, start, temp, finish); 

      MoveSingleDisk(start, finish); 

      MoveTower(n - 1, temp, finish, start); 

   } 

} 
start finish 

'A' 'B' 

n 

3 
temp 

'C' 

12 



Graphical Recursion 

• Recursion comes up in certain graphical applications, 
most notably in the creation of fractals, which are 
mathematical structures that consist of similar figures 
repeated at various different scales.  Fractals were 
popularized in a 1982 book by Benoit Mandelbrot 
entitled The Fractal Geometry of Nature. 

• One of the simplest fractal patterns to draw is the Koch 
fractal, named after its inventor, the Swedish 
mathematician Helge von Koch (1870-1924).  The Koch 
fractal is sometimes called a snowflake fractal because 
of the beautiful, six-sided symmetries it displays as the 
figure becomes more detailed. as illustrated in the 
above diagram. 

 


